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The ratio of two consecutive level spacings has emerged as a very useful metric in investigating
universal features exhibited by complex spectra. It does not require the knowledge of density of
states and is therefore quite convenient to compute in analyzing the spectrum of a general system.
The Wigner-surmise-like results for the ratio distribution are known for the invariant classes of
Gaussian random matrices. However, for the crossover ensembles, which are useful in modeling
systems with partially broken symmetries, corresponding results have remained unavailable so far.
In this work, we derive exact results for the distribution and average of the ratio of two consecutive
level spacings in the Gaussian orthogonal to unitary crossover ensemble using a 3×3 random matrix
model. This crossover is useful in modeling time-reversal symmetry breaking in quantum chaotic
systems. Although based on a 3×3 matrix model, our results can also be applied in the study of large
spectra, provided the symmetry-breaking parameter facilitating the crossover is suitably scaled. We
substantiate this claim by considering Gaussian and Laguerre crossover ensembles comprising large
matrices. Moreover, we apply our result to investigate the violation of time-reversal invariance in
the quantum kicked rotor system.

I. INTRODUCTION

Since Wigner’s pioneering work in the 1950s, random
matrix theory (RMT) has developed into an important
field dedicated to the statistical investigation of complex
systems. From nuclear and particle physics [1–7] to fi-
nance [8–10], from classical and quantum information
theory [11–19] to transport phenomena in mesoscopic
systems [20, 21], RMT has found widespread application
in a broad range of areas [22–26]. One of the fascinat-
ing aspects of RMT is its prediction of certain universal
features which are found to be shared by a wide variety
of completely unrelated systems. It was conjectured in
a seminal work by Bohigas et al. that the local fluctua-
tion properties of the spectra of quantum chaotic systems
coincide with those of random matrices [27] and there
has been overwhelming evidence in favor of this conjec-
ture [22–27]. In contrast, as was asserted by Berry and
Tabor, integrable systems conform to Poissonian spectral
fluctuations [28].

Dyson’s three fold classification scheme involves three
invariant classes of random matrices, which apply de-
pending on the time-reversal and rotational symmetries
exhibited by a system [22–26, 29]. In the classical
Gaussian case, these are Gaussian orthogonal ensemble
(GOE), Gaussian unitary ensemble (GUE), and Gaus-
sian symplectic ensemble (GSE). Additionally, there are
instances when a symmetry is partially broken and cor-
respondingly the spectra exhibit statistics intermediate
between two invariant classes. Such systems are modeled
by crossover random matrix ensembles which interpolate
between two symmetry classes as a certain symmetry-
breaking or crossover parameter is varied [22, 24, 30–45].
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The intermediate cases are realized when the crossover
parameter assumes values between its two extremes. This
crossover parameter can often be related to some phys-
ical quantity when modeling a quantum chaotic system.
For instance, application of a weak magnetic field on
a mesoscopic system (e.g., a quantum dot) leads to a
partial time-reversal invariance violation [20]. Corre-
spondingly, along with the change in spectral behav-
ior, one also observes the effect on electronic transport
properties leading to phenomena such as magnetocon-
ductance [20, 46–50]. In this case, the crossover param-
eter governing the orthogonal to unitary transition can
be related to the magnetic flux. Another prominent ex-
ample of such crossovers is the one involving Poisson to
RMT spectral fluctuations. It is used to model transition
from integrability to chaos and has been used in several
contexts [42, 43, 51–63]. Interestingly, crossover ensem-
bles also find applications in problems where the above-
mentioned symmetries do not have any direct meaning,
for example, in multiple channel wireless communication
where the crossover is governed by a certain signal-fading
parameter [13].

Nearest-neighbor spacing distribution (NNSD) is an
important and widely studied statistical measure to
quantify the local fluctuation properties of a given spec-
trum. As a matter of fact, the agreement of NNSD with
the RMT result or the Poissonian statistics is considered
as a litmus test to decide whether a system under consid-
eration is chaotic or integrable. The NNSD expressions
for the classical Gaussian ensembles based on 2×2 matri-
ces, famously known as Wigner surmise, approximate the
corresponding exact results for large matrices very closely
and therefore are of immense usefulness in studying spec-
tra of complex systems. Similarly, for the crossover en-
sembles, several Wigner-surmise-like results exist for the
spacing distribution and apply to large spectra once the
crossover parameter is suitably scaled [44, 51, 52, 64–
70]. Unfortunately, the empirical calculation of NNSD
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for a general system involves the difficult task of unfold-
ing the spectrum which requires knowledge of the density
of states to a very good accuracy, which is not always pos-
sible to acquire. Consequently, one seeks alternatives to
NNSD which can be used to quantify the local fluctuation
behavior without the need for unfolding.

