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Abstract

We study duopolistic competition in a differentiated market with firms setting prices and
quantities, without explicitly imposing market clearing. Unlike the commonly adopted
assumption of profit maximizing firms, we assume firm behavior to be shaped by a Dar-
winian dynamic: the less fitter firm imitates the fitter firm and occasionally firms may
experiment with a random price and/or quantity. Our two main findings are that: (i) a
market clearing outcome always belongs to the set of feasible long run outcomes, but may
co-exist with non-market clearing outcomes with as well excess supply as excess demand
being possible; and (ii) there exist parameter configurations for which the only feasible
outcomes imply prices above monopoly level.
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1 Introduction

The traditional literature in the field of oligopoly theory typically models firms as perfectly

rational agents whose decisions are solely aimed at the maximization of profit. However,

the recognition that agents might be informationally constrained and/or at most boundedly

rational, has activated a growing interest in analyzing the impact that such constraints might

have on decision making and market outcomes. Indeed, it is not unnatural to conceive of a

situation where firms lack the relevant information for profit maximization. Hence, the tools

usually used to study firm behavior loose their applicability and alternative approaches need

to be adopted.

Alchian (1950) emphasizes the importance of relative performance and that relative profit

might serve as the chief driver of firm behavior. If the salience of relative profit is accepted,

then imitation may be a reasonable behaviorial assumption. This approach agrees with the

evolutionary perspective, which is built on the premise that strategies which yield a higher-

than-average payoff will tend to be more attractive. Huck et al. (1999), Offerman et al. (2002)

and Apesteguia et al. (2007) find some experimental evidence of firms imitating the fitter firm

once feedback on strategies and profits is explicitly provided.

Vega-Redondo (1997) studies a situation where firms producing a homogeneous commod-

ity compete in quantities and the market price is determined by the total quantity produced.

The profits and quantities chosen by each firm are observable, and the action chosen by the

most successful firm is almost always imitated. Occasionally, firms experiment and choose

any quantity. As the probability of experimentation goes to zero, the Walrasian outcome pre-

vails most of the time. Huck et al. (1999) and Apesteguia et al. (2010) provide experimental

support evidence for this finding.

Similarly, Alós-Ferrer et al. (2000) analyze, in an evolutionary setting, the long-run out-

come when firms, with increasing marginal costs in a homogeneous market, set prices. Firms

with the lowest price win the market. Here, analogous to Vega-Redondo (1997), prices an-

nounced by the firm and the profits realized by each are observed and the behavior of the

firms is based on imitation of the successful firms. The study obtains a strict subset of the

Nash equilibria of the underlying game as the long-run outcome of this dynamic process of

imitation and occasional experimentation.

In this paper, we pursue a related issue. The question that we seek to address in this paper

is: What is the nature of a process where firms do not choose either price or quantity but both

of them simultaneously? This question is more interesting if we abandon the assumption of

market clearing and then examine if it arises out of the evolutionary process. This is motivated

in part by Herings (1997) and more recently by Alós-Ferrer and Kirchsteiger (2010) who show

that it is possible for non-market clearing institutions to evolve.

Another difference compared to Vega-Redondo (1997) and Alós-Ferrer et al. (2000) is that
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we consider a market for a good that is differentiated horizontally.1 To keep things simple,

we assume that there are two firms that are located at the extreme ends of a Hotelling line.

We impose a very basic informational setting; the only information that the firms must have

pertain to is its own marginal cost and that there is a competing firm. In particular, we do

not require the firms to be aware of the fact that they are in a differentiated market. Neither

do they have to be cognizant of the consumers’ valuation of their product or of the consumers’

preferences between the two firms (i.e. the transportation cost) or the size of the market.

The firms can choose both price and quantity. Market clearing is not imposed and hence

the presence of excess supply or excess demand cannot be ruled out a priori. After setting

prices and quantities, the firms realize profits, all three of which are observable. The behavior

that we impose on the firms is that the less successful firm immediately imitates the more

successful firm in both price and quantity. This can be viewed essentially as a form of

Darwinian adjustment where the more successful strategy grows in the population. In addition

to this imitation dynamic, we introduce the possibility of experimentation, whereby firms

choose a price or quantity that is not necessarily dictated by imitation. The possibility

of such experimentation makes the system ergodic and enables us to obtain the long-run

outcome. The techniques used to identify the long-run outcome are based on the concept of

stochastic stability, as used by Young (1993), Kandori et al. (1993) and Ellison (2000). This

process of imitation and occasional experimentation can be thought of as an application to

Hamilton’s theory of spite in biology (Hamilton, 1970). Via imitation, the system gravitates

towards the action that yields higher relative profit, and this might occur at the expense of

absolute profit.

Our results indicate that the outcome depends on the magnitude of the consumer’s gross

utility or valuation for the product. When the consumer valuation is lower than a certain

bound, the unique stochastically stable state involves each firm behaving as a monopolist

(Proposition 2). As consumer valuation increases up to another bound, we obtain a subset

of prices and quantities as the long-run outcome with all prices being above the monopoly

price (Proposition 3). For sufficiently high consumer valuation, any state where firms choose

identical price and quantity and receive at least zero profits can be a long-run outcome

(Proposition 4). In this case, in contrast to the ones mentioned earlier, market clearing does

not necessarily come about – it is possible to have long-run outcomes with persistent excess

supply or excess demand.

At this juncture, we provide some preliminary intuition for the results. When consumer

valuation is sufficiently low, each firm is for all practical purposes, endowed with some

monopoly power. This enables monopoly pricing to be more resistant to any spiteful be-

havior by the competing firm. But with higher consumer valuations, this monopoly power is

1We discuss the implications of our results for homogeneous product markets in Section 5.
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eroded. For an intermediate range of consumer valuation, the subset of states obtained are

the ones which are most resistant to experimentation by a deviant firm. Strikingly, this goes

along with prices above monopoly level. This is a reflection of the fact that the stochastically

stable states are the ones most immune from any type of potential spiteful behavior by the

competing firm – the high prices allow a firm to have a secure but admittedly smaller market.

