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Abstract

We report on a theoretical and computational investigation of the complex dynamics that arise in a semiconductor laser
that is subject to two external, time-delayed, filtered optical feedbacks with special attention to the effect of quantum
noise. In particular, we focus on the dynamics of the instantaneous optical frequency (wavelength) and its behavior
for a wide range of feedback strengths and filter parameters. In the case of two intermediate filter bandwidths, the
most significant results are that in the presence of noise, the feedback strengths required for the onset of chaos in a
period doubling route are higher than in the absence of noise. We find that the inclusion of noise changes the dominant
frequency of the wavelength oscillations, and that certain attractors do not survive in the presence of noise for a range
of filter parameters. The results are interpreted by use of a combination of phase portraits, rf spectra, and first return
maps.
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1. Introduction

A semiconductor laser (SCL) subject to feedback has
become a paradigm for studying nonlinear dynamics in
time-delayed feedback systems. At a fundamental level,
studies on such systems are an ideal test bed for delay sys-5

tems, and at an applied level, some of the dynamical be-
haviors have been exploited for cryptography, random-bit
generation and even understanding of collective neuronal
excitations in the brain [1, 2, (see references therein)]. A
number of impressive studies on electronic feedback and10

all-optical feedback, and the resulting dynamics in a SCL
have been reported over the years [3, 4]. Within the con-
text of all-optical feedback, investigators have studied con-
ventional optical feedback where a mirror is placed in front
of the SCL such that a fraction of the light from the laser15

is reflected back into it [5, 6]. Other feedback scenarios
have included polarization rotated feedback where the po-
larization of the feedback light is rotated relative to the
dominant polarization mode of the laser light [7, 8, 9]. Re-
cently, the effects of injection on the stability properties20

from two polarization modes has been studied [10].
Another interesting feedback scheme that has been re-

ported is filtered optical feedback (FOF) wherein the feed-
back light is spectrally filtered before entering the laser
[11]. FOF provides the user with two additional parame-25

ters, the bandwidth of the filter and the detuning between
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the filter frequency and the laser light frequency, to con-
trol the dynamics of the laser. One of the major dynamical
effects observed in FOF is that the frequency of the laser
light, for a judicious choice of filter parameters, exhibits30

controlled oscillations at a frequency that is related to the
time delay of the feedback [12]. It has also been shown
that for other filter parameters, one can observe a period
doubling route to chaos in the frequency of the laser light
[13].35

Recently, there has been an interest in the dynam-
ics of a SCL subject to two simultaneous FOFs [14, 15].
Krauskopf and co-workers have reported an exhaustive
study of the bifurcations that arise in such systems [16, 17].
The use of two filters provides a number of additional pa-40

rameters that can be potentially used to control the dy-
namics of the SCL. Our group reported an experimental
study on the frequency dynamics in the light from the laser
when subject to two FOFs [18]. Among the more interest-
ing observations was the generation of new frequencies in45

the system, and the results were explained via a theoreti-
cal model that consisted of the usual Lang-Kobayashi rate
equations augmented to include two FOFs. The agreement
between experiments and theory was excellent.

One of the observations that emerged from our prior50

work was that the frequency of laser light in a SCL sub-
ject to two FOFs follows a period-doubling route to chaos.
However, the feedback strength necessary for coherence
collapse that was predicted by the theoretical model was
higher than what was observed experimentally. This mis-55
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Figure 1: The schematic shows a semiconductor laser (SCL) subject
to optical feedback from two external cavities. The outer cavity (1)
is formed by the SCL and the mirrors (M1, M2, and M3). The inner
cavity (2) is formed by the SCL, beam splitters (BS2 and BS3), and
mirror (M3). Each cavity contains a Fabry-Perot resonator acting as
a spectral filter, which can be modified by changing the reflectivity
or spacing of the filter mirrors. This in turn changes the bandwidth,
Λ. The detuning, ∆, is altered by adjusting the pump current. The
delay-times, τ1 and τ2, are increased or decreased by lengthening or
shortening the cavities.

match between theory and experiment inspired us to ex-
amine the role of unavoidable quantum noise in the laser
and its influence on the dynamics of the laser. To this end,
we have augmented the theoretical model with Langevin
noise terms to account for the spontaneous emission noise60

as well as inversion noise. To give one a picture of the
system studied, we show a schematic of the experimental
design [Fig.1] highlighting the key parameters accessible
to experiment, which are detailed in the following section.

65

2. Model

A semiconductor laser with FOF from a single cavity
can be modeled with a set of rate equations describing the
time evolution of the slowly varying complex electric fields,
E(t) and F (t), of the laser and feedback field, respectively,
and the carrier inversion N(t) [11]. Our setup [Fig. 1],
which includes two cavities, each with a spectral filter,
must therefore include two filtered feedback fields, F1(t)
and F2(t), resulting in the following description,

dE

dt
=

1

2
(1 + iα)ξN(t)E(t) + κ1F1(t, τ1) + κ2F2(t, τ2) + LE(t),

(1a)

dN

dt
= J − Jthr −

N(t)

T1
− [Γ0 + ξN(t)]|E(t)|2 + LN (t),

(1b)

dF1

dt
= Λ1E(t− τ1)e−iω0τ1 + (i∆1 − Λ1)F1(t). (1c)

dF2

dt
= Λ2E(t− τ2)e−iω0τ2 + (i∆2 − Λ2)F2(t), (1d)

where ξNE in the first term of Eq. (1a) accounts for the
growth (or decay) when the carrier inversion N(t) is above

(or below) threshold, and ξ is the differential gain coeffi-
cient. α is the linewidth enhancement factor which quan-70

tifies the phase-amplitude coupling. The second (third)
term in Eq. (1a) accounts for the feedback field F1(t, τ1)
(F2(t, τ2)), where κ1 (κ2) is the feedback rate and τ1 (τ2)
is the time delay due to the propagation of the feedback
field in cavity 1 (2).75

