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Abstract

We have developed a novel structure-based approach to search for Complimentary Ligands Based

on Receptor Information (CoLiBRI). CoLiBRI is based on the representation of both receptor binding

sites and their respective ligands in a space of universal chemical descriptors. The binding site atoms

involved in the interaction with ligands are identified by the means of computational geometry

technique known as Delaunay tessellation as applied to x-ray characterized ligand-receptor

complexes. TAE/RECON1 multiple chemical descriptors are calculated independently for each

ligand as well as for its active site atoms. The representation of both ligands and active sites using

chemical descriptors allows the application of well-known chemometric techniques in order to

correlate chemical similarities between active sites and their respective ligands. From these

calculations, we have established a protocol to map patterns of nearest neighbor active site vectors

in a multidimensional TAE/RECON space onto those of their complementary ligands, and vice versa.

This protocol affords the prediction of a virtual complementary ligand vector in the ligand chemical

space from the position of a known active site vector. This prediction is followed by chemical

similarity calculations between this virtual ligand vector and those calculated for molecules in a

chemical database to identify real compounds most similar to the virtual ligand. Consequently, the

knowledge of the receptor active site structure affords straightforward and efficient identification of

its complementary ligands in large databases of chemical compounds using rapid chemical similarity

searches. Conversely, starting from the ligand chemical structure, one may identify possible

complementary receptor cavities as well. We have applied the CoLiBRI approach to a dataset of 800

x-ray characterized ligand receptor complexes in the PDBbind database2. Using a k nearest neighbor

(kNN) pattern recognition approach and variable selection, we have shown that knowledge of the

active site structure affords identification of its complimentary ligand among the top 1% of a large

chemical database in over 90% of all test active sites when a binding site of the same protein family

was present in the training set. In the case where test receptors are highly dissimilar and not present

among the receptor families in the training set, the prediction accuracy is decreased; however

CoLiBRI was still able to quickly eliminate 75% of the chemical database as improbable ligands.

The CoLiBRI approach provides an efficient prescreening tool for large chemical databases prior to

traditional, yet much more computationally intensive, three-dimensional docking approaches.
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INTRODUCTION

Computer Aided Drug Design (CADD) is frequently identified with two concurrent

approaches: structure-based and ligand-based modeling. Structure-based methodologies

employ either an experimentally (X-ray or NMR) determined or predicted three-dimensional

structure of a target protein. This structure is used to scan available chemical databases or

virtual combinatorial libraries for the identification of potential lead compounds, which are

characterized by stereochemical complementarity to the active site and have a high predicted

binding constant. The binding constant estimate requires a fast and accurate scoring function.

Several successful studies have been reported in the literature using popular docking methods

such as DOCK3–6 and AutoDock7;8. Typically, these approaches are capable of identifying a

small number of compounds that can fit comfortably into the active site. Despite these success

stories, accurate prediction of binding constants still represents a formidable task and is a focus

of many ongoing investigations9.

Theoretically, the most accurate estimate of the free energy of binding can be obtained using

energy based methods. These methods typically employ force fields originally developed for

the refinement of experimentally-determined molecular structures or for molecular dynamics

simulations. Examples include free energy perturbation (FEP)10;11 or Linear Interaction

Energy (LIE) approaches12–14, which require significant computational resources. Application

of continuum solvation models, instead of explicit solvent, can significantly reduce the cost of

these calculations15. However, the computational cost of such methods is still too demanding

to afford calculations in a high-throughput fashion, and therefore these calculations can only

be practical if applied to either relatively simple systems or small sets of compounds with

similar binding modes.

Ligand-based approaches rely on a series of ligands with known binding affinities to build

correlations between ligand chemical structure and target properties of interest, such as binding

constants or specific biological activities [see 16 for a recent review]. The ligand structures are

typically represented by multiple chemical descriptors17, and statistical data modeling

techniques are used to establish quantitative correlations between descriptors and binding

affinities. Chemical descriptors and various chemical similarity measures (e.g., Euclidean

distances between compounds in multidimensional descriptor space) are at the core of

chemometric approaches to the analysis of molecular databases18. Such approaches afford

rapid chemical similarity calculations and are widely used in database mining or rational library

design to discover molecules similar to available compounds that are likely to have similar

biological activity19. Chemical similarity searches are much more computationally efficient

than structure based virtual screening. However, they are more likely to identify false positives

that are too bulky or simply not stereochemically complementary to the actual binding site

because the binding site information is not typically used as part of the query. Furthermore,

chemometric approaches typically identify compounds that are highly similar to the training

set compounds, making it difficult to identify novel ligands of a different structural class.

