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Abstract

The sum of independent Wishart matrices, taken from distributions with unequal covariance
matrices, plays a crucial role in multivariate statistics, and has applications in the fields of quan-
titative finance and telecommunication. However, analytical results concerning the correspond-
ing eigenvalue statistics have remained unavailable, even for the sum of two Wishart matrices.
This can be attributed to the complicated and rotationally-noninvariant nature of the matrix
distribution that makes extracting the information about eigenvalues a nontrivial task. Using
a generalization of the Harish-Chandra-Itzykson-Zuber integral, we find exact solution to this
problem for the case when one of the covariance matrices is proportional to the identity matrix,
while the other is arbitrary. We find exact and compact expressions for the joint probability
density and marginal density of eigenvalues. The analytical results are compared with numerical

simulations and we find perfect agreement.
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I. INTRODUCTION

Wishart random matrices are named after John Wishart who worked out their distribu-
tion in 1928 [1]. Wishart distribution generalizes the y?-distribution to the case of multiple
variables. Since their inception, Wishart matrices have played a prominent role in the area
of multivariate statistics [2-6]. In recent years there has been a renewed and growing inter-
est in their study because of their applicability in analyzing a variety of unrelated complex
problems. For instance, on the one hand Wishart matrices have been implemented to an-
alyze financial data [7-10]. On the other hand they have been used to identify vulnerable
regions in the human immunodeficiency virus (HIV), which could lead to effective AIDS
vaccines or drugs [11]. Further examples, where Wishart matrices appear include telecom-
munication networks [12-17], quantum chromodynamics [18-22], quantum entanglement

problem [23-27], mesoscopic systems [28, 29], gene expression data analysis [30, 31], etc.

Random matrix ensembles involving various combinations of Wishart matrices are also
relevant to several problems. The Jacobi or MANOVA (Multivariate ANalysis Of VAri-
ance) ensemble is an example which is useful in the quantum conductance problem, and
optical fiber communication studies [17, 32-35]. Very recently several results involving
the product of Wishart matrices have appeared in the literature [36, 37]. These ensem-
bles find applications in telecommunication of multi-layered scattering multiple-input and

multiple-output channels.

Another important ensemble which plays a crucial role in the multivariate statistics
comprises sum of Wishart matrices [4-6, 38-41]. They arise in matrix quadratic forms,
MANOVA random effects model, and robustness studies involving mixtures of multivari-
ate Gaussian distributions [6]. The distribution of sum of Wishart matrices serves as
a natural candidate distribution for modeling realized covariance and is of fundamental
importance to the multivariate Behrens-Fisher problem [39-41]. Moreover, it has appli-
cations in quantitative finance [41], telecommunication [42, 43], sensor network related

algorithms [44], etc.

The sum of independent Wishart matrices taken from distributions with identical co-

variance matrices gives rise, again, to a Wishart distribution with the same covariance



matrix [4, 5; see Eq. (8) ahead. However, for the case of unequal covariance matrices,
deriving the distribution of the sum of Wishart matrices becomes extremely difficult and
impractical. Even in the case of two Wishart matrices, the distribution of sum involves
a hypergeometric function with matrix arguments [6]. This complicated and rotationally-
noninvariant nature of the matrix distribution makes the evaluation of statistics of eigen-
values an intractable task.

In the present work we take the first steps towards solving this problem and consider
the sum of two independent complex Wishart matrices associated with unequal covariance
matrices, such that one of the covariance matrices is proportional to the identity matrix,
while the second one is arbitrary. To tackle this problem we employ a generalization of
the Harish-Chandra-Itzykson-Zuber unitary-group integral [2, 45]. We derive compact
results for the joint probability density of eigenvalues, as well as the marginal density
which involves easily evaluable determinantal structure. The analytical predictions are

verified by numerical simulations, and we find excellent agreements.