The rate equation for the carrier inversion [Eq. (1b)]
depends on the difference between the pump current J
and the threshold current Jthr. The second term [Eq. (1b)]
accounts for the spontaneous decay, hence T1 is the carrier
decay rate, and the third term includes the stimulated80

emission, where Γ0 is the photon decay rate.
Eqs. (1c) and (1d) are derived by assuming that the

response function, r(ω), of the filter is Lorentzian [11], i.e.

r(ω) =
Λ

Λ + i(ω −∆)
, (2)

where ω is the instantaneous optical frequency, Λ is the
half width at half maximum (HWHM) of the filter and
∆ is the detuning of the solitary laser frequency from the
center frequency of the filter. The explicit dependence on
the time-delayed fields E(t− τ1,2) is seen in Eqs.(1c) and
(1d). The feedback phase accumulated due to the prop-
agation of the field through cavity 1 (2) is given by ω0τ1
(ω0τ2), which we assume equal for the two cavities and
fix at ω0τ1 = ω0τ2 ≡ θ. The spontaneous-recombination
noise terms are described by LE(t) and LN (t). Both noise
sources are assumed to be Gaussian with zero mean. Their
autocorrelation functions are given by,

〈Re(LE(t))Im(LE(t′))〉 = 0,
(3a)

〈Re(LE(t))Re(LE(t′))〉 = 〈Im(LE(t))Im(LE(t′))〉 = Rspδ(t− t′),
(3b)

〈LN (t)LN (t′)〉 = Dδ(t− t′).
(3c)

The rate of spontaneous emission is written as Rsp =
βspCN

2, where βsp is the fraction of spontaneous emis-85

sion coupled into the dominant mode and C is a radiative
recombination rate [19]. The shot noise diffusion rate is
given by D. The noise sources LE and LN are derived
quantum mechanically in order to arrive at their explicit
form and statistical properties [20]. Although the noise90

sources are correlated in a SCL [20], we found that cor-
relating sources resulted in no significant difference when
compared to uncorrelated noise [21]. Therefore, the pro-
ceeding analysis is done with uncorrelated noise.

Eqs. (1) are integrated using a modified fourth order95

Runge-Kutta method. The time step was varied from 0.1
ps to 10 ps in order to ensure consistent dynamical behav-
ior independent of the integration step size. The modi-
fied Runge-Kutta method accounts for the Langevin noise
source and avoids an infinite variance of the stochastic100

terms following the stochastic Runge-Kutta algorithm out-
lined in Ref. [22]. At each integration step, the noise terms
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are pulled from a matrix of normally distributed random
numbers generated via the randn() function in MATLAB.
In order to account for the time delayed fields, a history105

function is built by initially integrating Eqs. (1) without
feedback (κ1,2 = 0). The transient behavior is discarded
and the history function with a minimum integration time
of 4τ1,2 is saved. The remaining parameters and noise
strengths for a typical edge emitting SCL are highlighted110

in Table 1.

Table 1: The parameter values for a typical SCL which are used in
the simulations (unless otherwise specified).

Quantity Symbol Value
Linewidth enhancement factor α 5
Feedback rate field 1 κ1 Varies
Feedback rate field 2 κ2 0.8 GHz
Bandwidth of filter 1 Λ1 Varies
Detuning of filter 1 ∆1 Varies
Bandwidth of filter 2 Λ2 1.0 GHz
Detuning of filter 2 ∆2 −1.5 GHz
Delay-time field 1 τ1 14.28 ns
Delay-time field 2 τ2 7.93 ns
Phase accumulation θ 1.111
Differential gain coefficient ξ 5× 103 s−1

Photon decay rate Γ0 1011 s−1

Carrier decay rate T1 1 ns
Threshold pump rate Jthr 1× 1017 s−1

Pump rate J 1.5Jthr
Spontaneous emission rate Rsp 5× 1012 s−1

Shot noise diffusion rate D 1.45× 1016 s−1

We point out that this system contains a rich variety
of parameters that are accessible in an experiment. Ad-
justing the pump current J controls the optical frequency,
which in turn changes the detuning ∆1,2. Changing the115

filter mirror spacing or reflectivity modifies the bandwidth
Λ1,2, and the time delays τ1,2 are directly proportional to
the external cavity lengths L1,2. The feedback rates κ1,2

are controlled via a neutral density filter inserted in each
cavity.120

3. Results: a period doubling route to chaos

This section describes the results of our work, but be-
fore doing so it is important to point out that the 2FOF
system has a large set of parameters, each of which can
influence the resulting dynamics. We have, therefore, fo-125

cused on a limited set which highlights the role of quantum
noise. For example, we have chosen typical noise strengths
and have not varied the strength of the noise. Further-
more, we have fixed the bandwidth of one of the filters
to 1GHz, the so-called intermediate bandwidth which lies130

between the external cavity mode spacing frequency and
the laser relaxation oscillation (RO) frequency, and varied
the bandwidth of the second filter to study the effects of
filter bandwidth.

We begin by describing the results of our calculations,135

shown in Fig. 2, which exhibits a period doubling route to
chaos of the frequency ω(t) of the laser wavelength (in-
stantaneous frequency) oscillations. The period doubling
route is produced via the bifurcation parameter κ1, which
is the feedback rate of field 1. The color scheme corre-140

sponds to the amplitude of the oscillations. All other
parameters are fixed as specified in Table 1 except the
filter bandwidth and detuning, where Λ1 = 1 GHz and
∆1 = −0.5 GHz. Initially the feedback is solely from cav-
ity 2 (κ2 = 0.8 GHz and κ1 = 0 GHz). We calculate the145

time series for E(t), F1,2(t), and N(t). Using the com-
plex electric field E(t) we extract the phase φ(t), where
φ(t) = arg(E(t)). arg(z) is the typically defined complex
argument of z. The frequency ω(t) of the slowly vary-
ing complex electric field E(t) is found by calculating the150

time derivative of the phase [ω(t) = φ̇(t)]. Finally, the
numerical spectra are determined for E(t) and ω(t) after
discarding the transient behavior. The feedback rate κ1 is
increased by ∆κ1 ≈ 0.32 GHz and this process is repeated
over 32 iterations in order to arrive at a final feedback155

rate of κ1 = 10 GHz. In the presence of noise, this pro-
cedure is averaged over 1000 instances. These spectra are
stitched together resulting in a period doubling route to
chaos shown in Fig. 2. Examining the deterministic period
doubling map [Fig. 2a], the first frequency (labeled fI) to160

emerge is 105 MHz corresponding to the fundamental fre-
quency from cavity 2 (f2 ≈ 1