In this paper, we discuss a novel computational drug discovery strategy that combines the

strengths of both structure-based and ligand-based approaches while attempting to surpass

their individual shortcomings. To this end, we sought a representation that would allow us to

characterize both receptor active sites and their corresponding ligands in the same universal,

multidimensional, chemical descriptor space. We reasoned that mapping of both binding

pockets and corresponding ligands onto the same multidimensional chemistry space would

preserve the complementarity relationships between binding sites and their respective ligands.

Thus, we expected that similar binding sites (where similarity is described quantitatively using

one of the conventional metrics, such as Manhattan distance in multidimensional descriptor
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space) would correspond to similar ligands. This would imply that the relative location of a

novel binding site in this chemistry space with respect to other binding sites could be used to

predict the location of the ligand(s) complementary to this site in the ligand chemistry space.

This virtual ligand(s) could then be used as a query in chemical similarity searches to identify

putative ligands of the same receptor in available chemical databases.

To implement this strategy, we have used molecular descriptors based on Transferable Atom

Equivalents (TAE) developed by Breneman and co-workers1;20;21. The major advantage of

these descriptors over other descriptor types (discussed briefly in the next section) is that they

are derived from the electronic and shape properties of isolated atoms or chemical groups. The

additivity principle is used to calculate molecular descriptors by summing up the individual

descriptor type values for all atoms in the molecule, using the RECON method. In the case of

ligands, this leads to the generation of molecular descriptors, similar to other approaches. The

same additivity principle can also be used to derive pseudo-molecular descriptors for any group

of atoms, e.g., active site fragments, making the TAE descriptors exceptionally well suited for

our approach.

In this paper, we report on the application of this chemometric structure based drug discovery

strategy, termed CoLiBRI (identification of Complimentary Ligand Based on Receptor

Information), to a training set of 800 diverse ligand-receptor complexes comprising the

PDBBind dataset2. We show that the knowledge of the receptor active site affords the highly

computationally efficient and accurate identification of its respective ligand(s) within a large

compound database. The success of this pilot study indicates that the CoLiBRI method can

become an efficient alternative to traditional structure based drug discovery approaches or used

for rapid pre-screening and filtering most promising compounds prior to engaging more

computationally intensive approaches.

COMPUTATIONAL METHODOLOGIES

Dataset

Coordinates for 800 chemically and functionally diverse ligand-receptor complexes were

obtained from the PDBbind Database2 (PDB entry codes for these proteins are listed in the

supplementary information). SYBYL v6.822 was used to pre-process the raw macromolecular

structures, including elimination of the crystallographic water molecules, removal of salts, and

addition of hydrogen atoms.

Chemical descriptors

Several important considerations went into finding the most capable descriptors in the context

of our studies. There are two major classes of traditional chemical descriptors that are derived

from either two-dimensional chemical graphs (e.g., molecular connectivity indices, charge

descriptors, and others 23–29), or from three-dimensional molecular models using relative

atomic positions in addition to atom properties. A major benefit of 2D compared to 3D

chemometric methods is that the former neither requires a conformational search nor structural

alignment of molecules. Accordingly, 2D methods are more easily automated and adapted to

the task of database searching, or virtual screening30. In fact, 2D descriptors have been shown

to be superior to 3D descriptors in database mining31. However, most 2D chemical descriptors

are typically calculated from only complete molecular graphs. Consequently, they can not be

used to characterize active sites that are composed of fragments or individual atoms of amino

acid residues that are involved in specific contacts with ligands. A notable exception is the

TAE descriptors, as discussed in the Introduction.