For sufficiently high consumer valuation, no one state is more resistant to experimentation

and all absorbing states are stochastically stable. Interestingly, in spite of all the emphasis

on relative profit, excess supply (which represents unnecessary cost) or excess demand (which

represents an opportunity to increase profit) are possible long-run features.

The paper is organized as follows. In Section 2, we present the model and the predictions

by several standard theories. In Section 3, we present very briefly the concept of stochastic

stability and related concepts and theorems we make use of later on (in particular, in the

proofs). In Section 4, we present the main results of the paper. In Section 5, we discuss

robustness of our results and digress on possible extensions, such as one wherein the quantity

produced by the firm is not observable but the actual sales are. In the Appendix, we provide

some general intuition on why non-Nash results can be obtained in a process of imitation and

experimentation and the properties needed on the payoff structure to generate multiplicity in

the number of stochastically stable states.

2 Model, notation and standard results

We study a duopolistic market in the standard Hotelling framework, but where firms choose

prices and quantities. Two firms are located at the endpoints of the unit interval [0, 1] along

which the consumers are uniformly distributed. Hence, we identify firms and consumers by

their location on this interval such that firm 0 is the firm situated at location 0 and firm 1 is

the firm situated at location 1. Two firms simultaneously and independently decide on the

quantity to put on the market and the price to charge for each unit.2 After having observed

the two prices, consumers choose from which of the two firms to acquire the product or to

abstain from buying. Consumers acquire one unit of the good at most. All consumers assign

a common intrinsic value of β to the good and incur a transportation cost of τ per unit of

distance to the chosen firm. Hence, the utility of the consumer at location x ∈ [0, 1] equals

Ux =


β−τ · x −p0 if x purchases from firm 0;
β−τ · (1− x)−p1 if x purchases from firm 1;
0 if x does not consider buying any good at all.

2In fact, the techniques used require a finite strategy space, which means the prices and quantities are
chosen from a finite price and quantity grid. We continue our analysis using continuous price and quantity
spaces and add clarifying footnotes regarding particular prices and quantities that should be contained in the
respective grids to make the results feasible.
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Consumers maximize their utility. Observe that in their decision the consumers do not take

into account the quantity produced by the firms, it is possible that the demand at one firm

exceeds the supply, while the other firm is left with an excess supply. A firm’s sale, si, is

given by the minimum of the supply qi and the demand di that is given by the mass of

consumers that decides purchasing from firm i (i = 0, 1). We assume an equal and constant

production cost of c per unit and that the goods are perishable such that excess supply can

not be utilized. A firm’s profit is then given by:

πi = pi · si − c · qi.

The specification of the demand of firm i depends on whether the prices give rise to all

consumers deciding to purchase a good (irrespective of their success to acquire the good) or

whether there is a positive mass of consumers that prefers not to purchase at given prices. In

the former case the demand of the firms is determined by the location of the consumer that

is indifferent between the two products: x̂ = p1−p0+τ
2τ . If x̂ ≥ 1, then d0 = 1 and d1 = 0; if

x̂ ≤ 0, then d0 = 0 and d1 = 1; otherwise (that is, if x̂ ∈ (0, 1)) d0 = x̂ and d1 = 1− x̂. In the

latter case the demands are given by d0 = x̂0 and d1 = 1− x̂1, provided that these values are

not below 0 or above 1. Here, x̂0 stands for the consumer who gets precisely zero utility if she

purchases from firm 0, i.e. x̂0 = β−p0
τ ; x̂1 is defined similarly, i.e. x̂1 = 1 − β−p1

τ . Note that

in the former case x̂1 ≤ x̂ ≤ x̂0 and the firms actively compete for the indifferent/marginal

consumer; in the latter case x̂0 < x̂ < x̂1 and the firms act as local monopolists.

Throughout the paper we assume that the consumer valuation exceeds the unit production

cost: β > c. This ensures that there is scope for efficient trade. Moreover, we assume

transportation costs to be of moderate size relative to the marginal cost of production: τ < c.

This latter assumption is purely cosmetic: it reduces the derivations needed to derive the

insights, while the main insights we derive are robust to this assumption3, and hence improves

comprehensibility of the paper. Of secondary importance is that it induces a low level of

differentiation and allows for a fairer reflection of our results to those of Vega-Redondo (1997).

Although this paper adopts an evolutionary approach where firms are not required to

have any knowledge of the demand curves and the size of the market (or, alternatively, the

location of the rival firm), for the sake of benchmarking we provide some standard solutions

that assume firms to possess the relevant information to maximize profits. First, in case a

firm would be a monopolist a price of p = min{β+c
2 , β − τ} and q = min{β−c2τ , 1} would be

chosen. Second, the Nash equilibrium prescribes the firms to produce this monopoly quantity

and to charge the monopoly price in case β ≤ c + τ . In case β > c + τ , Nash equilibrium

prices and quantities equal p = c+ τ and q = 1
2 respectively.

3Derivations are available upon request and will soon be made available in an accompanying working paper.
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3 Stochastic stability

In this section, we present the notion of stochastic stability and some useful theorems by

Young (1993) and Ellison (2000). We restrict our attention to stochastic stability in the

context of imitation and experimentation and tailor it slightly to our needs.

We focus on a two-player game, where player i chooses a strategy si from a finite set of

strategies Si (i = 1, 2). After choices have been made, the players receive their payoff that

solely depends on the profile of chosen strategies (s1, s2) ∈ S ≡ S1 × S2. In order to make

imitation sensible, we restrict attention to games where the strategy space of both players is

identical (i.e. S1 = S2) and assume the payoff to be symmetric (i.e. π1(s1, s2) = π2(s2, s1)).

3.1 Unperturbed learning dynamics and absorbing states

We consider the evolution of behavior when the less fit player (the one with the lower payoff)

imitates the fitter one (the one with the larger payoff). This includes a positive probability of

a player imitating the other, even if they have equal payoffs. This imitation dynamic can be

captured by a Markov process (S, P ) with S being the state space consisting of all strategy-

profiles and P capturing the state transition dynamics. We let Pωω′ denote the probability

that the system transits to the state ω′ ∈ S when being in state ω ∈ S.