τ2+1/Λ2
≈ 107 MHz). Note

that the fundamental frequency, which we label as ffun,
for FOF is dependent on both the delay time τ and the
bandwidth Λ. κ1 is increased and a frequency (fII) of 130165

MHz is produced which corresponds to an average between
the fundamental frequency of cavity 2 and the second har-
monic of cavity 1 ( f2+2f1

2 ≈ 125 MHz). A further increase
in κ1 results in a quasi period-doubling route to chaos. Ex-
amining the deterministic case in Fig. 2a, it is clear that170

the onset of chaos begins at κ1 ≈ 4.5 GHz. When noise
is present, shown in Fig. 2b, the period doubling route
for smaller frequencies is drastically altered. The onset of
chaos is delayed and a spread in the spectrum does not
emerge until κ1 ≈ 7 GHz. Not only is the chaotic regime175

shifted to a larger feedback rate, but the frequency con-
tent is altered. The stochastic spectra, which are extended
to 5 GHz and shown in Fig. 2c, also depict a change near
κ1 ≈ 4.5 GHz. The deterministic spectra (not shown) are
very similar when depicted on the same scale. One gains180

an insight into the mechanism for this delay by examining
the dynamics at different parameters in more detail.

3.1. Influence of noise

Previous studies of a SCL subject to FOF demonstrated
that noise influences the dynamics substantially [21, 23].185

They showed that multiple attractors exist for the deter-
ministic dynamics, and in the presence of noise some of the
attractors no longer survive [21]. The argument followed
that noise helps determine whether a particular attractor
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Figure 2: Deterministic (a) and stochastic [(b),(c)] density plots of
the period doubling route to chaos when the feedback strength κ1
from cavity 1 is increased. The bandwidth and detuning are fixed
at Λ1 = 1 GHz and ∆ = −0.5 GHz, otherwise all other parameters
are recorded in Table 1. fI−IV are the frequencies discussed in this
text which differ significantly in the stochastic period doubling route.
Note that (c) contains the stochastic spectra extended out to 5 GHz.

is stable, analogous to that of a perturbation acting on a190

system at a maximum of a potential distribution. Other
studies have shown that noise induces jumps between sta-
ble attractors if the ratio of the noise strength to potential
barrier is large enough [23]. A good understanding of this
behavior is gained via an examination of the time-series195

in conjunction with the phase-portraits and rf spectra.
The previous studies investigated particular instances of
a parameter space, while we focus on the period-doubling
route to chaos as the feedback strength is increased. Us-
ing these tools with the addition of first return maps, the200

period doubling route is traced along increasing feedback
strength κ1. The return map is generated by determin-
ing the maximum values (ωmax) for each oscillation in the
time series ω(t). Thus a series of maximum values is gen-
erated, and ω(max)n+1 is compared to the previous value205

at ω(max)n.
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Figure 3: Deterministic (a) and stochastic (b) plots of the frequency
ω(t) time-series (1), the phase-plane of ωn and η (2), and the rf
spectrum (3) showing a fundamental frequency of ffun ≈ 123 GHz.
The plots are calculated when the feedback is injected solely from
cavity 2 (κ1 = 0 GHz). The rf spectra (a4) and (b4) are extended
out to 6 GHz in order to depict the undamping of the ROs seen in
the time-series (b1).
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Fig. 3 depicts four deterministic plots and four stochas-
tic plots. When the feedback strength is κ1 = 0 GHz, the
three corresponding plots are the instantaneous frequency
ω(t) time series (a1 and b1), the phase plane of the fre-210

quency ωn and phase difference η = φ(t) − φ(t − τ) (a2
and b2), and the rf spectrum of ω(t) (a3 and b3). We
note, when comparing the deterministic (a3) and stochas-
tic (b3) rf spectra, that the perturbation of noise does not
affect the dominant frequencies in time-delay regime, even215

though the time-series are clearly different. This differ-
ence is noted in the large rf spectra (a4 and b4), where in
the presence of noise (b4) the ROs are undamped. How-
ever, as we increase the feedback strength κ1, noise plays
a significant role in determining the dominant frequencies.220
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Figure 4: Deterministic (a) and stochastic (b) plots of the frequency
ω(t) time-series (1), the phase-plane of ωn and η (2), and the RIN
spectrum (3) when the feedback strength is κ1 =0.32 GHz. The de-
terministic time-series captures a transient behavior toward a steady-
state behavior.

Once the feedback from the first cavity is allowed (κ1 =
0.32 GHz), as shown in Fig. 4, the deterministic and
stochastic rf spectra [(a3) and (b3)] show clear differences.
The differences can be understood by examining the de-
terministic and stochastic time series [(a1) and (b1)] and225

phase portraits [(a2) and (b2)]. From the time series (a1),
it is clear that the frequency ω(t) is always positive and
ω(t) evolves toward a steady-state. The movement toward
a steady state (fixed point) is depicted in the deterministic
phase portrait (a2). The dominant frequency in the deter-230

ministic spectrum (a3) is ∼ 125 MHz. In the presence of
noise (b3), the peak at ∼ 125 MHz is reduced and the peak
at ∼ 337 MHz is enhanced. In addition, the frequency,

shown in the stochastic time series (b1), oscillates around
ω = 0. We note that this shift in the frequency toward235

ω = 0 is a general feature when noise is included in the
simulations. For this feedback strength (κ = 0.32 GHz),
the shift occurs because the fixed point no longer survives
in the presence of noise. The absence of the fixed point
is clearly depicted when one compares the deterministic240

and stochastic return maps, shown in Fig. 5. Examining
the return map (Fig. 5), the deterministic maxima (blue
circles) show little variance and are centered at the fixed
point, while the stochastic maxima (red triangle) spread
and are no longer centered at the same location. Instead,245

noise drives the system toward higher frequencies coincid-
ing with higher harmonics shown in the rf spectrum of Fig.
4(b3).
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Figure 5: First return maps for feedback strength of κ1 =0.32 GHz
showing both the stochastic (red triangle) and deterministic (blue
circle) locations of ωmax.