The TAE/RECON method that was developed by Breneman and co-workers is based on the

Bader's quantum theory of atoms in molecules (AIM). The TAE method of molecular electron
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density reconstruction utilizes a library of integrated atomic “basins”, as defined by the AIM

theory, to rapidly reconstruct representations of molecular electron density distributions and

van der Waals electronic surface properties. RECON is capable of rapidly generating 6-31+G*

level electron densities and electronic properties of large molecules, proteins or molecular

databases, using TAE reconstruction. A library of atomic charge density fragments has been

assembled in a form that allows for the rapid retrieval of the fragments, followed by rapid

molecular assembly. Additional details of the method are described elsewhere 1;20;21.

Calculation of TAE/RECON descriptors for ligands and their binding sites

The calculation of TAE/RECON descriptors for the ligands (extracted from their protein

complexes) was straightforward. However, similar calculations for the binding sites first

required the identification of individual atoms or amino acid fragments involved in specific

ligand-receptor interactions. To this end, we have utilized a computational geometry technique

known as Delaunay tessellation to isolate the protein atoms that make contacts with bound

ligands. Applied to a collection of randomly distributed points, Delaunay tessellation partitions

the space occupied by these points into and aggregate of space filling, irregular triangles (in

2D) or tetrahedra (in 3D) with the original points as vertices. Thus, this approach effectively

identifies all narest neighbor triplets (or quadruplets) of vertices. An example of Delaunay

tessellation in two dimensions is illustrated in Figure 1.

Protein-ligand complexes are represented by the coordinates of their heavy atoms (i.e., in a

hydrogen-depleted form). Delaunay tessellation of this representation uniquely defines all sets

of nearest neighbor atom quadruplets, including three types of interfacial quadruplets: three

receptor atoms and one ligand atom; two receptor and two ligand atoms; and one receptor and

three ligand atoms. Thus, Delaunay tessellation affords an easy way of detecting all receptor

atoms that are nearest neighbors of the ligand atoms, which are specified as the active site. The

RECON/TAE method is then used as described above to generate a set of descriptors for pseudo

molecule constructed from the active site atoms. An example of tessellated ligand-receptor

complex is shown in Figure 2.

The descriptors generated with TAE/RECON were range scaled prior to distance calculations

(eq. 1).

(1)

We chose to scale descriptors so that their absolute ranges after scaling are the same. Had we

used the real values, the value of the absolute distance between receptors or ligands would be

biased by the descriptors that cover the largest ranges.

CoLiBRI algorithm

Using the TAE/RECON method, multiple descriptors were generated for both the receptor

binding sites and their corresponding ligands so that each chemical entity is represented as a

vector in a multidimensional TAE/RECON chemical space. Each dimension of this space

corresponds to specific structural features of the ligands and active sites, but not every feature

may be important for determining ligand-receptor complementarity. In order to select the

subset of descriptors that best reflect the complementarity between receptors and their

respective ligands, we have employed a Leave-One-Out (LOO) approach with variable

selection. For each predefined number of variables, (nVar) we used stochastic sampling of the

descriptors space and simulated annealing to optimize: (i) a selection of variables from the

original pool of all molecular descriptors that are used to calculate relative similarities between
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receptors and their respective ligands (i.e., Euclidean distances in nVar-dimensional descriptor

space), and (ii) the number of nearest neighbors (k) for each binding site in the receptor

chemistry space used to estimate the position of the virtual complementary ligand in the ligand

chemistry space. The overall flow chart of the CoLiBRI method is shown in Figure 3 and

involves the following steps.

(1) Select a subset of nVar descriptors randomly (nVar is a number between 1 and the total

number of available descriptors). nVar is usually set to different values in several different

runs. (2) Perform internal evaluation of this selection by a standard LOO cross-validation

procedure and calculate the predictive mean rank (PMR) for the model as described below. (3)

Repeat the procedure of generating trial correlations and calculate the corresponding PMR

values (steps 1 and 2). The goal is to find the best topological requirements that minimize the

PMR value of the CoLiBRI model. This optimization process is driven by a generalized

simulated annealing (see below) using PMR as the objective function.

Cross-validation and the kNN principle applied to complementary prediction

The standard leave-one-out cross-validation procedure has been implemented as follows.

1. Choose a receptor in the training set and select its k nearest neighbors in the TAE/

RECON binding site descriptor space. Identify the ligands of the kNN receptors in

the ligand space and use their coordinates to predict the coordinates of the chosen

receptor’s virtual ligand. The coordinates of the virtual ligand are calculated from

equation 2 for k≥2 (different values of k are explored to find the best model as

described below).