II. DISTRIBUTION OF THE SUM OF TWO COMPLEX WISHART MATRI-
CES

Let us consider two independent complex matrices A and B of dimensions n X n4 and

n X ng taken, respectively, from the distributions
Pa(A) = (r " det X )4 e (ATZ;XIA), Pp(B) = (r "det L' )"P e (BTxp'B), (1)

Here ‘tr’ and ‘det’ represent the trace and the determinant, respectively, and ‘¥’ denotes
the Hermitian-conjugate. >4, X g are the covariance matrices. We assume that ns,ng >
n. We have [ d[A] Pa(A) = [ d[B] Py(B) = 1. Here d[A] = [T\_, IT2, dAYY dAY), with
(R) and (I) representing the real and imaginary parts, respectively. Similar definition
is to be understood for d[B]. Since the domains of A and B remain invariant under
unitary rotation, without loss of generality, we may take ¥4 and ¥ g as diagonal matrices.
We consider ¥4 = diag(oa1,...,04,) and Y = diag(op1,...,08,). The matrices AAT
and BB' are then n-variate complex-Wishart-distributed, i.e., AAT ~ WS (n,,34) and

BB ~ WS (np,¥p); na,np being the respective degrees of freedom.
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We are interested in the statistics of the ensemble of n x n dimensional Hermitian

matrices

H = AA" + BB, (2)
The distribution of H can be obtained as
Pu(H) = / d[A] / d[BIS(H — AAT — BB'YPA(A)YPy(B). (3)

The delta function with matrix argument in the above equation represents the product
of delta functions with scalar arguments, one for each independent real and imaginary
component of H — AA" — BBT. Using the Fourier representation for delta function we can

write
PH(H) O(/d[K]/d[A]/d[B]eitr(K(H—AAT—BBT))e—tr(ATZAlA) e—tr(BTEng)‘ (4)

Here K is an n x n dimensional matrix with the same symmetry properties as H — AAT —
BB, i.e., it is Hermitian. The Gaussian integrals over A and B can be performed trivially

and result in
Pr(H) o / d[K]e" " FH) det™4(27! +iK) det ™2 (X5 + iK). (5)
As shown in the appendix, this can be brought to the form
Pr(H) oc det™H e~ Ea D) (1), (6)

where m = ny + ng —n, and F(H) is the following matrix integral involving the Jacobi

ensemble:
1,
F(H) = / d[T] det ™" (L, — T) det "#~"Te ™ (¥a'~¥p)HT), (7)
0

Here T is an n x n dimensional Hermitian matrix. If the covariance matrices happen to

be equal, i.e., ¥4 = Xp = 3, then F(H) gives just a constant and we obtain
Pu(H) o det™H e~ ), (8)

showing that H is complex-Wishart-distributed as WS (n4+np, X)) [4, 5]. Exact as well as

asymptotic results for various eigenvalue statistics are known for this case [14, 15, 46-52].
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In the general case F'(H) can be represented in terms of a confluent Hypergeometric
function of matrix argument [53, 54],
F(H) o< 1Fi(ng;na+ng; (3, — S5 H)
= (ORI By (g ng 4 ng; (55 — 231 H). 9)
The second line in the above equation follows from the Kummer’s transformation [2, 53].
Therefore, we obtain the distribution of H as
Pu(H) = Cdet™H e " Ca M) By (ng;na +np; (35" — 251 H)

— C det™H e~ " (Z5'H) VFi(naina +np; (S5 — XD H).
The normalization can be fixed by keeping track of all the constants from the begin-

(10)

ning [55]. We have

c . n(n 1)/2 n F "
-1 _ (m +
(det ¥,1)ma(det X251 s Jl_[ 7 (11)

=1

where I'(a) is the Gamma function. Eq. (10) constitutes one of the key results of this
paper. In the case of identical covariance matrices 1 Fj(ng;na + ng; (221 — Egl)H) gives
1, and thereby we recover Eq. (8). We remark that the distribution of H in the case of

real matrices can also be obtained using the same procedure.