At a feedback strength of κ1 = 0.97 GHz, the time-
series in Fig. 6 shows periodic oscillations with a period250

of 1/fRO = 400 ps, where fRO is the frequency of the
ROs. This behavior corresponds to the undamping of the
ROs, which then become the dominant feature. This un-
damping of the ROs is a well studied phenomenon of a
SCL subject to optical feedback, where the ROs are an255

exchange of energy between the photons and the inversion
carriers when the SCL is externally perturbed [24]. The
frequency of these oscillations occur near fRO ≈ 2.5 GHz
and varies depending on the SCL design and parameters.
The phase portrait [Fig. 6(a2)] shows a periodic attrac-260

tor, which does not survive in the presence of noise [Fig.
6(b2)]. The extinction of this attractor allows the time-
delay oscillations to influence the global behavior seen in
the stochastic rf spectrum [Fig. 6(b3)].

Signatures of the ROs in the dynamics occur at three265

instances along the bifurcation map of Fig. 2(a) at κ1 =
0.97 GHz (fIII on the map), κ1 = 3.1 GHz, and κ1 = 3.5
GHz. Each instance displays the same behavior character-
ized by frequency oscillations with a period of 1/fRO = 400
ps and the existence of a limit cycle in the phase-portrait.270

However, in each case, this attractor no longer survives
in the presence of noise. Noise drives the system toward
periodic oscillations which are dictated by the delay time
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Figure 6: Deterministic (a) and stochastic (b) plots of the frequency
ω(t) time-series (1), the phase-plane of ωn and η (2), and the rf
spectrum (3) when the feedback strength is κ1 =0.97 GHz. The
deterministic time-series and phase-portrait show periodic behavior
with a frequency of fRO ≈ 2.5 GHz, which is shown in the extended
spectra (a4) and (b4).

and filter bandwidth.
Turning our attention to the period doubling maps275

[Fig. 2], we note that the transition into chaotic determin-
istic dynamics begins at a feedback strength of κ1 ≈ 4.5
GHz (fIV on the map), and in presence of noise the onset of
a chaotic transition is clearly delayed (κ1 ≈ 7.0 GHz). Fig.
7 displays this critical transition at a feedback κ1 =4.52280

GHz for the deterministic onset of chaos. The frequency
ω(t) not only oscillates with a period of 1/fRO but ex-
hibits an envelope of slower oscillations which are shown
in the time series (a1) and spectrum (a2) of Fig. 7. The re-
turn map in Fig. 8(a) suggests stable periodic oscillations285

demonstrated by the small variance in the deterministic
maximum values (blue circle) of the frequency ωmax. Com-
paring this to the stochastic dynamics, the corresponding
behaviors are very different. Shown in Fig. 7(b2), the at-
tractor no longer survives and the spectrum [Fig. 7(b3)]290

greatly differs. The spectrum contains a period doubled
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Figure 7: Deterministic (a) and stochastic (b) plots of the frequency
ω(t) time-series (a1 and b1), the phase-plane of ωn and η (a2 and
b2), and the rf spectrum (a3 and b3) when the feedback strength is
κ1 =4.52 GHz.

frequency located at fdom/2 = 62 MHz. Here we define
fdom as the dominant frequency which corresponds to the
weighted average between the two fundamental frequen-
cies of each cavity. Once again, the dominant frequency in295

the presence of noise is dictated by the FOF time scales
(τ and Λ).

The return maps in Fig. 8 for feedback strengths κ1 =4.84
GHz [Fig. 8(b)] and κ1 =5.16 GHz [Fig. 8(c)] provide an
excellent representation of the difference between the de-300

terministic and stochastic dynamical states. Comparing
all three return maps [Fig. 8a,b, and c], the stochastic
maxima (red triangles) reveal a departure from the linear
shape at smaller feedback strengths (see Fig. 5). The de-
terministic maxima (blue circles) ωmax, however, require a305

larger feedback strength (κ1 =5.16 GHz) in order to repli-
cate stochastic maps. It is not until κ1 =5.16 GHz [Fig.
8(c)] that the two maps become similar.

However, the similarity in the return maps [Fig. 8(c)]
does not guarantee that the dynamical states will be iden-310

tical. The difference between the stochastic and determin-
istic dynamics is manifested in the period doubling routes
shown in Fig. 2, where two key differences standout. First,
the lack of stable RO frequencies in Fig. 2(b) (stochastic),
which are present in Fig. 2(a) (deterministic). An example315

of the RO frequency in Fig. 2(a) is displayed by the marker
fIII. Second, the onset of chaos is delayed in Fig. 2(b) un-
til a feedback strength of κ1 ≈ 7 GHz is reached. To
explain these differences, it appears that multiple mecha-
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Figure 8: First return maps for feedback strength of (a) κ1 =4.52
GHz, (b) κ1 =4.84 GHz, and (c) κ1 =5.16 GHz showing both the
stochastic (red triangle) and deterministic (blue circle) values.

nisms play a role. Not only does noise limit the number320

of stable attractors, but noise drives the periodic oscilla-
tions toward the dynamics influenced by the time-delay
and filter bandwidth.