(2)

where XRPredi is the chosen receptor i, Xppi is the predicted ligand vector for the

receptor i, XRk is the k nearest receptor, and XL←Rk is the ligand of the k nearest

neighbor receptor. For the case where KBest = 1, then Xppj is simply the position of

the nearest receptor’s ligand in the ligand space, XL←R1.

2. Rank known ligands based on their chemical similarity to the virtual ligand. The

similarities are evaluated as Euclidean distances (eq. 3) using only the subset of

descriptors that correspond to the current nVar selection.

(3)

3. Repeat steps 1 and 2 until every receptor in the training set has been eliminated once,

and the receptor’s virtual ligand and the rank order of all compounds are predicted.

4. Calculate the PMR for the model using eq. 4, where NLR is the number of ligand-

receptor complexes in the training set, Nvar is the number of descriptors used to build

the correlation, Xjd and Xid are the dth selected descriptor for ligands j and i, and

Xppi d is the dth descriptor of the predicted ligand point.
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(4)

5. Repeat steps 1 through 4 for k = 3, 4, 5, etc. Formally, the upper limit of k is the total

number of ligand-receptor pairs in the data set minus one; however, the best value

has been found empirically to lie between two and five. The k value that leads to the

lowest PMR value is chosen as optimal.

Simulated annealing based optimization for variable selection

The concept of simulated annealing (SA) is to simulate a physical process called annealing, in

which a system is heated to a high temperature and then is gradually lowered to a preset

temperature value. During this process, the system samples possible configurations according

to the Boltzmann distribution. At equilibrium, low energy states will be mostly populated. The

first implementation of the SA procedure was described by32 followed by the development of

a more generalized mathematical optimization protocol. The implementation of SA in our

studies is as follows. (1) Generate a trial solution to the underlying optimization problem. For

example, a CoLiBRI model is built based on a random selection of nVar descriptors. (2)

Calculate the value of the fitness function, which characterizes the quality of the trial solution

to the underlying problem, i.e., the inverse of the PMR value for a model built using only the

selected nVar descriptors (PMRCurrent). (3) Perturb the trial solution to obtain a new solution;

i.e., change a fraction of the currently used descriptors to other randomly selected descriptors

and build a new CoLiBRI model for the new trial set of nVar descriptors. (4) Calculate the new

fitness function value for the trial solution as the inverse of the new PMR value (PMRNew).

(5) Apply the optimization criteria: if PMRCurrent < PMRNew the new solution is accepted and

used to replace the current trial solution; if PMRCurrent > PMRNew, the new solution is accepted

only if the following Metropolis criterion is satisfied (eq. 5).

(5)

where rnd is a random number uniformly distributed between 0 and 1 and T is a parameter

analogous to the temperature in Boltzmann distribution law. (6) Steps 3–5 are repeated until

the termination condition is satisfied. The temperature lowering scheme and the termination

condition used in this work have been adapted from33 as implemented by34. Thus, every time

a new solution is accepted or when a preset number of successive trial solutions (100 steps) do

not lead to a better result, the temperature is lowered by a preset value, usually by 10% (the

default initial temperature is 100). The calculations are terminated when either the current

temperature of the simulations is lowered to the value of T=10−6 or the ratio between the current

temperature and the temperature corresponding to the best solution found is equal to 10−5. In

summary, the CoLiBRI generates both an optimum k value and an optimal subset of nVar

descriptors, which together produce a model with the best internally predictive power, in terms

of PMR. This model can be used to identify correlations between a receptor active site and its

ligand(s) such that a predicted point can be found for any receptor; and vice-versa, a predicted

receptor point can be found for any ligand.
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Model validation

Training and Test Set Selection—The dataset of 800 ligand-receptor complexes

characterized by TAE/RECON descriptors was divided into the training (data used for model

building) and test (data used for model validation) sets using the sphere exclusion method

implemented in this laboratory35. Only binding site descriptors were used for these

calculations. The purpose for this division was to generate a subset of ligands that did not bind

any of the receptors in the training set. For the prediction of test set receptor ligands, the entire

database of ligands was used. For additional validation, the World Drug Index (WDI) database

was added to the list of available test set ligands and CoLiBRI models attempted to identify

known ligands from the entire database.