The ratio rn = sn/sn−1 of two consecutive level spac-
ings sn and sn−1 is a quantity which is independent of
the local density of states and has become quite popu-
lar in recent times. Here, the spacing is calculated as
sn = xn+1 − xn, with {x1, x2, ...} being the ordered set
of levels. The ratio of adjacent spacings was introduced
by Oganesyan and Huse to study the spectral statistics
of a one-dimensional tight-binding model of strongly in-
teracting spinless fermions in a random potential [71].
It was shown that spectral statistics of finite-sized sam-
ples show a crossover from GOE statistics in the diffusive
regime at weak random potential to Poisson statistics
in the localized regime at strong randomness. For their
analysis, Oganesyan and Huse considered not rn but the
related quantity r̃n = min(sn, sn−1)/max(sn, sn−1) =
min(rn, 1/rn). In Refs. [72, 73], Atas et al. derived the
probability density function (PDF) of the adjacent spac-
ing ratio for the classical Gaussian ensembles and addi-
tionally for the Poissonian case which applies to spectra
of integrable systems. Although these results are based
on 3×3 random matrices, similar to the Wigner surmise,
they have been found to describe the fluctuation behavior
of large spectra to a reasonable accuracy.

Due to the above-indicated advantage of the ratio dis-
tribution over the spacing distribution, it has gradu-
ally found widespread application in analyzing spectra
of complex systems. This includes systems ranging from
spin chains [43, 53–56, 74], Bose-Hubbard model [57, 59],
many-body quasiperiodic system [58], molecular reso-
nances [60], and fermions or bosons described by em-
bedded random matrix ensembles [42]. One of the key
aspects considered in these works has been the Poisson-
GOE crossover, for which a detailed analysis has been
done by Kota and co-workers for the ratio distribution
in Refs. [42, 43]. An empirical formula for ratio distribu-
tion in this crossover has also been provided in Ref. [42].
The ratio distribution has also been used to examine
the quantum chaos transition in a two-site Sachdev-Ye-
Kitaev model, which is dual to an eternal traversable
wormhole [75]. Furthermore, exact distribution for the
spacing ratio has been derived in Ref. [76] for distin-
guishing between localized and random states in quan-
tum chaotic systems. Higher-order spacing ratios have
been also explored in Refs. [73, 77, 78] and utilized for
studying the spectral fluctuations in complex quantum
systems as well as those observed in empirical correla-
tion matrices constructed using stock market and atmo-
spheric pressure data. In addition, very recently, a phe-
nomenological formula for the ratio distribution has been
proposed in Ref. [79] for several symmetry crossovers.

In this paper, we focus on an ensemble interpolating
between GOE and GUE, and derive exact distribution

for the ratio of consecutive level spacings r as well as
for r̃ = min(r, 1/r) using a 3 × 3 random matrix model.
Moreover, we give exact results for the corresponding av-
erages 〈r〉 and 〈r̃〉. Similar to the Wigner surmise, our
result can be applied to large dimension cases and to non-
Gaussian random matrix ensembles once the crossover
parameter is properly scaled. We substantiate this claim
by considering interpolating ensembles of Gaussian and
Wishart-Laguerre ensembles comprising large matrices.
In quantifying the level fluctuation behavior of an arbi-
trary quantum chaotic system, our result can be applied
by relating the crossover parameter of the RMT model
to the time-reversal symmetry-breaking parameter of the
given system. We demonstrate this by investigating the
time-reversal symmetry breaking in a quantum kicked
rotor (QKR) system [80].

The rest of this paper is organized as follows. In Sec. II,
we present the random matrix model used to capture
the GOE-GUE crossover. In Sec. III, we derive exact
results for the PDFs of r and r̃, and the corresponding
averages. In Sec. IV, we examine the scaling behavior of
the crossover parameter for Gaussian ensembles in large
dimension cases. Section V deals with the investigation of
orthogonal to unitary crossover in the Wishart-Laguerre
ensemble of random matrices. In Sec. VI, we apply our
analytical result for studying the time-reversal symmetry
breaking in a quantum kicked rotor system. We conclude
with a brief summary in Sec. VII.

II. MATRIX MODEL FOR THE GOE-GUE
CROSSOVER

We use the random matrix model proposed by Pandey
and Mehta for GOE-GUE crossover [32, 33]:

H =
√

1− α2H1 + αH2. (1)

In this equation, H1 and H2 are real-symmetric and
complex-Hermitian random matrices with probability
densities

P(Hβ) ∝ exp

(
− 1

4v2
trH2

β

)
, β = 1, 2, (2)

respectively. The parameter v appearing above fixes the
scale of the problem. Clearly, H1 and H2 belong to the
GOE and GUE, respectively. The variances of the diag-
onal and off-diagonal parts (both real and imaginary for
GUE) of the Gaussian matrix elements in either case are
2v2 and v2, respectively. The matrix model in Eq. (1)
interpolates between GOE and GUE as the crossover pa-
rameter α is varied from 0 to 1. Other equivalent forms
for the above matrix model are also possible. For ex-
ample, Lenz and co-workers have considered the random
matrix model [30, 34]

H =
1√

1 + λ2
H1 +

λ√
1 + λ2

H2. (3)
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The relation between parameters α and λ can be readily
established to be α = λ/

√
1 + λ2 or λ = α/

√
1− α2. The

parameter λ gives GOE and GUE in the limits 0 and ∞,
respectively. The joint eigenvalue density for the matrix
model in Eq. (1) is used in the next section to obtain an
exact result for the distribution of ratio of consecutive
level spacings.