4. Effects of the filter bandwidth on the dynamics

We next turn our attention to the effects of the two325

filter bandwidths on the dynamics. In a single FOF sys-
tem, it is possible to identify three regimes depending on
the magnitude of the bandwidth Λ relative to the RO
frequency fRO and relative to the external cavity mode
(ECM) spacing. The effects of the filter width on the dy-330

namics for each case have been outlined by Fischer [25],
while other theoretical work has characterized the mode
structures for the different bandwidth regimes [26]. Our

previous bifurcation analysis was done for bandwidths of
equal magnitudes, Λ1 = Λ2 = 1 GHz, which fall in an335

intermediate range. The intermediate range is where Λ
is large enough to include a number of ECMs yet smaller
than the frequency of the ROs. A narrow filter (Λ → 0)
was shown to resemble optical injection [27], while a wide
filter (Λ → ∞) was shown to resemble conventional opti-340

cal feedback (COF), hence the latter case reduces to the
standard Lang-Kobayashi rate equations [26]. In general,
the most interesting dynamics occur in the intermediate
regime, because in this regime the parameters of the filter
(Λ and ∆) play an important role in determining both the345

stability and control of the dynamics [25].
The use of two filters is advantageous not only because

of the additional parameters introduced (τ2, Λ2, ∆2, etc.)
but also because of the interplay between the two fields
which results in novel dynamics and the possibility of ro-350

bust control over these dynamics [18]. As stated earlier,
we fix one filter Λ1 in the intermediate regime while the
other filter Λ2 is varied. In particular, we focus on two
cases. The first is a narrow filter Λ2 < δECM , where
δECM is the frequency of the external cavity mode spac-355

ing. The second is a wide filter, Λ2 > fRO. We achieve
this by varying the bandwidth of one filter over a large
range from Λ2 = 0 → 20 GHz, while the second filter is
fixed at Λ2 = 1 GHz. We focus on these two cases in order
to isolate the effects of both noise and the bandwidth. A360

study could be done of the narrow-narrow, wide-wide, or
narrow-wide cases, but these would no longer contain any
signatures of the spectrally filtered feedback. Rather, they
would resemble injection and COF.

4.1. Feedback from an intermediate and narrow filter365

In practice, one is not able to reduce the bandwidth
indefinitely, therefore we restrict ourselves to the narrow
filter where 0 < Λ < δECM . Experimentally, the band-
width of the filter can be modified by changing the mirror
reflectivity of the filter or the mirror spacing. We study370

this system by keeping Λ2 = 1 GHz while Λ1 and ∆1 are
varied from 10 MHz to 50 MHz and -10 MHz to -50 MHz,
respectively, where 50 MHz is slightly larger than the SCL
linewidth. Along each iteration of the bandwidth, the de-
tuning is varied such that the laser frequency lies at the375

same position of the filter profile. Similar to the period
doubling map, the spectra are stitched together for dif-
ferent Λ1 and Fig. 9 shows the resultant density plots of
the intensities (1) IL(t), (2) IF1(t), and (3) IF2(t), where
IL(t) = |E(t)|2, IF1

(t) = |F1(t)|2, and IF2
(t) = |F2(t)|2.380

Initially, for the deterministic case, when Λ1 is small
(0 MHz < Λ1 < 20 MHz), the frequency of oscillations is
fdom ≈ 110 MHz shown in Figure 9(a). This frequency
of 110 MHz corresponds to the fundamental frequency of
cavity 2. Using the parameters in Table 1, we find that385

f2 ≈ 1/(τ2 + 1/Λ2) ≈ 112 MHz. When Λ1 is increased,
a frequency of 50 MHz emerges, which is a consequence
of the spectrally filtered feedback from cavity 1. The fre-
quency of 50 MHz is an average between f1 and f2, where
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Figure 9: Deterministic (a) and stochastic (b) density plots of the
amplitude of the spectrum as a function of changing bandwidth, Λ1.
The density plots correspond to the spectra for (1) IL(t), (2) IF1

(t),
(3) and IF2 (t). Λ2 is fixed at 1 GHz and the two feedback rates are
kept constant at κ1 = 3 GHZ and κ2 = 0.8 GHz.

f1 ≈ 1/(τ1 + 1/Λ1) ≈ 15 MHz. The average, weighted390

toward f1, is explained by the larger feedback rate from
cavity 1 (κ1 > κ2). The dependence of the weighted av-
erage on the ratio of the feedback rates was reported in
Ref. [18]. Continuing to increase Λ1 results in a frequency
of approximately 15 MHz, which is dominated by f1. Upon395

further increase of Λ1 the ROs become dominant which is
evident in the time series plot in Fig. 11(a1). Note that
these ROs are not present in Figs. 9(a2) and 9(a3) be-
cause, Λ1 and Λ2 act as low pass filters. The same density
plots are then produced in the presence of noise shown in400

Fig. 9b. For all three plots in Fig. 9b, there is an absence
of the broad 50 MHz frequency at a bandwidth of Λ1 = 32
MHz.

The deterministic time series for Λ1 = 32 MHz in
Fig. 10(a1) shows the evolution of IL(t) toward a steady-405

state value and the phase portrait (a2) shows this fixed
point attractor. Comparing this to the stochastic time
series for Λ1 = 32 MHz in Fig. 10(b1), it becomes evi-
dent that noise drives the system out of the fixed point,
which was explained in our analysis above describing the410

period-doubling route to chaos. Comparing Fig. 11(a1)
and Fig. 11(b1), it is clear that the relaxation oscillations
are no longer the dominant frequency for the determinis-
tic case at a larger bandwidth of Λ1 = 50 MHz, rather the
dominant frequency contains signatures of the FOF time415

scale in the rf spectrum shown in Fig.11(b3).
Although Λ1 < δECM , we point out that the feedback
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from cavity 1 only resembles optical injection when the
bandwidth is Λ1 < 25 MHz. This is observed by not-
ing that the dynamics in the presence of cavity 1 alone,420

when κ2 = 0 GHz (not shown), evolve to a steady-state
fixed point for any bandwidth of Λ1 up to 25 MHz. Be-
yond a bandwidth of Λ1 = 25 MHz the dynamics be-
come periodic and the period of these dynamics depend
on the filter bandwidth, thus no longer considered opti-425

cal injection. In summary, both the narrow-intermediate
and intermediate-intermediate cases show that particular
attractors no longer survive and, in turn, drive the system
toward periodic oscillations determined by the a FOF time
scales (τ and Λ). This relationship, however, is for two430

particular feedback rates κ1 and κ2. A complete picture
becomes highly complex due to the amount of parameters
Λ1,2, τ1,2,∆1,2, κ1,2 which influence the dynamical behav-
ior of this system.