Data Shuffling—To ensure that the models used to predict a test set were not based on chance

correlations, the training set ligand-receptor associations were randomly shuffled. This data

was then used to build CoLiBRI models, which were used for the test set prediction. If no

significant model could be built for this randomized dataset, it would suggest that the models

built using the correct data accurately ligand-receptor complementarity in high-dimensional

descriptor space.

RESULTS

Development and validation of training set models

A diverse training set of 670 receptor binding pockets was selected using a Sphere Exclusion

Algorithm36, as described above and used by CoLiBRI to build models with the lowest PMR

(Eq. 4). The remaining 130 receptors were used as a test set to evaluate the ability of the

optimized model(s) to identify the correct ligand of each test receptor out of the original 800

ligands.

Previous studies from our group in the area of Quantitative Structure Activity Relationship

(QSAR) indicated that the most reliable predictions of the test set data are obtained by using

the consensus prediction approach37. In this approach, multiple variable selection models are

built for the training set and used for the prediction of the test set ligands concurrently. To

accomplish a consensus prediction, each model ranked all compounds in our ligand database

based on the distance of each ligand to a test receptor’s virtual complementary ligand. We then

re-ranked the ligands based on those that were most similar to the virtual ligand across multiple

models. These studies have shown that the inclusion of variable selection improved the mean

rank of the test set from 37 to 24 out of 800. Furthermore, by using 100 models for consensus

prediction, the mean rank of the test set was improved from 24 to 18.1 out of 800, as shown

in Figure 4. This increased the CPU time required to predict the test set by more than two orders

of magnitude. Despite the increased CPU time, the calculations were still completed within 15

minutes. Since variable selection and consensus modeling vastly improved test set prediction,

these methods were used in all subsequent model developments.

Application of CoLiBRI models to screening the WDI database

To simulate the use of CoLiBRI for screening large chemical databases, we added the 800

training set ligands to the WDI dataset38, which contains ca. 54,000 drugs and drug candidates.

Training set CoLiBRI models were used in a consensus manner to predict the correct ligands

for each of the 130 test receptors from of the entire combined database. The results illustrated

that even when searching a large compound database, CoLiBRI is, on average, able to rank

known ligands for a test receptor to within the top 310 ligands out of ca. 54,000, which translates

to the top 1% of all compounds, as shown in Figure 5. The entire screening calculation for 130

test receptors took roughly four hours on a 2.4 GHz Pentium 4 machine. Figure 5 illustrates

that most of the ligands were correctly identified within the top 12 ranked compounds; however
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there were two distant outliers that made the average rank much higher. These two outliers

(PDB codes 1BM7 and 1G4J) did not contain a receptor-ligand complex from the same family

as those in the training set, which could possibly explain the inaccuracy of the predictions. The

ligands extracted from 1BM7 and 1G4J, flufenamic acid and 4-(Aminosulfonyl)-N-[(2,3,4,5,6-

Pentafluorophenyl)methyl]-Benzamide, respectively, also do not appear to be very similar to

ligands found within the training dataset. This additional dissimilarity may have also played a

role in their poor prediction. As discussed in a later section, CoLiBRI appears to perform best

when a receptor of the same family as the test set receptor is present in the training set.

Otherwise, CoLiBRI is best used as a quick, rough filtering tool that can be used prior to the

application of alternative less computationally efficient but perhaps more robust screening

methodologies.

Identification of binding sites based on ligand information

As mentioned above, the CoLiBRI approach could be used to identify ligands based on the

binding site descriptors, as well as predict binding sites for the ligands. The latter application

uses the same formalism (Eq. 2–4), except that ligand coordinates are first mapped onto the

binding site chemistry space, and then the virtual binding site is used as a query in chemical

similarity calculations. We have tested CoLiBRI’s ability to identify the correct binding

pockets for the same series of 130 test ligands for all 800 pockets. On average, CoLiBRI was

able to successfully rank the correct binding pocket to be in the top 20 out of 800, or within

the top 2.5%, as shown in Figure 6. As one can see from the graph, most of the predictions

actually identified the correct binding pocket within the top 2 or 3 receptors. After careful

analysis of the outliers, we discovered that they primarily fell within two classes: either there

were multiple receptors of the same family in the dataset that a test ligand is known to bind

with, and the correct binding site was ranked almost randomly within that top ranked family,

or there were only one or no receptors of the same family in the training set.