III. EXACT RATIO DISTRIBUTION FOR
3-DIMENSIONAL GAUSSIAN MATRICES

Considering the three-dimensional case, the joint
probability density function for the orthogonal-unitary
crossover in the Gaussian ensemble is given by [32, 33]

P (x1, x2, x3) =
1

48
√

2πv6(1− α2)3/2

× [f(x1 − x2)− f(x1 − x3) + f(x2 − x3)]

× (x1 − x2)(x2 − x3)(x1 − x3) e−
1

4v2 (x2
1+x2

2+x2
3), (4)

where

f(u) = erf

[(
1− α2

8α2v2

)1/2

u

]
, (5)

with erf(z) = (2/
√
π)
∫ z

0
e−t

2

dt being the error function.
The limits α→ 0 and α→ 1 in Eq. (4) lead to the joint
probability densities of eigenvalues for GOE and GUE,
respectively. We have

PGOE(x1, x2, x3) =
1

48
√

2πv6
e−

1
4v2 (x2

1+x2
2+x2

3)

×|(x1 − x2)(x1 − x3)(x2 − x3)|, (6)

PGUE(x1, x2, x3) =
1

768π3/2v9
e−

1
4v2 (x2

1+x2
2+x2

3)

×[(x1 − x2)(x1 − x3)(x2 − x3)]2. (7)

For the purpose of computing the desired ratio distri-
bution, we order the eigenvalues such that x1 ≤ x2 ≤ x3.
The ratio of consecutive level spacings is then given by

r =
x3 − x2

x2 − x1
. (8)

The probability density function of r can be obtained as

p(r) = 3!

∫ ∞
−∞

dx2

∫ x2

−∞
dx1

∫ ∞
x2

dx3 P (x1, x2, x3)

×δ
(
r − x3 − x2

x2 − x1

)
. (9)

We proceed similarly to Refs. [72, 73] and implement the
change of variables (x1, x2, x3)→ (x, x2, y) with x = x2−
x1, y = x3 − x2. This gives us

p(r) = 6

∫ ∞
−∞

dx2

∫ ∞
0

dx

∫ ∞
0

dy P (x2 − x, x2, x2 + y)

× δ
(
r − y

x

)
.

On using Eq. (4), we find that in the above expression,
the variable x2 appears only in the exponential factor and
therefore the integral over it can be trivially performed,
leading us to

p(r) =
1

4
√

6π v5(1− α2)3/2

∫ ∞
0

dx

∫ ∞
0

dy x y (x+ y)

× [f(x) + f(y)− f(x+ y)] e−
1

6v2 (x2+xy+y2) δ
(
r − y

x

)
.

(10)

From the above equation, the joint density of consecutive
spacings x and y can be read as

P̂ (x, y) =
1

4
√

6π v5(1− α2)3/2
x y (x+ y)

× [f(x) + f(y)− f(x+ y)] e−
1

6v2 (x2+xy+y2), (11)

which is symmetric in x and y. Now, using the result
δ(r−y/x) = x δ(y−rx), we get rid of the y integral from
Eq. (10) and are left with an integration on x only,

p(r) =
r(r + 1)

4
√

6π v5(1− α2)3/2

∫ ∞
0

dxx4

× [f(x) + f(rx)− f(r + rx)] e−
x2

6v2 (r2+r+1). (12)

The above expression involves three integrals of identical
structure which offers an exact result,

g(η, ζ) :=
4
√
π

v5

∫ ∞
0

dxx4 exp

(
−η

2x2

v2

)
erf

(
ζx

v

)
=
ζ(5η2 + 3ζ2)

η4(η2 + ζ2)2
+

3

η5
arctan

(
ζ

η

)
. (13)

Using the above integration result, we obtain the final
expression for the probability density function for the
ratio of two consecutive level spacings as

p(r) =
r(r + 1)

16
√

6π(1− α2)3/2
[g(a, b) + g(a, br)− g(a, br + b)] ,

(14)
where g(η, ζ) is as given in Eq. (13) and

a =

√
r2 + r + 1

6
, b =

√
1− α2

8α2
. (15)

We note that the function g(η, ζ), and hence p(r), is inde-
pendent of v. This is expected, as ratio distribution has
to be independent of the global scale of the spectrum.
This can be seen from Eq. (9) also by considering the
scaling x → vx. The three “arctan” terms in p(r) as in
Eq. (14) may be combined to yield a single term, giving
us, overall,

p(r) =
r(r + 1)