A state ω ∈ S is called absorbing if and only if Pωω = 1 and Pωω′ = 0 for all ω′ 6= ω.

Once a system reaches an absorbing state, it is locked in it thereafter. We denote the set

of all absorbing states by Ω ⊆ S. As a result of the particular imitation dynamic that we

impose later on, all absorbing sets are singletons. Therefore, for expositional ease and at our

convenience, our presentation of the literature is specific to the situation at hand and ignores

the possibility of non-singleton absorbing sets.4

The unperturbed imitation dynamic results in the system moving to an absorbing state,

but it does not make a further selection amongst these states. To select from the set of

all absorbing states, we perturb the imitation dynamic with the possibility of occasional

experimentation. This enables us to identify the states that might be observed most of the

time.

3.2 Perturbed learning dynamics and stochastic stability

Apart from the imitation dynamics, the players can experiment with any strategy. This

happens with very small probability, say, ε.5 Let P (ε) be the transition matrix associated

with the probability of experimentation being equal to ε. It is possible to transit out of the

4For a more general discourse on this, we refer to Chapter 5 of Fudenberg and Levine (1998).
5In this paper, we will assume a more involved experimentation structure, as is specified in the next section.

For now, let ε refer to the probability of experimentation to a random strategy.
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absorbing states induced by imitation only with experimentation. A consequence of experi-

mentation is that the perturbed process is ergodic such that it generates a unique invariant

(or stationary, or equilibrium) distribution µ(ε), the unique solution to the system of linear

equations µP (ε) = µ. The states that are stochastically stable are the ones that receive a

positive weight in the limiting invariant distribution, i.e. the unique invariant distribution as

ε goes to zero: µ∗ = limε↓0 µ(ε). The following result indicates that only absorbing states

may be stochastically stable.

Theorem 1 (Young, 1993, Theorem 4(i)).

The set of stochastically stable is a nonempty subset of the set of absorbing states.

The algorithm for identifying the stochastically stable states is now presented. Let the resis-

tance ρ(ω, ω′) be the total number of experimentations involved in the transition from state

ω to the state ω′, where ω, ω′ ∈ S. The state space S can be represented by the vertices of

a directed graph, in which ρ(ω, ω′) is the resistance of each edge. The resistance of the edge

(ω, ω′) is zero when the transition from state ω to state ω′ is made possible entirely via the

imitation dynamic while resistance of an edge emanating from an absorbing state must have

a strictly positive weight. Let r(ω, ω′) be the resistance of the least resistant path among all

paths between these two states.

We now consider another directed graph, where the vertices are the absorbing states

ω ∈ Ω. A ω-tree Tω is a directed graph with vertex set Ω such that for every ω′ 6= ω there

is exactly one (cycle-free) sequence of edges (a path) from ω′ to ω. Let Tω denote the set of

all such ω-trees Tω. Edges [ω′, ω′′] are given a weight r(ω, ω′). The tree-resistance r(Tω) of

a ω-tree equals the sum of corresponding edge-resistances, i.e. r(Tω) =
∑

[ω′,ω′′]∈Tω r(ω
′, ω′′).

Finally, the stochastic potential of ω ∈ Ω, denoted by γ(ω), is the minimal tree-resistance over

all ω-trees, i.e. γ(ω) = minTω∈Tω r(Tω). A ω-tree Tω with r(Tω) = γ(ω) is a least resistance

ω-tree. The set of stochastically stable states is characterized by the set of states with minimal

stochastic potential.

Theorem 2 (Young, 1993, Theorem 2).

An (absorbing) state ω ∈ Ω is stochastically stable if and only if it has minimal stochastic

potential, i.e. γ(ω) ≤ γ(ω′) for all ω′ ∈ Ω.

The method illustrated above requires the construction of the least resistant tree for all states

so as to identify the state with the least stochastic potential. At times, it may be convenient

to identify the stochastically stable state(s) by employing the concepts of radius, co-radius

and modified co-radius by Ellison (2000).

The basin of attraction of the union of one or more absorbing states A, is the set of initial

states from which the unperturbed Markov process converges to A with probability 1, i.e.

B(A) =
{
ω ∈ Ω

∣∣Prob
[
∃K∀k>Kω(k) ∈ A

∣∣ω(0) = ω
]

= 1
}

. Then, the radius of A, R(A),
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is given by the minimum number of experimentations that are necessary to leave B(A) when

the process starts in A.

Suppose now that the system is in a state ω′ /∈ A. Let z(ω′, A) be the minimum number

of experimentations required to transit from ω′ to B(A). Then, the co-radius of the basin

of attraction of A is the minimum number of experimentations needed from the state from

which B(A) is most difficult to access: CR(A) = maxω′ /∈A z(ω′, A). Based on the concept of

co-radius, the modified co-radius is defined.

Let (ω(1), ω(2), . . . , ω(K)) be a path consisting of distinct states that starts in a state x

and reaches the set A for the first time in the terminal state (A is as before, a set of ab-

sorbing states); so, ω(1) = x, ω(k) /∈ A for 2 ≤ k ≤ K − 1 and ω(K) ∈ A. By S(x,A),

we denote the sets of all such paths. Let z(ω(1), ω(2), . . . , ω(K)) denote the total num-

ber of experimentations along the path (ω(1), ω(2), . . . , ω(K)): z(ω(1), ω(2), . . . , ω(K)) =∑K−1
k=1 z(ω(k), ω(k + 1)). Denote by A1, A2, . . . , AL, the sequence of absorbing sets through

which the path passes consecutively. Then, the modified cost function of the path is defined

as: z∗(ω(1), ω(2), ..., ω(K)) = z(ω(1), ω(2), . . . , ω(K))−
∑L−1

`=2 R(A`). Now define z∗(x,A) =

min(ω(1),ω(2),...,ω(K))∈S(x,A) z
∗(ω(1), ω(2), . . . , ω(K)). Finally, the modified co-radius of the

basin of attraction of A is: CR∗(A) = maxx/∈A z∗(x,A).