III. STATISTICS OF EIGENVALUES

We now specialize to the case when one of the covariance matrices is proportional to
the identity matrix, say X4 = oa1,, while the second, g, is arbitrary. Equivalently,
we may consider ¥z = o1, and an arbitrary ¥4 in the second expression in Eq. (10).
For the former choice, the factor before the Hypergeometric function in Eq. (10) becomes
unitarily invariant [56]. Using the eigenvalue-decomposition H = UTAU, where A is the

diagonal matrix with the eigenvalues of H, we obtain

P(A1, oo M) o A2(O)) T A e ™ / du(U)

x 1 Fy(np;na +np; (031, — S5") UTAU). (12)
Here A, ({A}) = [[;54(Xj — Ax) is the Vandermonde determinant and du(U) represents the

Haar measure over the unitary group U,,. The above group integral can be performed using

bt



the result below, and leads to a Hypergeometric function of two matrix arguments [2, 45],

/ dp(U) 1Fi(a; b; XUTYU) = 1 Fi(a; ; X,Y). (13)

This result is a generalization of the celebrated Harish-Chandra-Itzykson-Zuber unitary
group integral. We have the following representation for ;F;(a;b; X,Y) in terms of a
determinant involving the eigenvalues {z1,...,xz,} and {yi,...,y,} of normal matrices X

and Y [45]:
det 1 Fi(a —n+ 1,0 — n+ 1;z;)]

An({z})An({y}) ’

where | F) inside the determinant is the usual confluent hypergeometric function with

1Fi1(a; 0, X, Y)

(14)

scalar arguments. Using Eqgs. (13) and (14) in Eq. (12), we obtain the joint probability
density of the eigenvalues of H as

(15)

jvkzlv"'vn.

P(Ar, oo ) = C A (D T e 0™ det [1Fa(as 7 (07" — 050 \]
=1

Here C'is the normalization constant, and « =ng —n+1,y=n4+ng —n+ 1.
It is worth mentioning that the confluent hypergeometric function in Eq. (15) can be
represented in terms of more elementary functions. Noting that v = a + ny4, we have
(—2)™ &~ g fna—1

Fila; v 2) = ———— z a+k,—z),

1 1( Y ) IB(Oé, nA) kZ:O k X( )
where (‘;) represents the binomial coefficient, and B(a, b) and y(a, b) are the Beta function
and the lower incomplete gamma function, respectively. This simplifies further for special
cases or parameter values. For instance, ng = n gives

1Fi(lina+1;2) =naz " e*y(na, 2)

nA—lzk
(-3
nar = (e k!)’

k=0

which also includes the case ng = ng = n.
To evaluate the normalization constant C'in Eq. (15), we expand the Vandermonde de-
terminant as well as the determinant involving the hypergeometric functions and perform

the integral over the eigenvalues using the relation

* _ I'(p+1) c
SA 1. _ . T
/0 dAN'e™ X Fy(a;bie)) = = By (a,,u+1,b7;), (16)
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FIG. 1: (a) Analytical joint probability density of eigenvalues for n = 2,n4 = 3,np = 4,
and (04;0p1,082) = (1;4,6), (b) Analytical plot overlaid on the histogram obtained

from numerical simulation.

which holds whenever the integral is convergent. The expression obtained afterwards can

be reformulated as a determinant [55]. We obtain

7 =l R D (m + 1) det [2Fy (0, m+ 5,7, 1 — ca0p)] (17)

=1

7k=1,....m"°

such that [~ dX;--- [5dA\P(Ar, ..., \n) = 1.

When the opi’s have multiplicity greater than 1, i.e., if some or all of the op;’s are
identical, then the determinants in Egs. (15) and (17) become zero. In such degenerate
cases the appropriate result can be obtained by a limiting procedure. Eq. (15) is another
important contribution of this work. Fig. 1 shows the joint probability density P(A1, A2)
corresponding to the n = 2 case, with parameter values as indicated in the caption. The
agreement between the analytical result and numerical-simulation result is excellent.