Identification of ligands for novel receptor families

As the most rigorous test for CoLiBRI, we explored its ability to predict ligands for receptors

that did not have homologous receptor structures in the training set. To this end, we selected

a test set of 22 ligand-receptor complexes that consists of receptors from three receptor families:

7 complexes from the peptidase M10A family, 7 complexes from the SRC-Tyrosine kinase

family, and 8 complexes from the peptidase S1 family. We then used CoLiBRI to identify the

correct ligands from the WDI for each of the test receptors. The results shown in Figure 7

demonstrate that the accuracy of CoLiBRI under this difficult test has decreased significantly;

we were only capable of identifying the correct ligand within the top 25% of the database on

average, as opposed to the results reported when test receptors were from the same family

(Figure 5). This relative ineffectiveness of CoLiBRI under this test could still be acceptable

when one needs to quickly screen a large, multimillion-compound library (25% accuracy for

correct single hit identification is equivalent to the elimination of 75% of all compounds that

are unlikely to be hits). These observations imply that the three test families are significantly

different from the protein-ligand complexes in the training set so that the training set models

are inapplicable to these test set proteins. In future studies, we shall consider introducing the

model applicability domain for the CoLiBRI models, similar to our QSAR studies 35;39, to

serve as a warning that the predictions may be inaccurate due to high dissimilarities between

complexes known in the training set and test binding pockets or ligands.

CPU requirements of CoLiBRI for efficient screening of large databases

The time required for CoLiBRI to screen the WDI with 100 CoLiBRI models for a single

receptor took less than 2 minutes on a 2.4GHz Pentium 4 Desktop, as shown in Figure 8. These

results illustrate that CoLiBRI may be successfully used as an efficient database filtering tool
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prior to more thorough and computationally intensive docking studies. The reason for the

abrupt change in slope is due to a user-specified limit on the number of potential hits that are

presented as output. For this computational speed assessment test, a limit was set to 5000 ranked

ligands presented as output. Thus, CoLiBRI first ranks the first 5000 compounds (or a user-

defined number) in the database using all models and then sequentially updates this sorted list

as it searches the remainder of the compound database for additional viable hits.

Validation of CoLiBRI models through random shuffling

In order to validate that the models were based on an inherently true correlation between

properties of a receptor and its respective ligand, the ligands were shuffled such that for any

one receptor, a randomly assigned ligand was used in place of the true ligand for model

building. A test set of 130 receptors were then used to attempt the identification of the correct

binding pockets using the models built on randomly associated ligand-receptor complexes. The

PMRs for actual ligands (Figure 9) appear to be completely random suggesting that the models

built with real data are based on actual complementarity correlations and are not artifacts of

the model building process.

Discussion

The main objective of CoLiBRI is to build chemometric models that reflect complementarity

between a receptor’s active site and its ligand, such that by knowing either the binding site or

the ligand for a given receptor, a researcher could identify its complement from all other

possibilities in a virtual database. In contrast with QSAR approach, which requires a dataset

of known ligands for a particular receptor in order to build models and search for additional

ligands of that receptor, CoLiBRI only requires the structure of the binding pocket. On the

other hand, as compared with traditional 3D docking, CoLiBRI training set models are built

across the entire available collection of diverse ligand receptor complexes as opposed to using

a single receptor of interest for virtual screening. Consequently, CoLiBRI models use

information about all other receptors when making prediction of ligands that bind to a particular

receptor. In addition, CoLiBRI is significantly more computationally efficient that most 3D

docking approaches.

As discussed above (cf Fig. 6), the “inverse” CoLiBRI approach could be also used to identify

potential binding sites for a ligand. Binding to alternative sites is a frequent cause of side effects

of drugs. The ability to identify potential undesirable interactions before a drug is brought to

market is invaluable to the pharmaceutical industry. Foreknowledge of such interactions could

send an otherwise effective compounds back through the lead optimization process before

immense resources were lost in clinical trials. The structure of the ligand could be modified

such that unwanted interactions are removed, while still maintaining its target property, thus

leading to a highly useful drug.