4.2. Feedback from an intermediate and wide filter435

We next investigate the effects of a competition be-
tween an intermediate filter and wide filter. The dynam-
ics of both cases have been intensely studied for the single
FOF case which showed that the stability and dynamics
vary depending on the filter width [25]. Knowing that the440

wide filter resembles COF, we expect to see only two time
signatures (τ and 1/fRO), instead of the influence of the
bandwidth Λ found in FOF dynamics.

To study this system, we fix both bandwidths at Λ1 =
20 GHz and Λ2 = 1 GHz and detunings ∆1 = −5 GHz445

and ∆2 = −1.5 GHz. κ1 is varied while κ2 = 0.8 GHz is
fixed. κ1 is varied, rather than Λ1, because the period of
elicited oscillations for this two FOF system remain unal-
tered when Λ1 is increased. Fig. 12 contains the spectra
of the intensity of the laser IL(t) and the intensity of the450

light through filter 2, IF2
(t), when the feedback rate κ1

is varied. These two intensities were chosen because the
light through filter 1, IF1 , directly mimics IL(t) due to the
wide filter and the presence of the ROs, which are not as
dominant in the dynamics of feedback from filter 2.455

Initially, the feedback is solely from cavity 2 (κ1 = 0
GHz). Therefore, the dynamics which arise are a conse-
quence of the spectrally filtered (intermediate) feedback
from cavity 2, which are shown in Fig. 13 for feedback
rates of κ2 = 0.8 GHz and κ1 = 0 GHz. It is clear that460

the rf spectra of the deterministic (a3) and stochastic (b3)
dynamics are very similar at this feedback strengths. The
dominant frequency f2 ≈ 112 MHz corresponds to the
fundamental frequency of cavity 2. The higher harmonics
are also present with decreasing amplitudes. The feed-465

back rate κ1 is increased which enhances the second and
third harmonic shown in both Fig. 12(a1) and (a2). As
the feedback rate increases, κ1 ≈ 0.32 GHz, a frequency at
f ≈ 66 MHz emerges. We note that this corresponds to the
fundamental frequency from cavity 1 which is f1 ≈ 1/τ1,470

which has no signatures of the bandwidth (Λ1 = 20 GHz).
A continued increase in κ1 results in the enhancement of

Figure 12: Deterministic (a) and stochastic (b) density plots of the
amplitude of the spectrum as a function of the increasing feedback
rate, κ1. The spectra are calculated with the with the parameters
mentioned in Table 1 except the following: Λ1 = 20 GHz and ∆1 =
−5 GHz. (1) Spectra of the intensity of light from laser, IL(t) and
(2) spectra from the light through filter 2, IF2 (t).

the successive higher harmonics, the second and third har-
monic emerge, 2f1 and 3f1 respectively. The ROs appear
in the laser intensity, which is shown Fig.12(a1), while they475

are attenuated through filter 2 shown in Fig. 12(a2).
The dynamics become more complicated and eventu-

ally evolve into the chaotic regime as the feedback rate
κ1 is increased. This is seen in all three subplots in Fig.
13(c1) and Fig 13(d1) at feedback rate of κ1 = 1.7 GHz.480

The complicated time series, the jumping between attrac-
tors in the phase portrait and the spread in the rf spectrum
all indicate the emergence of a chaotic regime. This be-
havior is well known for COF systems as the feedback rate
is increased eventually inducing coherence collapse.485

Comparing the deterministic [Fig. 12(a)] and stochastic
[Fig. 12(b)] spectra (density plots) for an increasing feed-
back strength (κ1), it is evident that noise plays a signif-
icant role in determining which frequencies emerge. This
is understood by noting that the filter widths are larger,490

thus effectively reducing the spectral filtering of the feed-
back fields. Initially, the frequency spectra are very similar
when κ1 = 0 GHz shown in Fig.13(a3) and Fig. 13(b3).
As κ1 is increased, two regions of dissimilarity emerge.
The first is a lack of the second and third harmonic found495

in Fig. 12(b). Upon further investigation we found that
these harmonics emerge as the system evolves toward a
steady state intensity. When the feedback rate is 0.1 GHz
< κ1 < 0.3 GHz, noise drives the system out of these
fixed point solutions, which is in good agreement with the500

previous analysis.
However, it is interesting to note that noise does not ap-

pear to delay the onset of chaos in larger feedback regimes
(κ1 > 1.5 GHz) shown in Fig. 12(b). A stark differ-
ence between the former bandwidth regimes and the wide-505

intermediate regime is that there is no averaging between
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Figure 13: Three subplots are produced using the intensity of light through filter 2, IF2
(t). The times series (1), phase portrait ωn, η(t) (2),

and rf spectrum (3) are calculated for the feedback rates [(a) and (b)] κ1 = 0 GHz and [(c) and (d)] κ1 = 1.7 GHz.

the fundamental frequencies of the cavities, i.e. the dy-
namics are dictated by cavity 2 (intermediate filter) or
cavity 1 (wide filter). In the presence of noise, two chaotic
regimes emerge, when 0.3 GHz < κ1 < 0.55 GHz and510

κ1 > 1.7 GHz [Fig. 12(b)]. For small feedback strengths
(0.3 GHz < κ1 < 0.55 GHz) when the RO dynamics
emerge [Fig. 12(a)], instead of driving the system toward
periodic oscillations, the dynamics become chaotic [Fig.
12(b)]. In summary, the presence of a large bandwidth515

does not filter the frequency content and thus permits
chaotic dynamics when the deterministic periodic (ROs)
attractors no longer survive in the presence of noise even
for a smaller feedback rate (0.3 GHz < κ1 < 0.55 GHz).