Theorem 3 (Ellison, 2000, Theorems 1–3).

(i) If R(A) > CR(A), then the stochastically stable states are contained in A.

(ii) If R(A) > CR∗(A), then the stochastically stable states are contained in A.

(iii) If for some absorbing state ω and some other state ω′, we have R(ω) > z∗(ω′, ω), then

µ∗(ω′) = 0. If R(ω) = z∗(ω′, ω), then µ∗(ω′) > 0 implies µ∗(ω) > 0.

4 Results

Instead of assuming firms to maximize profits, we adopt the principle that firms learn by

imitation and experimentation. That is, the less fit firm (i.e. the firm with the lower profit)

imitates the behavior of the fitter firm (i.e. the one with the higher profit). This requires

strategic decisions and the yielded profits to be perfectly observable. Once firms receive equal

(and nonnegative) profits, firms can only continue learning by experimentation to alternative

price–quantity pairs.

Note the for this learning dynamic, firms do not need all profit relevant information from

the environment competing in. In our setting, awareness of the size of the market, the intrinsic

value consumers attach to a good and the transportation costs they are facing is not required.

We even do not require the firms to be aware of their or their rival’s position on the Hotelling

line. The only information we assume them to possess is their unit cost of production and

the existence of a rival firm.
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4.1 Unperturbed learning dynamics and absorbing states

We consider the following imitation dynamic. If in a particular state, a firm receives a negative

profit, the rival firm is imitated in case the latter obtained a nonnegative profit. Otherwise,

both firms shut down by choosing a production level of zero next period (without changing

their price). If a firm receives a nonnegative profit, it imitates the rival firm in case this rival

firm is strictly fitter in the current state (received a strictly higher profit); in case the rival

firm is as fit, we assume the firm imitates the rival with a positive probability strictly less

than one. This imitation dynamics gives rise to the following proposition.

Proposition 1. The set of absorbing states are precisely the monomorphic states that imply

non-negative profit to the firms.

Without experimentation the process will converge to an absorbing state. Experimentations

that give the experimenting firm the higher profit relative to its rival are needed to drive the

system out of an absorbing state. The resistance of the absorbing state towards experimen-

tation provides information on the the stability of an absorbing state. In the next subsection

we will characterize the set of states that are most resistant towards experimentation.

4.2 Perturbed learning dynamics and stochastic stability

We consider the following structure on experimentations. For each firm, there is a small

probability ε > 0 that this firm experiments at all. In case a firm experiments, there is

for each of the two strategic decisions (price and quantity) a probability ε > 0 that this

firm experiments with that particular strategic variable. As a result, the probability that

one particular firm experiments in one particular variable is of the order ε2(1 − ε)2; one

firm experimenting with both variables of the order ε3(1− ε); two firms experimenting with

one variable each of the order ε4(1 − ε)2; one firm experimenting with one variable and the

other with both of the order ε5(1 − ε); and two firms with both variables of the order ε6.

Given that we are considering very low values of ε, the powers on ε justify counting these

experimentations as 1, 2, 3, 4, and 5 respectively in the calculation of the resistance of an edge

that uses the respective experimentation. Although our perturbation may appear as highly

stylized, all we need for our results to hold true is that as ε vanishes, one firm experimenting

in one decision variable is infinitely more likely than one firm experimenting in both decision

variables, which in turn is infinitely more likely than two firm experimenting at the same time.

In Section 5 we discuss the sensitivity of our results with respect to altering the structure of

the cost of experimentation.

The structure of the set of stochastically stable states is different for different values of β,

the gross utility that consumers extract from consumption. We present three propositions,

each of them devoted to a distinctive case with respect to the size of β.
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Proposition 2. Suppose β < τ−2c+
√
τ2 + 9c2 − 2cτ . The state where both firms supply the

monopoly quantity q∗ = β−c
2τ and set the monopoly price p∗ = β+c

2 is the unique stochastically

stable state.6

Proof. Let us denote the state mentioned in the proposition by ω∗. Notice that the

supposition in the proposition implies β < c + τ , such that the quantity produced by each

firm according to ω∗ is less than half the market size. Our proof is constructed as follows.

First, we show that no experimentation in price and quantity can push the system outside

the basin of attraction of state ω∗. Next, we show that it is then also not possible with either

one price or one quantity experimentation. From this we conclude that the radius of ω∗ is

strictly larger than 2. Second, we show that the co-radius of ω∗ is at most 2. Form part (i) of

Theorem 3 it follows that all stochastically stable states are included in the set {ω∗}. Next,

existence leads us to conclude that ω∗ is the unique stochastically stable state.

Part 1 (radius). In state ω∗ the firms set price and quantity at the monopoly level and

do not compete for the marginal agent. Experimentation in price by one firm leads to active

competition with its rival if and only if the experimented price is less than 3
2β −

1
2c − τ .

Notice that any larger price leads to a decrease in the experimenting firm’s profit, while it

does not affect its rival’s profit and will result in a return to ω∗. Suppose, therefore that the

experimenting firm experiments with the price p′ < 3
2β−

1
2c− τ . Moreover, suppose that this

firm experiments simultaneously with the optimal quantity given that price: q′ = β+c+2τ−2p′

4τ .

This experimentation leads to a profit of π′ = (p′ − c)q′ for the experimenting firm and a

profit of π = β+c
2 (1− q′)− c q∗ for its rival. The difference between these two profits, π′ − π,

is maximized at p′max = c+τ
2 . As τ < c, this price is below unit cost and it suffices to consider

the case where the experimenting firm experiments with marginal cost pricing.