16
√

6π(1− α2)3/2

[
b(5a2 + 3b2)

a4(a2 + b2)2

+
br(5a2 + 3b2r2)

a4(a2 + b2r2)2
− b(r + 1)(5a2 + 3b2(r + 1)2)

a4(a2 + b2(r + 1)2)2

+
3

a5
arctan

(
b3r(r + 1)

a3 + ab2(r2 + r + 1)

)]
. (16)
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Equations (14) and (16) may be written in terms of the
parameter λ of the matrix model given in Eq. (3) by
replacing 1/(1− α2)3/2 by (1 + λ2)3/2 and b in Eq. (15)

by 1/(
√

8λ). In the limit α → 0, we have b → ∞, and
therefore g(a, b) = g(a, br) = g(a, br + b) = 3π/(2a5).
Consequently, we obtain the result for GOE [72, 73]:

pGOE(r) =
27

8

r(r + 1)

(r2 + r + 1)5/2
. (17)

Now, for ζ → 0, we obtain g(η, ζ) = 8ζ/η6 − 8ζ3/η8 +
O(ζ5) by invoking the expansion of arctan z about z = 0.
Hence, in the limit of α→ 1 or b→ 0, we have

g(a, b) + g(a, br)− g(a, br + b) =
8b

a6
− 8b3

a8
+

8br

a6

− 8b3r3

a8
− 8(r + 1)b

a6
+

8(r + 1)3b3

a8
+O(b5)

=
24r(r + 1)b3

a8
+O(b5)

=
24r(r + 1)(1− α2)3/2

83/2a8
+O

(
(1− α2)5/2

)
. (18)

This leads to GUE result in the limit α→ 1 [72, 73]:

pGUE(r) =
81
√

3

4π

r2(r + 1)2

(r2 + r + 1)4
. (19)

The PDF p(r) of the ratio r can also be used to obtain
the expression for the PDF of r̃ = min(r, 1/r). We have

p̃(r̃) =

[
p(r̃) +

1

r̃2
p

(
1

r̃

)]
Θ(1− r̃), (20)

where Θ(z) is the Heaviside step function. As seen in

Eq. (11), the joint density P̂ (x, y) of consecutive spacings
is symmetric under the exchange for the 3× 3 Gaussian
ensemble. This implies that the distributions of r and
1/r are identical, i.e., p(r) = p(1/r)/r2. Therefore, in
this case, p̃(r̃) = 2p(r̃)Θ(1−r̃), as also argued in Ref. [72].
The same holds for all classical random matrix ensembles
in the bulk of the spectrum in the large dimension limit
and therefore it is also expected to apply for spectra of
chaotic systems.

Along with the distributions of r and r̃, the respective
averages 〈r〉 and 〈r̃〉 have been found to be of impor-
tance in analyzing the crossover behavior. For instance,
in Refs. [42, 43, 53–60, 71, 75], the variation in these av-
erages has been studied as certain physical parameters
are varied. The averages have also been used to decide
a critical value of the scaled transition parameter signi-
fying the extent of symmetry crossover [43]. This kind
of statistics is particularly useful in real complex systems
where one is unaware of the full analytical solution of
crossover from one symmetry class to another. In the
present case, it is possible to obtain exact analytical re-
sults for the averages 〈r〉 and 〈r̃〉 using the corresponding
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FIG. 1: Probability density functions (a) p(r) and (b)
p̃(r̃), as in Eqs. (16), and (20) for different α values.

The corresponding average values 〈r〉 and 〈r̃〉 are also
mentioned in each case.

PDFs. We have

〈r〉 =

∞∫
0

r p(r)dr

=
9
√

3α

2π(3 + α2)
− 3

4
+

5 + α2

π(1− α2)
arctan

(
3− α2

2
√

3α

)
− 7 + 5α2

2π(1− α2)
arctan

(
α√
3

)
. (21)

〈r̃〉 =

∫ ∞
0

r̃ p̃(r̃)dr̃ = 2

1∫
0

r̃ p(r̃)dr̃

=
4
(
2 + α2

)
π (1− α2)

arctan

(√
3(1 + α2)

2α

)

− 4
√

3

π (1− α2)
3/2

arctan

((
1− α2

)3/2
α(3 + α2)

)

− 17 + 7α2

π (1− α2)
arctan

(
α√
3

)
− 1

π
arctan

(√
3α
)
. (22)

Similar to the distributions, these quantities can also be
written as functions of the equivalent symmetry-breaking
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FIG. 2: Comparison between analytical results (solid lines) as in Eqs. (16), and (20) and numerical simulations
(symbols) in the 3× 3 case for p(r): (a) α = 0.2, (b) α = 0.7, and for p̃(r̃): (c) α = 0.3, (d) α = 0.6.

parameter λ. For α→ 0+ and α→ 1, the above expres-
sions yield the average values pertaining to GOE and
GUE [72], respectively,