We remark that the joint probability density given by Eq. (15) is of the form of a bi-
orthogonal ensemble in the sense of Borodin [57]. Such a structure, in view of the results

in [57], implies existence of compact expression for the n-point correlation function [56],

N! > >
Rn()\l, ceey )\n) = m/o d)\n-i-l o /0 d)\NP()\la 0] )\n)a (18)

which includes the level density R;(\). We now move on to calculate the marginal density
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FIG. 2: Marginal density of eigenvalues for n =9,n4 = 10,ng = 13, and
(0a;0B1,..,0B9) = (2;4/17,1/2,5/3,2/7,6/5,10/29,5/16,9/11,4). The histogram

is from the numerical simulation while the solid line is the analytical prediction.

p(A) of eigenvalues, which is given by

p(\) =/Oood)\2~-~/oood>\nP()\, Agers An), (19)

and is related to the level density as p(A\) = Ri(\)/N. To this end, we expand the
determinants in Eq. (15) and then integrate over the n — 1 eigenvalues with the aid of
Eq. (16). The resulting expression can be recast in terms of the determinant of an n + 1-

dimensional matrix [49, 55]. We have

1 0
p(\) = cA\™e ™74 M det ; (20)

feN) = 1Fi(0; 75 (0" — opp)A),
g;(A) = N7/ T(m+ j),
hjr = cTTj oFi(c; m+j; v;1 — O'AOEID.

To enunciate the notation used above we consider, as an example, the n = 2 case and
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FIG. 3: Marginal density of eigenvalues for a degenerate case: n =4,n4 = 6,ng =5, and

(0a;0B1,...,0B4) = (5/4;5/7,5/7,5/7,5/7).
write the determinant part explicitly:

0 fi(A) fa(A)
det | g1 (A) hii hio

G2(A) hax  hap

The normalization ¢ in Eq. (20) is given by

C_1 = —"Nn det[hj,k]j,kzl n. (21)

.....

Eq. (20) constitutes the main result of this paper. Fig. 2 shows an example where we
compare the analytical and simulation results. The parameter values are indicated in the
caption. We find perfect agreement.

Again, if some or all of the o’s are identical, then we have to take the limit properly to
obtain the appropriate expression. For instance, if all the opg;’s are equal, viz. og; = -+ =
0pn = 0p, then p(A) is still given by Eq.(20), but with the following modification [55]:

fe) = MR 05 7 (03" = a)A),
95 =N"!/T(m+j),
m+j+k—1 2F1(k—1)(

hjx =o'y a;m+j; v, 1 —oa0zt).
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Here 1 F* (s y; 2)= 081 | Fy (o 7; 2)/02"~1. Similar definition is to be understood for
gFl(k_l)(a; m+ j; 7v; z). We note that the following relations hold for the kth derivative of
the confluent and Gauss hypergeometric functions with respect to the last argument:

O ikilaibiz) (@) 1Fila+kb+k; 2),

6zk N (b)k
" yFi(a;b;6,2)  (a)r(b)s : . .
7 = 0. oFi(a+k;b+ kc+ k; 2),

where (a), etc. represent the Pochhammer symbol with definition (a), = I'(a+k)/T'(k). In
Fig. 3 we consider a degenerate case where both the covariance matrices are proportional

to the identity matrix. Once again the analytic and the simulation results agree perfectly.

IV. SUMMARY AND DISCUSSION

We considered the problem of computing the eigenvalue statistics of sum of two in-
dependent complex Wishart matrices taken from distributions with unequal covariance
matrices. We found a complete solution to the problem when one of the covariance ma-
trices is proportional to the identity matrix. We derived a compact result for the joint
probability density of eigenvalues which can be used to evaluate the statistics of any
observable dependent on the eigenvalues. We also derived an easily computable determi-
nantal expression for the marginal density of eigenvalues. These expressions can be readily
implemented in MATHEMATICA [58]. Finally, we performed numerical simulations to test
the analytical results and found perfect agreement.

It remains to see if some compact form can be obtained for the case when both the
covariance matrices are arbitrary. Moreover, it will be of interest to explore if the problem
involving the sum of more than two Wishart matrices is analytically surmountable, and if

there is some underlying deeper structure.

APPENDIX

We outline here the steps leading to Eq. (6), starting from Eq. (5). We introduce

another delta-function in Eq. (5), involving a new Hermitian matrix K and afterwards

10



separate the ‘K’ and ‘K parts:
Pu(H) / d[K] / A[K])0(K — K)et" K qet=4 (071 +iK) det™"B(X5" + iK)

_ / d[K] / dRIS(R — )i KHI) qog=a (570 1 i)l RHP) qog—s (521 4 i)

- / d[S] / d[K] / d[K)e! T (SK=K) gitr (KH/2) qot=na(571 4 i) et (KH/2) qet =5 (S 4 1K),

In the last step above we introduced the Fourier representation for ¢ (I? — K) with the aid of
a Hermitian matrix S. We now consider the transformations K — %' K and K — Efglff .