Suppose the experimenting firm experiments to p′ = c and q′ = β−c+2τ
4τ . Then, π′ − π =

1
8τ (β2+4cβ−2τβ−2cτ−5c2), which is negative if and only if β ∈ (τ−2c−

√
τ2 − 2cτ + 9c2, τ−

2c +
√
τ2 − 2cτ + 9c2). Since τ − 2c −

√
τ2 − 2cτ + 9c2 < c < β, we get to the condition

β < τ − 2c+
√
τ2 − 2cτ + 9c2.

We have shown that even in the best case experimentation with prices and quantities,

a firm cannot obtain a situation where its profit strictly exceeds that of its rival when the

condition in the proposition is met. Now, note that if it is not possible to leave ω∗ with

a price experimentation in combination with an optimal quantity adjustment, it is also not

possible without such an adjustment. A sole quantity experimentation always decreases the

profit (either because more units can be sold at a price above cost, or because more units are

produced than are sold), while it doesn’t affect the profit of the rival firm.

Part 2 (co-radius). From the first part of Part 1, we learn that starting from any state,

6We need the monopoly price and quantity to be contained in the price and quantity grid respectively
(recall Footnote 2).
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if a firm experiments simultaneously to price p∗ and quantity q∗, then it results in a larger

profit relative to the profit of its rival. This means that, from any state, at most two experi-

mentations are needed to get to (the basin of attraction of) ω∗. �

Proposition 2 reveals that when the intrinsic value of the product (β) is small, the monopoly

outcome is expected to prevail in the long run. In particular, the two firms are not actively

competing for the same customers such that the market is only partially served. Notwith-

standing the market not being fully served, the stochastically stable outcome implies market

clearing. Note, however, that the restriction on the intrinsic value is that severe that the

participation constraint of the consumers at the other end of the market is not satisfied for a

price equal to unit cost. This hands each of the firm some market power and in this frame-

work of imitation and experimentation, it manifests itself into monopoly prices and monopoly

outputs.

Proposition 3. Suppose τ−2c+
√
τ2 + 9c2 − 2cτ ≤ β < c+τ . Then, the set of stochastically

stable states consists of the monomorphic states with prices p∗ ∈ (p̄, β) and quantity q∗ = β−p∗
τ ,

where p̄ is the unique feasible solution to p( c−p+τ2τ )− cβ−pτ = 0.7

Proof. Let Ω∗ denote the set of stochastically stable states as it is claimed in the proposition.

Notice that all states in Ω∗ imply market clearing and in none of them firms actively compete

for the marginal consumer as p̄ ≥ β+c
2 > β− τ

2 . Our proof is constructed as follows. First, we

show that the radius of Ω∗ is 2. Second, we show that the modified co-radius of Ω∗ is 1. Next,

it follows from part (ii) of Theorem 3 that the stochastically stable states are contained in

Ω∗. Third, we show that all states in Ω∗ are stochastically stable. That concludes the proof.

Part 1 (radius). We demonstrate that the radius of the set Ω∗ is 2. We first show that

the radius is at least 2 by showing that there exists no price experimentation or quantity

experimentation that makes the system leave the basin of attraction of Ω∗.

Since supply equals demand in all states in Ω∗ and the consumers’ acquisition decision

is independent of the quantity produced, a quantity experimentation reduces the own profit

(given that the price is above marginal cost) while it leaves the rival’s profit unaffected. Hence,

a quantity experimentation leaves the experimenting firm worse off as compared to its rival

and imitation will drive the process back to the original state.

Since firms do not compete for the marginal agent, experimentation to a larger price

(p′ > p) will not lead to a change in the rival’s profit. Moreover, since the quantity is

unadjusted, the cost component of the own profit does not change. The revenue component

7For the existence of at least one stochastically stable state, we need (i) marginal cost, (ii) the monopoly
price and (iii) at least one price (say p∗) in the interval (p̄, β) to exist in the price grid, while we need the

monopoly quantity and the quantity demanded at p∗ (i.e. β−p
∗

τ
) to exist in the quantity grid. For the instance

when there is more than one price p from (p̄, β) in the price grid, we require the corresponding demand, β−p
τ

,
to belong to the quantity grid.
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is at least as much if p′ β−p
′

τ ≥ pβ−pτ , which is satisfied if and only if p′ ∈ [β − p, p]; a

contradiction.8 Experimentation to a lower price (p′ < p) decreases the own profit, and can

therefore only lead to an eruption if the rival’s firm is decreased by even more. For this

to be the case, the price p′ must be sufficiently low to compete for the rival’s consumers:

p′ ≤ 2β − p− τ . Such a experimentation results in a situation where the experimenting firm

obtains equal or larger profit than its rival if and only if it leads to equal or larger revenue

(since costs are equal): p′ β−pτ −
p′−p+τ

2τ ≥ 0. Since the derivative of the left-hand side to p′ is

the constant (2β − 3p), it suffices to check the validity of the inequality at the two extreme

values: c and 2β − p − τ . Experimentation to 2β − p − τ can not be disruptive for the

obvious reason that no consumers are stolen away and the own profit decreases. For p′ = c

the inequality simplifies to p2 − (3c + τ)p + 2βc ≥ 0. The derivative of the left-hand side

equals 2p − (3c + τ) and is negative since p < β < c + τ < 3c+τ
2 .9 This means that if the

inequality is not satisfied for a certain price p, then it is not satisfied for larger values of p.

The price p̄ is precisely the price at which the inequality is binding. Hence, for prices larger

than p̄, an experimentation to marginal cost is not disruptive.

We can conclude that for the states in Ω∗, the radius is at least 2. Since all states in Ω∗

are with prices above monopoly level, an experimentation by one firm to monopoly price and

quantity leads to an immediate drift towards an absorbing state outside Ω∗. Thus, the radius

of Ω∗ is 2.

Part 2 (modified co-radius). We now show that the modified co-radius of Ω∗ is 1. We do

so by demonstrating that from any other state outside Ω∗, it is possible to reach any state

in Ω∗ with a sequence of single suitable experimentations. This implies that the modified

co-radius of Ω∗ is 1.