〈r〉GOE =
7

4
= 1.75,

〈r〉GUE =
27
√

3

8π
− 1

2
≈ 1.3607;

〈r̃〉GOE = 4− 2
√

3 ≈ 0.5359,

〈r̃〉GUE =
2
√

3

π
− 1

2
≈ 0.6027. (23)

In Fig. 1, we plot the results given in Eqs. (16) and (20)
for probability density functions p(r) and p̃(r̃) using four
α values. The α = 0.01 and 0.99 curves are close to
GOE and GUE results, respectively, while the α = 0.22
and 0.40 curves depict intermediate situations. In Fig. 2,
we consider α = 0.2, 0.7 for p(r) and α = 0.3, 0.6 for p̃(r̃)
and compare analytical-results-based plots (solid curves)
with numerical results (overlaid symbols) obtained from
the Monte Carlo simulation involving 50000 matrices of
dimension 3 × 3 following the matrix model of Eq. (1).
We find excellent matches as expected.

IV. SCALING OF λ FOR LARGE N GAUSSIAN
ENSEMBLE

For the invariant cases, i.e., λ = 0 (α = 0) and
λ → ∞ (α → 1), it has been shown that the Wigner-
surmise-like results, given by Eqs. (17) and (19), for
the ratio distribution work even for large matrix dimen-
sion N [72, 73]. However, for the intermediate cases,
we must scale the crossover parameter α or λ appro-
priately so that Eq. (16) can be used for large N also.
As a matter of fact, it is known that the transition rate
depends on the local density of states or the level den-
sity [32, 33, 36, 37, 40, 41, 64, 81]. For largeN , the matrix
model in Eq. (1) leads to the the Wigner’s semicircular
level density,

R1(x) =

{
1
π

√
2N − x2, −

√
2N ≤ x ≤

√
2N,

0, otherwise,
(24)

for the choice v2 = 1/[2(1 +α2)] = (1 + λ2)/[2(1 + 2λ2)].
It should be noted that the mean level spacing is given
by 1/R1(x). The effective crossover parameter for small
α is αeff ∼ αR1(x) and equivalently, for small λ, we have
λeff ∼ λR1(x). This implies that the transition rate is
faster in the center of the semicircle. Therefore, although
the ratio of consecutive spacings is independent of the lo-
cal density of states, for the crossover ensemble, the fluc-
tuation behavior of the part of spectrum near the center
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FIG. 3: Behavior of the ratio distribution p(r) computed using the middle part (red stairs), edges (blue stairs), and
the entire spectrum (green stairs) for the GOE-GUE crossover: (a) λ = 0, (b) λ = 0.02, (c) λ = 0.04, (d) λ = 0.05,
(e) λ = 0.06, (f) λ = 0.08. The extremes corresponding to the GOE and GUE cases are depicted using dotted gray

and dashed orange curves, respectively.
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FIG. 4: Scaling behavior of the effective transition
parameter λeff in the GOE-GUE crossover. The dashed
gray line is a fit based on the data points occurring in

the linear regime.

is closer to GUE than that near the edges. We verify this
by considering 1000 matrices of size N = 1000 using the
matrix model (3) and numerically obtain the ratio dis-
tribution independently using (i) 100 eigenvalues in the
center of the spectrum, (ii) 100 eigenvalues comprising 50
and 50 from the left and right edges of the spectrum, and
(iii) the entire spectrum. These are displayed in Fig. 3
using histogram stairs of colors red, blue, and green, re-

spectively. The extremes corresponding to the GOE and
GUE cases based on Eqs. (17) and (19) are shown using
dotted gray and dashed orange curves, respectively. For
λ = 0, all histograms fall on the GOE curve, indicating
that everywhere in the spectrum, the fluctuations con-
form to the orthogonal symmetry. Similarly, for higher
values of λ, e.g., 0.08, the histograms more or less co-
incide with the GUE curve, implying that the crossover
is almost complete. However, for intermediate cases, the
red histogram (spectrum bulk) is closer to the GUE curve
than the blue histogram (spectrum edges). This effect
can be seen prominently in λ = 0.02 and 0.04 cases. We
also see that for these intermediate cases, the green his-
togram, which is based on the entire spectrum, is closer
to the red histogram. Therefore, the overall behavior is
dominated by the bulk and, as an approximation, we may
use the scaling λeff ∼ λR1(0) ∼

√
Nλ and consider the

entire spectrum to examine the local fluctuations. To jus-
tify this proposition, based on the matrix model (3), we
numerically obtain ratio distributions for matrix dimen-
sions N = 100, 500, and 1000 along with several values
of λ. These empirical distributions are then fitted with
Eq. (16) to obtain the effective crossover parameter λeff.