5. Discussion and conclusion520

In this paper, we have reported on a theoretical and
computational investigation of the effects of quantum noise
on the complex dynamics that arise in the instantaneous
optical frequency of a SCL that is subject to two filtered
optical feedbacks. A majority of the results deal with the525

situation where the bandwidths of both filters through
which the feedbacks are filtered are in the intermediate
regime and wherein the feedback strength from one cavity
is kept fixed while the feedback strength from the second
cavity is varied. For these parameters, the most important530

observation is that the feedback strength needed from the
second cavity to produce coherence collapse is significantly

increased in the presence of noise. Our calculations indi-
cate that this is a general feature of two FOFs in the pres-
ence of noise, even though we have displayed the results for535

one set of parameters. The physical origin of this increased
feedback needed to produce coherence collapse lies in the
fact that some of the attractors in the deterministic model
do not survive in the presence of noise. An important con-
sequence of this is that the effects of the time-delay and540

filter bandwidth are enhanced in the presence of quantum
noise.

Most of the results that we report show the dynamics
up to frequencies of a few hundred MHz since these can be
easily measured with standard detection components with545

rise times of a few nanoseconds. In some representative
cases we also show the observed behaviors extended out
to a few GHz, and the dominant theme to emerge from
these data is that as the feedback strength from the second
cavity is increased, the relaxation oscillations become the550

more dominant feature. In general, the results indicate
that the effect of noise is to destroy the periodic attractor
related to the relaxation oscillations and to enhance the
effects of time-delay and filter bandwidth.

Typically, the effects of quantum noise will be most555

prominent when both filters have bandwidths in the inter-
mediate regime. For narrow filters, any relaxation oscilla-
tions that are undamped will be suppressed by the narrow
filters and hence the dynamics will be dominated by the
time-delay of the feedbacks. For wide filters, signatures560
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of the time-delayed feedback will be suppressed by the re-
laxation oscillations. It is only the intermediate regime in
which noise can push the dynamics either towards making
the time-delay dynamics the dominant ones or the relax-
ation oscillations the dominant ones, depending on feed-565

back strengths.
This paper also reports the laser frequency dynamics

when one of the filters has an intermediate bandwidth and
the other is either much narrower or much wider. In the
former case, the effect of quantum noise is to once again570

drive the system away from the deterministic fixed point.
In addition, the relaxation oscillations are suppressed and
the time scale associated with the time-delayed feedback
and the filter bandwidth contribute to the dominant fre-
quencies. In the case of one intermediate filter and one575

wide filter, the spectral filtering of the feedback is reduced
and as a consequence one finds that the laser frequency
goes into the coherence collapse regime at about the same
feedback levels in the presence of quantum noise as it does
in the deterministic case. Therefore, it is clear that the580

requirement for a higher feedback strength to induce co-
herence collapse in the presence of quantum noise arises
only when the filter bandwidths are in the intermediate
regime, even though noise does play a role in determining
which deterministic attractors persist.585

In summary, our work confirms that it is important to
include the role of quantum noise to accurately describe
the frequency dynamics of a SCL subject to two FOFs.
The complexity and richness of this multi-parameter sys-
tem raises some interesting and important questions, such590

as the physical mechanisms that cause laser frequency dy-
namics to be dominated by the time-delay and filter band-
width in the two intermediate filter case, the reasons for
the return maps to deviate from a linear shape in the pres-
ence of noise, the effects of correlated amplitude and in-595

version noise, and the influence of different noise strengths
and of other combinations of filter widths. We hope to
explore these, and other, questions in future studies.
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[17] P. Slowiński, B. Krauskopf, S. Wieczorek, Solution structure680

and dynamics of a semiconductor laser subject to feedback from
two external filters (2010). doi:10.1117/12.853448.
URL http://dx.doi.org/10.1117/12.853448

[18] V. Pal, J. Suelzer, A. Prasad, G. Vemuri, R. Ghosh, Semi-
conductor laser dynamics with two filtered optical feedbacks,685