The resulting Jacobians can be absorbed in the overall constant and therefore we obtain

Pr(H) o / d[S] / d[K]e?* KH2=8120 qot—m4(1, + i K)

x/d[K] it (K(H/24)25") qog=n5 (1, + iK).
The K and K integrals can be performed using the Ingham-Siegel type integral [59],
yielding
Py (H) / d[S]det™"(H/2 — S) e~ " ((H2=24") qetns—n(H /2 4 §) ¢ (H/248)351)
xO((H/2 — S)Xh) O((H/2+ S)X51).
Here ©(G) represents the matrix theta function, and requires the matrix G to be positive

definite (G > 0) for a non-vanishing result. Employing the transformation S — (H/2)S,
and observing that %' > 0,%5' > 0, H > 0, we obtain [60]

Pr(H) o (det H)matns=m o=t (3414551 H/2) / d[S] det "+ "(L, — S) det "#"(1,, + S)

xe™ (4 BV g1, — §)O(L, + 5).
The matrix theta functions in the above expression restricts the domain of S in the inte-
gration to —1,, < S < 1,. Finally, introducing the Hermitian matrix 7" = (1,, + 5)/2 we

have
1, L
Pr(H) o (det H)(ratna=n = tr (550 / d[T] det"~"(1,, — T) det"= "7 ¢ (%3 =25 HT),
0
and hence Eq. (6).

[1] J. Wishart, Biometrika 20A, 32 (1928).
[2] A.T. James, Ann. Math. Statist. 35, 475 (1964).

11


http://dx.doi.org/10.1093/biomet/20A.1-2.32
http://dx.doi.org/10.1214/aoms/1177703550

3] R. J. Muirhead, Aspects of multivariate statistical theory Vol. 197 (John Wiley & Sons,
2009).

[4] T. W. Anderson, An Introduction to Multivariate Statistical Analysis (John Wiley & Sons,
2003), 3rd ed.

[5] H. H. Andersen, M. Hgjbjerre, D. Sgrensen and P. S. Eriksen, Linear and Graphical Models
for the Multivariate Complex Normal Distribution, Lecture Notes in Statistics, Vol. 101
(Springer-Verlag, New York 1995).

6] A. K. Gupta and D. K. Nagar, Matriz variate distributions, Vol. 104 (CRC Press, 1999).

[7] L. Laloux, P. Cizeau, J.-P. Bouchaud, and M. Potters, Phys. Rev. Lett. 83, 1467 (1999).

[8] V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. N. Amaral, T. Guhr, and H. E. Stanley,
Phys. Rev. E 65, 066126 (2002).

9] G. Akemann, J. Fischmann, and P. Vivo, Physica A 389, 2566 (2010).

[10] T. A. Schmitt, D. Chetalova, R. Schéfer, and T. Guhr, Europhys. Lett. 105, 38004 (2014).

[11] V. Dabhirel et al., Proc. Natl. Acad. Sci. U.S.A. 108, 11530 (2011).

[12] I. E. Telatar, Eur. Trans. Telecommun. 10, 585 (1999).

[13] A. M. Tulino and S. Verdu, Random Matriz Theory and Wireless Communications, Foun-
dations and Trends Com. and Inf. Th. (now Publishers Inc, Boston, Delft, 2004).

[14] S. H. Simon, A. L. Moustakas, and L. Marinelli, IEEE Trans. Inf. Theory 52, 5336 (2006).

[15] A. Zanella, M. Chiani, and M. Z. Win, IEEE Trans. Commun. 57 1050 (2009).

[16] S. Kumar and A. Pandey, IEEE Trans. Inf. Theory 56, 2360 (2010).

[17] S. Kumar and A. Pandey, Ann. Phys. (N.Y.) 326, 1877 (2011).

[18] E.V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys. A 560, 306 (1993).