The plots of λeff vs
√
Nλ, as shown in Fig. 4, do ex-

hibit linear behavior for small λ values and fall nearly
on each other, thereby supporting our deduction above.
This scaling was also found to hold in the NNSD expres-
sion for the Poisson-GOE crossover studied in Ref. [34].
Scaling behavior has also been investigated in Ref. [43]
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in the context of ratio distribution.
As mentioned above, the variation of the averages 〈r〉

and 〈r̃〉 as a function of the scaled parameter has been
used in earlier works [42, 43, 53–60, 71, 75] to visualize
the crossover in spectral fluctuations. It has also been
used to determine a threshold value of the scaled transi-
tion parameter above which the crossover can be deemed
very nearly complete. However, since one should be care-
ful in drawing conclusions based solely on the behavior
of the average, we examine the Kullback-Leibler diver-
gence (KLD) [82] to ensure that the crossover behavior
of the average is consistent with that of the full proba-
bility density function. Kullback-Leibler divergence, also
called the relative entropy, serves as a measure for com-
paring two distributions. We use the symmetrized KLD
between two PDFs, p1(x) and p2(x), which is defined as

DKL(p1||p2) =

∫
p1(x) ln

(
p1(x)

p2(x)

)
dx

+

∫
p2(x) ln

(
p2(x)

p1(x)

)
dx, (25)

where the integrals are over the domain on which
the distributions are defined. We examine be-
low how the empirical PDFs and the correspond-
ing averages display crossover from GOE to GUE
as the scaled transition parameter

√
Nλ is varied.

We consider both DGOE ≡ DKL(pemp||pGOE) and
DGUE ≡ DKL(pemp||pGUE), where pemp is the empir-
ical PDF obtained using numerical simulation. Sim-

ilarly, we consider D̃GOE ≡ DKL(p̃emp||p̃GOE) and

D̃GUE ≡ DKL(p̃emp||p̃GUE). It can be calculated
that DKL(pGOE||pGUE) = DKL(p̃GOE||p̃GUE) ≈ 0.1137.

Therefore, for the GOE-GUE crossover, DGOE and D̃GOE

should move away from zero to this value, while DGUE

and D̃GUE should approach zero starting close to this
value. In practice, since the pemp is obtained numeri-
cally, we use the discretized version of Eq. (25), i.e.,

DKL(p1||p2) ≈
∑
i

p1(xi) ln

(
p1(xi)

p2(xi)

)
∆x

+
∑
i

p2(xi) ln

(
p2(xi)

p1(xi)

)
∆x. (26)

Moreover, for r, we consider the domain [0, 30] with bin
width ∆r = 0.06 for extracting the numerical PDFs as
the full domain [0,∞) cannot be sampled. It should
be noted that for r ∈ [0, 30], theoretically we obtain
DKL(pGOE||pGUE) ≈ 0.1091 < 0.1137. For r̃, we sam-
ple the full domain [0, 1] with ∆r̃ = 0.002. Further, we
add very small numerical values to both p1(x) and p2(x)
in Eq. (26) to avoid incidences such as division by 0 or
logarithm of 0. Finally, for each value of N , the number
of matrices used for simulation was kept so as to ensure
about 150000 data points for obtaining the PDFs and
averages. Although the calculated values for KLD do
vary based on these small numerical details, the overall
behavior remains unaffected.

In Fig. 5, we show the crossover curves for the averages
and the KLDs with respect to the scaled crossover param-
eter for N = 100, 500, and 1000. It can be seen that aver-
ages do behave in harmony with the KLDs and that the
GOE-GUE crossover is almost complete for

√
Nλ ≈ 1.5.

We also note from Fig. 4 that up to roughly this value,
there is a linear relationship between λeff and

√
Nλ.

V. APPLICATION TO LAGUERRE ENSEMBLE

In this section, we discuss the orthogonal to unitary
crossover in the Laguerre ensemble, which is also re-
ferred to as the Wishart or Wishart-Laguerre ensemble.
The Laguerre ensemble appears naturally in several con-
texts, for example, in mathematical statistics, classical
and quantum information theory [11–19], quantum chro-
modynamics [3–7], econophysics [8–10], etc. We study
the Laguerre ensemble below in connection with the uni-
versality of the ratio distribution obtained in the pre-
ceding section since it constitutes a very important non-
Gaussian random matrix ensemble. We should also point
out that very recently, in Ref. [77], the ratio distribution
was used to investigate the spectra of empirical correla-
tion matrices for which the Laguerre ensemble serves as
a natural random matrix model.