Firstly, let us suppose that the initial state is of the form ω0 = (p, q, p, q) with p < β − τ
2

such that firms compete for the marginal consumer. And, let ω∗ = (p∗, q∗, p∗, q∗) be the

state in Ω∗ that we try to reach. If both firms earn non-negative profit state ω0 is absorbing,

otherwise firms stop producing and the process transits to state (p, 0, p, 0). Irrespective of the

sign of the profit, if the rival firm experiments to q = 1
2 , it will receive the higher profit. This

means that one experimentation is needed to get to the state ω1 = (p, 1
2 , p,

1
2), which is an

absorbing state as each firm makes non-negative profit. Next, experimentation to marginal

cost implies a larger profit relative to that of the rival firm if and only if the rival firm receives

a negative profit: p c−p+τ2τ − c
2 ≤ 0, or simplified (p − τ)(p − c) ≥ 0. This inequality will

always be fulfilled as p ≥ c > τ . Hence, one experimentation to marginal cost pricing is

needed to get to the absorbing state ω2 = (c, 1
2 , c,

1
2). Now, consider an experimentation

in quantity to q∗. Note that q∗ < 1
2 , since p∗ > p̄ > β − τ

2 . Both firms earn exactly zero

8Note that β − p < p, since p > p̄ ≥ β+c
2

> β
2

.
9The first inequalities follows from p being in (p̄, β), the second by assumption, and the third from the

assumption that τ < c.
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profit and with positive probability quantity q∗ gets imitated and we are in the absorbing state

ω3 = (c, q∗, c, q∗). Finally, let one of the firms experiment with p∗. Then, this experimentation

gets imitated with positive probability if and only if the resulting profit is non-negative:

p∗ c−p
∗+τ

2τ − cβ−p
∗

τ ≥ 0. This inequality is strictly satisfied precisely for market clearing prices

above p̄, in particular our p∗. We have reached the desired state ω∗ = (p∗, q∗, p∗, q∗). Note

that all the transitions from one absorbing state to the other take place with the help of a

single suitable experimentation.

Secondly, let us suppose that the initial state is of the form ω0 = (p, q, p, q), where p ∈
(β− τ

2 , p̄). In this state, the firms are not competing and they have their independent markets.

If both firms are receiving negative profit, they shut down, giving rise to the absorbing state

(p, 0, p, 0). Irrespective of which of the two states is absorbing, let one firm experiment with the

market clearing quantity β−p
τ . The experimenting firm will receive the larger profit and gets

immediately imitated and the process transits to the absorbing state ω1 = (p, β−pτ , p, β−pτ ).

Next, let one of the firms experiment with marginal cost pricing. Then, the experimenting

firm receives zero profit, while its rival receives a negative profit (this is precisely what the

condition p < p̄ implies). As a result, marginal cost pricing gets imitates and we reach the

state ω2 = (c, β−pτ , c, β−pτ ). The sequence of single experimentations from this state to a state

in Ω∗ has been illustrated in the previous paragraph.

Thirdly, suppose that ω0 = (p, q, p, q) with p ∈ (p̄, β) but q 6= β−p
τ . Obviously an exper-

imentation to the market clearing quantity β−p
τ is imitated and we get to a state Ω∗ with a

single experimentation.

Finally, from state ω0 = (p, 0, p, 0) with p ≥ β, an experimentation to marginal cost is

followed with positive probability. The sequence of single experimentations from the resulting

state to a state in Ω∗ has been illustrated.

We conclude that it is possible to reach a state in Ω∗ from any other state not belonging

to Ω∗ with a sequence of single experimentations. Hence, the modified co-radius of Ω∗ is 1.

Part 3. We now demonstrate that all states in Ω∗ are stochastically stable. Take any two

states ω′ and ω′′ in Ω∗. From ω′′ we can go to the monopoly state (β+c
2 , β−c2τ ,

β+c
2 , β−c2τ ) with 2

experimentations (one firm experiments to monopoly price and quantity; the other follows).

The monopoly state does not belong to Ω∗ and it follows from Part 2 that it is possible to

transit further to ω′ using a series of single experimentations. Hence, z∗(ω′′, ω′) = 2, which

is equal to R(ω′), the radius of ω′ (see Part 1). From Theorem 3(iii) it follows that if ω′′ is

stochastically stable, then so is ω′. Since, R(ω′) = z∗(ω′′, ω′) for any two states ω′ and ω′′ in

Ω∗, it follows that all states in Ω∗ are stochastically stable. �

Notice that all stochastically stable states imply market clearing and spatially segregated

markets (p̄ ≥ β+c
2 > β − τ

2 ). The price p̄ in combination with quantity q̄ = β−p̄
τ results in

zero profit for a firm if the rival prices according to marginal cost. The stochastically stable
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states are thus precisely those states that are immune against experimentations to marginal

cost pricing. The value of p̄, and hence the set of stochastically stable states, depends on the

consumer valuation β. For the lowest permissable value of β (consistent with the condition

stated in the proposition), p̄ equals the monopoly price β+c
2 . As β increases (while respecting

the conditions for which the proposition applies), the set of stochastically stable states shifts

upwards. Therefore, the stochastically stable states are comprised of prices higher than the

monopoly price.

The condition β < c+ τ implies that one firm is not able to attract the full mass of con-

sumers with marginal cost pricing. This provides both firms with total control over part of the

consumers: the consumers that never consider buying the rival’s product. In the monopoly

state it is possible for the rival firm to experiment to a price such that consumers are poached

away to such an extent that the rival ends up with a higher profit. In a stochastically stable

state, firms resort to catering to the set of consumers for which it is immune against any

price experimentation by the rival firm. This results in the firms producing below monopoly

quantity and charging price above monopoly level. It is precisely this set of “high prices”

(higher than even the monopoly price) which not only gives each firm independent markets,

but under the restriction that pricing below marginal cost is not permissible, makes it impos-

sible (evaluated in terms of relative profit) for the other firm to encroach on the other’s turf.

This gives rise to the emergence of niche markets that are stochastically stable.