[19] J. Verbaarschot, Phys. Rev. Lett. 72, 2531 (1994).

[20] T. Guhr and T. Wettig, Nucl. Phys. B 506, 589 (1997).

[21] J. J. M. Verbaarschot and T. Wettig, Ann. Rev. Nucl. Part. Sci. 50, 343 (2000).

[22] G. Akemann, Acta Phys. Pol. B 42, 0901 (2011).

[23] K. Zyczkowski and H.-J. Sommers, J. Phys. A 34, 7111 (2001).

[24] J. N. Bandyopadhyay and A. Lakshminarayan, Phys. Rev. Lett. 89, 060402 (2002).

[25] C. Nadal, S. N. Majumdar, and M. Vergassola, Phys. Rev. Lett. 104, 110501 (2010).

12


http://dx.doi.org/10.1103/PhysRevLett.83.1467
http://dx.doi.org/10.1103/PhysRevE.65.066126
http://dx.doi.org/10.1016/j.physa.2010.02.026
http://dx.doi.org/10.1209/0295-5075/105/38004
http://dx.doi.org/10.1073/pnas.1105315108
http://dx.doi.org/10.1002/ett.4460100604
http://dx.doi.org/10.1109/TIT.2006.885519
http://dx.doi.org/10.1109/TCOMM.2009.04.070143
http://dx.doi.org/10.1109/TIT.2010.2044060
http://dx.doi.org/10.1016/j.aop.2011.04.013
http://dx.doi.org/10.1016/0375-9474(93)90098-I
http://dx.doi.org/10.1103/PhysRevLett.72.2531
http://dx.doi.org/10.1016/S0550-3213(97)00556-7
http://10.1146/annurev.nucl.50.1.343
http://dx.doi.org/10.5506/APhysPolB.42.901
http://dx.doi.org/10.1088/0305-4470/34/35/335
http://dx.doi.org/10.1103/PhysRevLett.89.060402
http://dx.doi.org/10.1103/PhysRevLett.104.110501

[26] S. Kumar and A. Pandey, J. Phys A. 44, 445301 (2011).

[27] Vinayak and M. Znidari¢, J. Phys. A 45, 125204 (2012).

[28] P. J. Forrester and T. D. Hughes, J. Math. Phys. 35, 6736 (1994).

[29] K. Slevin and T. Nagao, Phys. Rev. B 50, 2380 (1994).

[30] N. S. Holter, M. Mitra, A. Maritan, M. Cieplak, J. R. Banavar, and N. V. Fedoroff,
Proc. Natl. Acad. Sci. U.S.A. 97, 8409 (2000).

[31] O. Alter, P. O. Brown, and D. Botstein, Proc. Natl. Acad. Sci. U.S.A. 97 10101 (2000).

[32] I. Dumitriu and A. Edelman, J. Math. Phys. 43, 5830 (2002).

[33] P. J. Forrester, J. Phys. A 39, 6861 (2006).

[34] S. Kumar and A. Pandey, J. Phys. A 43, 085001 (2010).

[35] R. Dar, M. Feder, and M. Shtaif, IEEE Trans. Inf. Theory 59, 2426 (2013).

[36] G. Akemann, J. R. Ipsen, and M. Kieburg, Phys. Rev. E 88, 052118 (2013).

[37] G. Akemann, M. Kieburg, and L. Wei, J. Phys. A 46, 275205 (2013).

[38] C. G. Khatri, Ann. Math. Statist. 37, 468 (1966).

[39] W.Y. Tan and R. P. Gupta, Commun. Statist. - Theory Meth. 12, 2589 (1983).

[40] D. G. Nel and C. A. Van Der Merwe, Commun. Statist. - Theory Meth. 15, 3719 (1986).

[41] K. Sheppard, (unpublished), http://www.kevinsheppard.com/images/e/e2/PSDMEM_Sheppard.pdf

[42] B. Nosrat-Makouei, J. G. Andrews, and R. W. Heath,
IEEE Trans. Sig. Process. 59, 2783 (2011).

[43] K. Conradsen, A. A. Nielsen, J. Schou, and H. Skriver,
IEEE Trans. Geosci. Remote Sensing 41, 4 (2003).