Consider (N×M)-dimensional real and complex Gini-
bre matrices A1 and A2, respectively, from the distribu-
tions

Pβ(Aβ) ∝ exp

(
−β

2
trAβA

†
β

)
; β = 1, 2, (27)

where † represents conjugate transpose and may be re-
placed by only transpose (T ) for β = 1. Considering
N ≤ M , the Laguerre orthogonal ensemble (LOE) and
Laguerre unitary ensemble (LUE) comprise the Wishart

matrices A1A
T
1 and A2A

†
2, respectively. The distribution

of the ratio of two consecutive level spacings is known
from Ref. [73] for a 3×3 matrix model of Laguerre ensem-
ble in the invariant cases with Laguerre weight e−βx/2.
These correspond to the Wishart matrices A1A

T
1 with

N = 3,M = 4, and A2A
†
2 with N = M = 3, and read

pLOE(r) = 32

(
r2 + r

)
(r + 2)5

, (28)

pLUE(r) = 420

(
r2 + r

)2
(r + 2)8

. (29)

In the limits r → 0 and r → ∞, the asymptotic be-
haviors of these functions are rβ and r−β−2, respectively,
which coincide with the corresponding asymptotic behav-
iors of the GOE and GUE results in Eqs. (17) and (19).
However, the overall shapes of these distributions based
on the 3 × 3 cases of Laguerre and Gaussian ensembles
are very distinct. Furthermore, it may be shown that
the joint density of consecutive spacings for the 3 × 3
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FIG. 5: (a),(c) Averages and (b),(d) KL divergences for r and r̃, respectively, in GOE-GUE crossover plotted

against the effective transition parameter
√
Nλ. The numerical simulations have been performed using the matrix

model in Eq. (3) with matrix dimensions 100, 500, and 1000.

model of the Laguerre case does not have the symme-
try as exhibited by the corresponding Gaussian case, as
in Eq. (11). Therefore, the probability density p̃(r̃) in
this case does not reduce to 2p(r̃)Θ(1− r̃) and has to be
calculated using (20).

For large N , we find that the observed ratio distribu-
tions for the Laguerre ensemble are closely approximated
by the Gaussian ensemble results instead of the above two
equations. The same holds for the restricted distribution
p̃(r̃). This is demonstrated in Fig. 6 where we plot the
ratio distributions obtained from numerical simulation
based on the above-described Wishart-Laguerre matrix
model. For comparison, we also plot the analytical ex-
pressions from Eqs. (17), (19), (28), and (29). We can
see that for N = 500, the empirical ratio distributions for
the Laguerre ensemble are well described by the Gaussian
3× 3 results, thereby confirming their universality. This
is similar to the Wigner surmise based on 2× 2 matrices
from the Gaussian ensemble. The underlying reason is
that in the bulk of the spectrum of a large class of random
matrix ensembles, the correlation functions are governed
by the sine kernel [22, 24, 83–86]. The exact distribution

of the nearest neighbor can then be expressed in terms
of Fredholm eigenvalues of this kernel, which in turn is
very well approximated by the Wigner surmise [22]. A
similar explanation holds behind the universality of the
ratio distribution, as argued in Ref. [72].

We now analyze the LOE-LUE crossover. The matrix
model that is implemented is

W = AA†, (30)

where

A =
1√

1 + λ2
A1 +

λ√
1 + λ2

A2. (31)

The limits λ → 0 and λ → ∞ produce LOE and LUE,
respectively. We focus on the large N = M case, for
which the level density for the Wishart random matrix
W is given by

R1(x) =

{
1
π

√
2N−x
x , 0 ≤ x ≤ 2N,

0, otherwise.
(32)
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FIG. 7: Scaling behavior of the effective transition
parameter λeff in the LOE-LUE crossover. The dashed
gray line is a fit based on the points occurring in the

linear regime.

For the above LOE to LUE crossover ensemble, the
effective transition parameter is known to be λeff ∼
λ
√
xR1(x) ∼ λ

√
2N − x [40, 41, 87], which depends on

the location in the spectrum. However, away from the
right edge, we have λeff ∼

√
Nλ and we expect this scal-

ing to work for the entire spectrum collectively, similar

to the Gaussian case. We verify this with the aid of ma-
trices generated using Eq. (30) for N = 500, 1000, 1500
and varying λ values. The empirical ratio distributions
are fitted with the formula in Eq. (16) to obtain the ef-

fective λeff and then plotted against
√
Nλ in Fig. 7. The

data points almost fall on a common line for small values
of λ, which indicates the validity of the above-mentioned
scaling for LOE-LUE crossover.

We also investigate the behavior of the averages and
KL divergences in the present case similar to the Gaus-
sian ensemble. These are shown in Fig. 8 and we find
that by the value

√
Nλ ≈ 1.5, the crossover is nearly

achieved. It should be noted that λeff and
√
Nλ behave

linearly with respect to each other up to this value, as
observed in Fig. 7.