Proposition 4. Suppose β ≥ c+ τ . Then, all absorbing states are stochastically stable.10

Proof. For the current parameter conditions every state can be disrupted by an experi-

mentation with marginal cost. Part 2 of the proof to Proposition 3 shows this for the states

where the price is less than β − τ
2 . For the states where the price is larger than or equal to

β− τ
2 , an experimentation to marginal cost yields a profit of 0 for the experimenting firm and

leaves the other firm with a profit of p( c−p+τ2τ ) − cβ−pτ . The latter profit is decreasing in β

and is therefore maximized at β = c + τ . At β = c + τ this profit is negative if and only if

p < c+ τ or p > 2c. So, for prices below c+ τ this profit is negative. For prices above c+ τ

experimentation to marginal cost works trivially as it draws away all consumers.

Next, it is possible to reach the state (c, 1
2 , c,

1
2) by a quantity experimentation. So, a

(c, 1
2 , c,

1
2)-tree with tree-resistance |Ω| − 1 is easily constructed. This is the least resistance

any tree can have. Next, we show that for any absorbing state a trees with resistance |Ω| − 1

can be constructed. From Theorem 2 it follows that all absorbing states are stochastically

stable.

First, consider the states (c, q, c, q), where q < 1
2 . All that needs to be done in this case is

to reverse the (c, q, c, q) to (c, 1
2 , c,

1
2) edge in the just constructed (c, 1

2 , c,
1
2)-tree and deleting

10The marginal cost is required to be part of the price grid.
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all edges starting from (c, q, c, q). The modified tree has the same resistance. Thus we have a

(c, q, c, q)-tree, where q < 1
2 , with resistance |Ω|−1. Note that, in particular, the (c, 0, c, 0)-tree

has resistance |Ω| − 1 and is stochastically stable.

Second, consider states of the form (p, 0, p, 0). We can modify the just constructed

(c, 0, c, 0)-tree by reversing the (p, 0, p, 0) to (c, 0, c, 0) edge and deleting all edges starting

from (p, 0, p, 0). This leaves the resistance of the tree unchanged. Hence, states of that form

are stochastically stable.

Third, consider states of the type (p, q, p, q), where p 6= c and q is such that both firms

receive at least zero profit. To construct the (p, q, p, q)-tree we modify the corresponding

(p, 0, p, 0)-tree by deleting the edges starting from (p, q, p, q) and building an edge from

(p, 0, p, 0) to (p, q, p, q). The constructed tree has a resistance of |Ω| − 1. �

In Figure 1 the set of stochastically stable states mentioned in the proposition is captured

by the thick solid lines. In the states with prices equal to marginal cost or quantity equal to

zero, the firms receive zero profit. Also the states at the curved part of the boundary imply

zero profit, as this curve is composed of price–quantity pairs for which p · β−pτ − c · q equals

zero. In all remaining states, the firms experience a positive profit. Unlike in the previous

-
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Figure 1: Illustration of the set of stochastically stable states.

two propositions, now there exist stochastically stable states where firms actively compete

for the marginal agent. This is the case in all states with prices below β − τ
2 . Also, unlike in

the previous propositions, markets may not clear. Only in the states along the dotted path,

markets clear. In all states above this path the market operates with excess supply, whereas

below this path there is excess demand.

The huge multiplicity in stochastic stable states is mainly driven by our imitation dynamic

that allows an active firm (positive quantity) with zero profit to imitate an inactive firm

(zero quantity). Another plausible qualification that might be reasonable to consider is the

imitation of active firms only, in line with the Activity Principle of Alós-Ferrer et al. (2000).

Then starting from a zero profit absorbing state with positive production, such as (c, 1
2 , c,

1
2),
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experimentation by one firm to zero production will not induce a transition (with positive

probability) to the state (c, 0, c, 0) in the unperturbed (imitation) dynamic. For a fine enough

grid, this would affect the result (only for Proposition 4) to only the states with an arbitrary

price and no production – i.e. (p, 0, p, 0) – being stochastically stable. The refinement that is

obtained is, therefore, not qualitatively substantive.

5 Discussion

Proposition 4 reveals that excess supply or excess demand can be a persistent feature in a

horizontally differentiated market where firm behavior is guided primarily by imitation of the

better off firm. Two natural questions arise: why do firms not cut down on production when

there are unsold goods? and why do firms not produce more when there is unserved demand?

If we were to say that a firm adjusts accordingly on the observance of non-market clearing,

then we add something apart from imitation to our framework. By consideration of such

adjustments, we would, by construction, take away the possibility of non-market clearing.

Market clearing then becomes tautological.

Next, let us comment on the fragility or robustness of the findings with respect to alterna-

tive assumptions and consider possible extensions to the model. First, consider the particular

structure of imitation and experimentation that we adopted. We have assumed that the

event that one firm experiments in price and quantity is infinitely less likely than one firm

experimenting in price or quantity. If, instead, we would assume the likelihood of a joint

price–quantity experimentation to be of the same order as a sole price or quantity experimen-

tation, we lose Proposition 3. For values of the consumers’ gross valuation of consumption

above the bound mentioned in Proposition 2, we would obtain the result in Proposition 4.

To see this, one has to note the strong parallel between the resulting dynamic and a model

with relative profit maximization firms. In any equilibrium with relative profit maximizing

firms, firms will realize equal absolute profit, since firms can guarantee zero relative profit

by choosing the same price and quantity. In case a pure strategy equilibrium exists, it will

coincide with the unique stochastically stable state of Proposition 2; otherwise, no selection

among absorbing states is made and we obtain the result in Proposition 4.

Second, if we would assume that firms do not imitate the rival in case of equal profits at

different strategies, the non-monomorphic states of this type would become absorbing. The

set of stochastically states in Proposition 4 would expand accordingly, but this modification

would leave Propositions 2 and 3 unaltered.