To the best of our knowledge, the studies presented in this report are the first attempt to employ

chemoinformatics approaches to the analysis of ligand-receptor complementarity. They could

be extended in a number of ways. Thus, although this study was done using only TAE

descriptors, in principle the descriptors for the receptor binding pockets and ligands could be

of different types. This avenue worth further investigation: while TAE/RECON method

appears to be unique in its ability to generate pseudo-molecular descriptors for the collection

of active site atoms, a number of other descriptor types are specifically designed for ligands

and may better describe their features. Three dimensional descriptors may also be used for the

active site to preserve distance- and orientation-dependent interactions that may occur between

a receptor and its ligands. Another important concept that we plan to examine in the future is

the implementation of Support Vector Machines40 as an alternative to kNN. The current

approach uses SA variable selection to optimize complementarity. The PMR function could
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easily be made continuous and applicable to Support Vector Theory by replacing k with a

Gaussian weighting scheme and adding a continuous loss function. This could be done such

that all neighbors in the initial starting space would be assigned distance dependent weights,

where dissimilar neighbors would be given a weight of zero and closer neighbors would be

given a weight higher than zero. Ligands or receptor active sites would be penalized based on

their relative distance to their predicted point, which is calculated by orientations in the

complementary space. This would allow us to take advantage of the inherent accuracy and

generalization constraints of Support Vector Machines that may increase the predictive power

of the models. Finally, as briefly mentioned above, a great deal of effort will be placed on

defining adequate applicability domains for CoLiBRI models, which should prevent CoLiBRI

from making unreliable predictions and therefore improve its accuracy.

Conclusions

We have developed a novel, predictive approach termed CoLiBRI to the analysis of ligand-

receptor complementarity based on the representation of both ligands and their receptor active

sites in a universal chemistry space. Unlike traditional docking methodologies that base their

prediction of complimentary ligands using active site information alone, CoLiBRI predicts

virtual ligands of the receptor based on its relative position in multidimensional chemistry

space with respect to other known receptors. This representation affords straightforward and

efficient identification of complementary ligands to a receptor from large databases of chemical

compounds using rapid chemical similarity searches. Conversely, starting from the ligand

chemical structure, one may identify possible complementary receptor cavities as well. This

method is also distinct in that it penalizes the model for predicting an incorrect ligand for a

receptor binding pocket, rather than optimizing the models by trying to correlate ligand binding

to a single receptor. We have demonstrated that the knowledge of the active site structure

affords identification of its complimentary ligands among the top 1% of a chemical database

in 90% of cases, where a complex of the same receptor family was present in the training set.

In the case where test receptors are highly dissimilar and not present among the receptor

families in the training set, the prediction accuracy decreased significantly, however the method

was able to quickly eliminate 75% of the chemical database as improbable ligands. Together,

these results suggest that CoLiBRI can be used efficiently as a prescreening tool for traditional

docking studies in order to identify a relatively small subset of compounds that are likely to

contain actual hits.
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Figure 1.

Delaunay tessellations of a collection of random points in 2D.
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Figure 2.

Tessellation of ligand-receptor interface identifies all active site atoms that make contacts with

ligand atoms.
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Figure 3.

Flowchart of CoLiBRI Method
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Figure 4.

Predictive ability of CoLiBRI to identify ligands of 130 test binding pockets out of the original

800 ligands.
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Figure 5.

Predictive ability of CoLiBRI to identify ligands of 130 test binding pockets from the WDI

and the original 800 ligands.
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Figure 6.

Predictive ability of CoLiBRI to identify receptor binding pockets of 130 test ligands from the

library of 800 binding pockets.
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Figure 7.

Predictive ability of CoLiBRI to identify ligands of 22 test binding pockets from the WDI when

there are no receptors of the same family in the training set.
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Figure 8.

Time required for 100 CoLiBRI models to screen a single test receptor against various

compound libraries on a P4 machine using a max. limit of 5,000 sorted hits displayed as output.

Oloff et al. Page 20

J Chem Inf Model. Author manuscript; available in PMC 2009 October 2.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



Figure 9.

Predictive ability of CoLiBRI to identify ligands of 130 test binding pockets when the training

set ligand-receptor associations were shuffled and used for model building.
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