VI. SYMMETRY CROSSOVER IN QUANTUM
KICKED ROTOR

The quantum kicked rotor (QKR) was introduced to
serve as a simple yet significant model to aid investiga-
tions into quantum chaos [80]. Since then, QKR and
its variants have been extensively used in several con-
texts [61, 80, 88–96]. The Hamiltonian for the kicked
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FIG. 8: (a),(c) Averages and (b),(d) KL divergences for r and r̃, respectively, in LOE-LUE crossover plotted against
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FIG. 9: Dependence of the effective crossover parameter
λeff on the time-reversal violation parameter γ of QKR
system.The dashed gray line is a fit based on the points

occurring in the linear regime.

rotor system is given by

H =
(p+ γ)2

2
+ α cos(θ + θ0)

∞∑
n=−∞

δ(t− n). (33)

It describes a particle restricted to a ring and receiving
position-dependent periodic kicks. In the above equa-
tion, p is the momentum operator, θ is the position op-
erator, and α is the stochasticity parameter. The role of
the parameters γ is to imitate the effect of time-reversal
breaking, while θ0 facilitates the parity violation. The pe-
riodic kicks at integer time instants (t = n) are provided
by the Dirac comb. The associated quantum dynamics
may be described by the discrete time evolution operator
(Floquet operator) U by imposing the torus boundary
condition on the phase space. Considering the finite-
dimensional model, we obtain the evolution operator in
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FIG. 10: (a),(c) Averages and (b),(d) KL divergences for r and r̃, respectively, in the quantum kicked rotor system
plotted against the effective transition parameter N3/2γ for Floquet operator dimensions 51, 101, and 151.

position basis as [88, 89]

Umn =
1

N
exp

[
−iα cos

(
2πm

N
+ θ0

)]
(34)

×
N ′∑

l=−N ′

exp

[
−i
(
l2

2
− γl +

2πl(m− n)

N

)]
.

In the above summation, N ′ is (N − 1)/2 with N odd
and m,n take the values −N ′,−N ′ + 1, ..., N ′. A high
degree of chaos is necessary for the spectral fluctuation
properties of the QKR to correspond to classical RMT
ensembles [61, 88, 89]. This can be achieved by assign-
ing the parameter α a very high value. For studying the
violation of time-reversal invariance, we set θ0 = π/(2N)
(fully broken parity symmetry) and then vary γ gradu-
ally. This leads the eigenangle (or eigenphase) spectrum
of U to exhibit a transition from orthogonal to unitary
class, which has been shown to be described very well
using the crossover from circular orthogonal ensemble
(COE) to circular unitary ensemble (CUE) [35, 90, 91].
In the following, we examine the crossover in the distri-
bution of the ratio of two consecutive eigenangles and
dependence of the transition parameter λeff on the time-

reversal violation parameter γ.

For our analysis, we consider N = 51, 101, 151 and
generate the corresponding ensembles of U matrices by
varying the stochasticity parameter α in the neighbor-
hood of 20000. These matrices are diagonalized to ob-
tain the eigenvalues which are of the form of eiφj , with
φj being the eigenangles. The eigenangles are uniformly
distributed in [−π, π) and therefore the level density is
R1(φ) = N/(2π). It is also known based on a semiclas-
sical analysis that the effective transition parameter λeff

for this system is proportional to γN3/2 [90, 91]. This is
verified in Fig. 9 where we plot λeff versus N3/2γ. The
λeff values have been obtained by fitting the numerically
obtained ratio distributions with Eq. (16). We observe
linear behavior for small values of γ, which confirms the
above relationship between λeff and γ.

Finally, we examine the transition behavior of the av-
erages and KL divergences with the scaled crossover pa-
rameter. The corresponding results are shown in Fig. 10
and we find that the crossover is nearly complete for
N3/2γ ≈ 7. Moreover, as already seen in Fig. 9, up
to this value the scaled crossover parameter N3/2 varies
linearly with λeff.
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VII. SUMMARY AND OUTLOOK

For analyzing the spectral fluctuations of complex
physical systems, distributions of nearest-neighbor spac-
ing and their ratio are two widely used measures. The
latter is convenient to apply since it circumvents the
procedure of unfolding the spectrum. For the invari-
ant classes, the ratio distributions were recently de-
rived. These results are analogous to the Wigner sur-
mise for the nearest-neighbor spacing distributions. For
the crossover ensembles, such as one describing a grad-
ual time-reversal breaking, similar results are known for
the nearest-neighbor spacing distribution. However, such
results corresponding to the ratio of spacings have been
missing. In this work, we aimed to fill this gap by deriving
the Wigner-surmise-like result for ratio distribution and
the corresponding average in the orthogonal to unitary
symmetry crossover. These results were verified using
Monte Carlo simulations. We also examined the proper
scaling of the transition parameter which is needed to

handle large size spectra by studying the Gaussian and
Laguerre crossover ensembles. Additionally, we investi-
gated the effect of time-reversal symmetry breaking in
the spectrum of quantum kicked rotor by examining the
behavior of the ratio distribution of eigenangles and the
associated scaling of the transition parameter.

Aside from the orthogonal-unitary crossover ensemble,
there are several random matrix models which are useful
in exploring other kinds of spectral transitions. Although
phenomenological formulas for the ratio distribution are
available for some of these, it would be of interest to see
if exact analytical results can be obtained.
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