[44] N. Ramakrishnan, E. Ertin, and R. L. Moses, IEEE J. Sel. Top. Sig. Proces. 5, 665 (2011).

[45] A.Y. Orlov, Int. J. Mod. Phys. A 19, 276 (2004).

[46] Vinayak and A. Pandey, Phys. Rev. E 81, 036202 (2010).

[47] C. Recher, M. Kieburg, and T. Guhr, Phys. Rev. Lett. 105, 244101 (2010).

[48] P. Dharmawansa and M. R. McKay, J. Multivar. Anal. 102, 847 (2011).

[49] C. Recher, M. Kieburg, T. Guhr, and M. R. Zirnbauer, J. Stat. Phys. 148, 981 (2012).

[50] T. Wirtz and T. Guhr, Phys. Rev. Lett. 111, 094101 (2013).

[51] P. J. Forrester, Random Matrices: Theory Appl. 02, 1350011 (2013).

13


http://dx.doi.org/10.1088/1751-8113/44/44/445301
http://dx.doi.org/10.1088/1751-8113/45/12/125204
http://dx.doi.org/10.1063/1.530639
http://dx.doi.org/10.1103/PhysRevB.50.2380
http://dx.doi.org/10.1073/pnas.150242097
http://dx.doi.org/10.1073/pnas.97.18.10101
http://dx.doi.org/10.1063/1.1507823
http://dx.doi.org/10.1088/0305-4470/39/22/004
http://dx.doi.org/10.1088/1751-8113/43/8/085001
http://dx.doi.org/10.1109/TIT.2012.2233860
http://dx.doi.org/10.1103/PhysRevE.88.052118
http://dx.doi.org/10.1088/1751-8113/46/27/275205 
http://dx.doi.org/10.1214/aoms/1177699530
http://dx.doi.org/10.1080/03610928308828625
http://dx.doi.org/10.1080/03610928608829342
http://www.kevinsheppard.com/images/e/e2/PSDMEM_Sheppard.pdf
http://dx.doi.org/10.1109/TSP.2011.2124458
http://dx.doi.org/10.1109/TGRS.2002.808066
http://dx.doi.org/10.1109/JSTSP.2011.2119291
http://dx.doi.org/10.1142/S0217751X04020476
http://dx.doi.org/10.1103/PhysRevE.81.036202
http://dx.doi.org/10.1103/PhysRevLett.105.244101
http://dx.doi.org/10.1016/j.jmva.2011.01.004
http://dx.doi.org/10.1007/s10955-012-0567-x
http://dx.doi.org/10.1103/PhysRevLett.111.094101
http://dx.doi.org/10.1142/S2010326313500111

[52] T. Wirtz and T. Guhr, J. Phys. A 47, 075004 (2014).

53] I. G. Macdonald, Hypergeometric functions I (handwritten notes), 1987-1988,
arXiv:1309.4568

[54] A. Edelman and P. Koev, Random Matrices: Theory Appl. 03, 1450009 (2014).

[55] S. Kumar (unpublished).

[56] M. L. Mehta, Random Matrices (Academic Press, New York, 2004), 3rd ed.

[57] A. Borodin, Nucl. Phys. B 536, 704 (1998).

[58] Wolfram Research Inc., MATHEMATICA Version 9.0, Champaign, Illinois (2013).

[59] Y. V. Fyodorov, Nucl. Phys. B 621, 643 (2002).

[60] D. Serre, Matrices: Theory and Applications (Springer, 2010), 2nd ed.

14


http://dx.doi.org/10.1088/1751-8113/47/7/075004
http://arxiv.org/abs/1309.4568
http://dx.doi.org/10.1142/S2010326314500099
http://dx.doi.org/10.1016/S0550-3213(98)00642-7
http://dx.doi.org/10.1016/S0550-3213(01)00508-9

	Eigenvalue statistics for the sum of two complex Wishart matrices
	Abstract
	I Introduction
	II Distribution of the sum of two complex Wishart matrices
	III Statistics of eigenvalues
	IV Summary and Discussion
	 Appendix
	 References