11

http://link.aps.org/doi/10.1103/RevModPhys.85.421
http://link.aps.org/doi/10.1103/RevModPhys.85.421
http://link.aps.org/doi/10.1103/RevModPhys.85.421
http://link.aps.org/doi/10.1103/RevModPhys.85.421
http://link.aps.org/doi/10.1103/RevModPhys.85.421
http://dx.doi.org/10.1103/RevModPhys.85.421
http://link.aps.org/doi/10.1103/RevModPhys.85.421
http://www.opticsexpress.org/abstract.cfm?URI=oe-21-1-12
http://www.opticsexpress.org/abstract.cfm?URI=oe-21-1-12
http://www.opticsexpress.org/abstract.cfm?URI=oe-21-1-12
http://dx.doi.org/10.1364/OE.21.000012
http://www.opticsexpress.org/abstract.cfm?URI=oe-21-1-12
http://www.opticsexpress.org/abstract.cfm?URI=oe-21-1-12
http://www.opticsexpress.org/abstract.cfm?URI=oe-21-1-12
http://link.aps.org/doi/10.1103/PhysRevE.79.026208
http://link.aps.org/doi/10.1103/PhysRevE.79.026208
http://link.aps.org/doi/10.1103/PhysRevE.79.026208
http://dx.doi.org/10.1103/PhysRevE.79.026208
http://link.aps.org/doi/10.1103/PhysRevE.79.026208
http://dx.doi.org/10.1109/JQE.1980.1070479
http://dx.doi.org/10.1109/JQE.1980.1070479
http://dx.doi.org/10.1109/JQE.1980.1070479
http://dx.doi.org/10.1109/JQE.1985.1072725
http://link.aps.org/doi/10.1103/PhysRevA.68.033811
http://link.aps.org/doi/10.1103/PhysRevA.68.033811
http://link.aps.org/doi/10.1103/PhysRevA.68.033811
http://link.aps.org/doi/10.1103/PhysRevA.68.033811
http://link.aps.org/doi/10.1103/PhysRevA.68.033811
http://dx.doi.org/10.1103/PhysRevA.68.033811
http://dx.doi.org/10.1103/PhysRevA.68.033811
http://dx.doi.org/10.1103/PhysRevA.68.033811
http://link.aps.org/doi/10.1103/PhysRevA.68.033811
http://ol.osa.org/abstract.cfm?URI=ol-36-23-4632
http://ol.osa.org/abstract.cfm?URI=ol-36-23-4632
http://ol.osa.org/abstract.cfm?URI=ol-36-23-4632
http://ol.osa.org/abstract.cfm?URI=ol-36-23-4632
http://ol.osa.org/abstract.cfm?URI=ol-36-23-4632
http://dx.doi.org/10.1364/OL.36.004632
http://ol.osa.org/abstract.cfm?URI=ol-36-23-4632
http://ol.osa.org/abstract.cfm?URI=ol-39-21-6098
http://ol.osa.org/abstract.cfm?URI=ol-39-21-6098
http://ol.osa.org/abstract.cfm?URI=ol-39-21-6098
http://ol.osa.org/abstract.cfm?URI=ol-39-21-6098
http://ol.osa.org/abstract.cfm?URI=ol-39-21-6098
http://dx.doi.org/10.1364/OL.39.006098
http://ol.osa.org/abstract.cfm?URI=ol-39-21-6098
http://link.aps.org/doi/10.1103/PhysRevE.91.042918
http://link.aps.org/doi/10.1103/PhysRevE.91.042918
http://link.aps.org/doi/10.1103/PhysRevE.91.042918
http://dx.doi.org/10.1103/PhysRevE.91.042918
http://link.aps.org/doi/10.1103/PhysRevE.91.042918
http://dx.doi.org/10.1109/3.766841
http://dx.doi.org/10.1109/3.766841
http://dx.doi.org/10.1109/3.766841
http://link.aps.org/doi/10.1103/PhysRevLett.92.023901
http://link.aps.org/doi/10.1103/PhysRevLett.92.023901
http://link.aps.org/doi/10.1103/PhysRevLett.92.023901
http://dx.doi.org/10.1103/PhysRevLett.92.023901
http://link.aps.org/doi/10.1103/PhysRevLett.92.023901
http://link.aps.org/doi/10.1103/PhysRevLett.92.023901
http://link.aps.org/doi/10.1103/PhysRevLett.92.023901
http://link.aps.org/doi/10.1103/PhysRevE.73.055201
http://link.aps.org/doi/10.1103/PhysRevE.73.055201
http://link.aps.org/doi/10.1103/PhysRevE.73.055201
http://dx.doi.org/10.1103/PhysRevE.73.055201
http://link.aps.org/doi/10.1103/PhysRevE.73.055201
http://dx.doi.org/10.1117/12.2076118
http://dx.doi.org/10.1117/12.2076118
http://dx.doi.org/10.1117/12.2076118
http://dx.doi.org/10.1117/12.2076118
http://dx.doi.org/10.1117/12.2076118
http://dx.doi.org/10.1117/12.2076118
http://dx.doi.org/10.1117/12.2076118
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10722
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10722
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10722
http://dx.doi.org/10.3934/dcdsb.2015.20.519
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10722
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10722
http://aimsciences.org/journals/displayArticlesnew.jsp?paperID=10722
http://dx.doi.org/10.1117/12.780576
http://dx.doi.org/10.1117/12.780576
http://dx.doi.org/10.1117/12.780576
http://dx.doi.org/10.1117/12.780576
http://dx.doi.org/10.1117/12.780576
http://dx.doi.org/10.1117/12.853448
http://dx.doi.org/10.1117/12.853448
http://dx.doi.org/10.1117/12.853448
http://dx.doi.org/10.1117/12.853448
http://dx.doi.org/10.1117/12.853448
http://dx.doi.org/10.1117/12.853448
http://dx.doi.org/10.1117/12.853448


Quantum Electronics, IEEE Journal of 49 (3) (2013) 340–349.
doi:10.1109/JQE.2013.2244559.

[19] G. Agrawal, N. Dutta, Long wavelength semiconductor lasers,
Van Nostrand Reinhold Co. Inc.,New York, NY, 1986.

[20] G. Gray, R. Roy, Noise in nearly-single-mode semiconduc-690

tor lasers, Phys. Rev. A 40 (1989) 2452–2462. doi:10.1103/

PhysRevA.40.2452.
URL http://link.aps.org/doi/10.1103/PhysRevA.40.2452

[21] M. Yousefi, D. Lenstra, G. Vemuri, Nonlinear dynamics of a
semiconductor laser with filtered optical feedback and the in-695

fluence of noise, Phys. Rev. E 67 (2003) 046213. doi:10.1103/

PhysRevE.67.046213.
URL http://link.aps.org/doi/10.1103/PhysRevE.67.046213

[22] R. L. Honeycutt, Stochastic runge-kutta algorithms. i. white
noise, Phys. Rev. A 45 (1992) 600–603. doi:10.1103/PhysRevA.700

45.600.
URL http://link.aps.org/doi/10.1103/PhysRevA.45.600

[23] C. Masoller, Noise-induced resonance in delayed feed-
back systems, Phys. Rev. Lett. 88 (2002) 034102.
doi:10.1103/PhysRevLett.88.034102.705

URL http://link.aps.org/doi/10.1103/PhysRevLett.88.

034102

[24] A. Hohl, A. Gavrielides, Bifurcation cascade in a semiconductor
laser subject to optical feedback, Phys. Rev. Lett. 82 (1999)
1148–1151. doi:10.1103/PhysRevLett.82.1148.710

URL http://link.aps.org/doi/10.1103/PhysRevLett.82.

1148

[25] A. Fischer, M. Yousefi, D. Lenstra, M. Carter, G. Vemuri, Ex-
perimental and theoretical study of semiconductor laser dy-
namics due to filtered optical feedback, Selected Topics in715

Quantum Electronics, IEEE Journal of 10 (5) (2004) 944–954.
doi:10.1109/JSTQE.2004.835997.
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