Third, our model has been built on the restriction of transportation cost being less than

the marginal cost of production. A natural question is what happens with our results if
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transportation costs would be higher? To a large extent, the results do not change.11 The

results of Proposition 2 and 4 – that for sufficiently low values of gross valuation of consump-

tion the monopoly outcome will prevail and for sufficiently large values there would not be a

strict selection among absorbing states – would remain unaltered, though for slightly different

thresholds. Our result for intermediary values of consumer valuation (Proposition 3) would

slightly change. Analogously, there would be a set of stochastically stable states that implies

market clearing and a segregated market. Though, now, the monopoly outcome may be an

element of this set. For this to be the case the transportation cost needs to be sufficiently

high.

Fourth, let us consider the implications of our assumption of differentiated products. A

perfectly homogenous market is a limiting case of our model (zero transportation cost). It

is easily seen that stochastic stability loses all its refinement power and all absorbing states

will be stochastically stable. After all, from any state where the price is different from the

marginal cost, a firm experimenting to marginal cost pricing will attract all consumers who

are willing to buy at marginal cost price. This yields a profit for the experimenting firm that

is at least as much as that of its rival. With positive probability the rival will imitate and,

hence, it takes a single experimentation to reach a state where the price is equal marginal cost.

Next, by an argument similar to the one made in Proposition 4, it is possible to construct a

path from any absorbing state to another in which the edges have a resistance of one.

Finally, we take up the issue of observability of decisions and consequences. In our model,

we assumed prices, quantities and profits to be perfectly observable. It may appear more

realistic to assume that, rather than the quantity produced, the quantity sold is observable.

This would lead to a disparity only when the quantity produced is in excess of the sales. This

in turn can have an effect only if the more successful firm produces in excess of its demand.

Hence, observability of sales can only have a differential effect on Proposition 4. In Propo-

sition 4, at a certain price p, the maximum quantity that can produced in a stochastically

stable state is q = pβ−pcτ – the quantity that yields zero profit: p(β−pτ ) − cq = 0. With ob-

servability of sales, any quantity greater than β−p
τ will not be imitated. Hence, states with

price above β − τ
2 and quantity in the interval (β−pτ , pβ−pcτ ] that were stochastically stable

earlier, will cease to be so. In case the price is below β − τ
2 and production is above 1

2 , both

firms observe the rival to get equal profit at lower sales and imitate to the rival’s sale level

with positive probability. Hence, observability of sales rules out excess supply as possible

property of a stochastically stable state. The main thrust of Proposition 4 that there exist

stochastically stable states that are not market clearing remains unaltered, though only with

excess in demand.
11Calculations are available upon request.
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A Observations and intuitions

Let us give a brief exposition on the forces driving a process of imitation and occasional

experimentation. For ease of illustration, we consider the following normal-form game with

two players, each of whom can choose from two strategies:

s t
s a, a b, c
t c, b d, d

Note that the players have access to the same strategies and that the payoffs are symmetric.

This game has two absorbing states – one in which both players choose strategy s and the

other is when both players choose strategy t. To identify the stochastically stable state(s),

we examine the relative ease or difficulty with which the system transits from one absorbing

state to another. These transitions can take place only with the aid of experimentation.

Suppose (without losing any essence) that b > c. Let the initial absorbing state be the

one where both players choose strategy s. If one of the players experiments with strategy t,

then this player will get the lower relative payoff. That causes the experimenting player to

imitate back to strategy s. This implies that it takes at least two experimentations to transit

to state (t, t). On the other hand, if we are in (t, t), a single experimentation is sufficient

to effect the transition to state (s, s). Thus, only the absorbing state (s, s) is stochastically

stable.

The point of interest here is that (s, s) need not be a Nash equilibrium. In fact, if c > a

and b > d, then the Nash equilibria of the game are (s, t) and (t, s). The notable point that

follows from above is that what determines whether a state is stochastically stable is not the

payoff associated with those states but the relative payoff on deviation to another strategy.

In the example above, what determines the stochastically stable state is not the payoff nor

the relative payoff in the candidate states (s, s) or (t, t) but the relative payoff in the state

when a player experiments or mutates (i.e. if b > c or b < c).

We now make an even stronger point. Assume a < c < b < d. Now the state (t, t)

represents a Nash equilibrium in dominant strategies. But the unique stochastically stable

state is (s, s) – the state where both players choose strictly dominated strategy.

To obtain a unique stochastically stable state, it requires the payoffs of the game to be

such that a deviation from the stochastically stable state leaves the deviating agent worse off

in a relative sense while a deviation to the strategy of the stochastically stable state from an

absorbing state leaves the deviating player relatively better off. The payoffs of a game will, in

general of course, not support such a requirement. That is when a stochastically stable state

will not be unique.

We now illustrate when the set of stochastically stable states will have a cardinality of

more than 1. Consider the following game where now each of the two agents can choose from
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the same strategy set containing three pure strategies:

s t u
s a, a b, c d, e
t c, b f, f g, h
u e, d h, g k, k

There will be a unique stochastically stable state if there exists a state for which a deviation

by one of the players is guaranteed to yield a lower payoff to the deviating player relative to

the co-player. So, (s, s) is the unique stochastically table state when b > c and d > e. Under

these conditions, from any other state a single experimentation by one of the players to s will

lead to the state (s, s), whereas simultaneous experimentations by both players are needed to

leave this state.

When a deviation is not necessarily leading to a lower payoff (relative to the co-player) for

the experimenting player, multiple states can be stochastically stable. For example, consider

the case when b > c, d < e and g > h. Now, in state (s, s), a deviation to strategy u

leaves the deviating player better off and induces a transit to the state (u, u). So, one single

experimentation is needed to get from (s, s) to (u, u). In state (u, u), a deviation to strategy t

leads to a transit to the state (t, t) where a subsequent deviation to strategy s induces a

transit to the state (s, s). So, a sequence of two single experimentations are needed to get

from (u, u) to (s, s). Since the modified costs of the path from (s, s) to (u, u) and the the

path from (u, u) to (s, s) are both equal to one – which is the minimum – both these states

have minimum stochastic potential and are stochastically stable.
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