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Abstract. We consider an ensemble of random density matrices distributed

according to the Bures measure. The corresponding joint probability density of

eigenvalues is described by the fixed trace Bures–Hall ensemble of random matrices

which, in turn, is related to its unrestricted trace counterpart via a Laplace transform.

We investigate the spectral statistics of both these ensembles and, in particular, focus

on the level density, for which we obtain exact closed-form results involving Pfaffians.

In the fixed trace case, the level density expression is used to obtain an exact result

for the average Havrda–Charvát–Tsallis (HCT) entropy as a finite sum. Averages of

von Neumann entropy, linear entropy and purity follow by considering appropriate

limits in the average HCT expression. Based on exact evaluations of the average von

Neumann entropy and the average purity, we also conjecture very simple formulae for

these, which are similar to those in the Hilbert–Schmidt ensemble.

Keywords: Bures–Hall ensemble, Eigenvalue statistics, Random density matrices,

Average entropies

1. Introduction

The density matrix formalism was introduced by von Neumann to describe statistical

concepts in quantum mechanics [1]. It plays a fundamental role in quantum mechanics

and provides a natural approach to deal with mixed states [2,3]. Given the set of finite-

size density matrices, it is now well acknowledged that, there is no unique measure which

can be used to describe it [3–9]. Therefore, one seeks a good and useful measure which

can be associated with these density matrices and consequently with the corresponding

eigenvalues [3–9].

One of the ways to induce a measure over the space of random density matrices is

via the operation of partial tracing [10, 11]. This relates to the idea of purification in

which a mixed state ρ, acting on an n-dimensional Hilbert space Hn, can be viewed as a

reduced state obtained by partial tracing a pure state belonging to a composite Hilbert

space Hn ⊗Hm [12]. The auxiliary subsystem associated with Hm may be interpreted
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as the environment. In this approach, along with the dimension n of the given density

matrices, one ends up with an additional parameter at hand, viz. m associated with the

auxiliary subsystem. To elaborate, one considers a random pure state |ϕ〉 ∈ Hn⊗Hm of

a composite bipartite system of size n×m with m ≥ n. Upon partial tracing over the

m-dimensional environment, one obtains a reduced state of size n. The corresponding

reduced density matrix is given by

ρ =
trm(|ϕ〉〈ϕ|)
〈ϕ|ϕ〉

, (1)

and gives rise to the Hilbert-Schmidt measure,

PHS(ρ) ∝ δ(tr ρ− 1)(det ρ)m−n Θ(ρ). (2)

Here Θ(ρ) is the Heaviside theta function with matrix argument, which implies the

positive-definiteness of ρ. It is of interest to discuss the limiting situations for the

Hilbert-space dimension m of the auxiliary subsystem. For m = 1, in view of our

assumption n ≤ m, n also takes the value of 1. As a consequence, the density matrix in

this case is one-dimensional and has element 1. However, if we do let n > m, then ρ will

be n-dimensional and in its eigenbasis it will have one of the diagonal entries as 1 and rest

n− 1 as 0s. Physically, in the m = 1 case, ρ represents a pure state. The other extreme

is obtained for m → ∞. In this limit, as argued by Hall [11], the distribution PHS(ρ)

tends to become a delta function, δ(ρ − n−11n). All the n eigenvalues of ρ therefore

assume the value 1/n. The reduced density matrix ρ in this case signifies a maximally

mixed state. For the Bures-Hall measure, one considers a symmetric superposition of

two pure states of the composite system, one of which is a local unitary transformed

copy of the other [3, 13, 14], viz., |ψ〉 ∼ |ϕ〉+ (U ⊗ 1m)|ϕ〉. Here U is an n-dimensional

unitary matrix taken from the measure |det(1n + U)|2(m−n)dµ(Un), with dµ(Un) being

the Haar measure. The reduced density matrix obtained in this case,

ρ =
trm(|ψ〉〈ψ|)
〈ψ|ψ〉

, (3)

belongs to the Bures-Hall measure described by

PBH(ρ) ∝ δ(tr ρ− 1)(det ρ)m−n Θ(ρ)

∫
d[X]e− tr ρX2

∝ δ(tr ρ− 1)
(det ρ)m−n−1/2∏
j>k (µj + µk)

Θ(ρ). (4)

In the first line of the above equation, X is a random Hermitian matrix and d[X] is the

corresponding flat measure, i.e., product of differential of independent components in

X. In the second line {µj} ∈ [0, 1] are the eigenvalues of the density matrix ρ. In both

the limits m = 1 and m → ∞, the behavior of ρ in the Bures-Hall case is identical to

that in the Hilbert-Schmidt case.

Another approach for assigning a measure over random density matrices is to

consider certain distance metrics on the space of mixed states. The two popular

and physically relevant choices are the Hilbert–Schmidt distance [3, 4] and the Bures
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distance [15–17]. The Hilbert–Schmidt distance between two density matrices ρ1 and

ρ2 is defined as the Frobenius norm of their difference, i.e.,

DHS(ρ1, ρ2) =
√

tr[(ρ1 − ρ2)2]. (5)

The Bures distance, on the other hand, is given by [17]

DB(ρ1, ρ2) =
√

2− 2 tr(
√
ρ1ρ2
√
ρ1)1/2. (6)

It should be noted that the Bures distance is a function of fidelity [18], F (ρ1, ρ2) =

[tr(
√
ρ1ρ2
√
ρ1)

1/2]2, which is a commonly used quantity in the field of quantum

information [12]. Fidelity allows one to judge the proximity of a pair of mixed states

and reduces to unity if the two states are identical. The Hilbert-Schmidt metric

is Riemannian but not monotone, while the Bures metric is both Riemannian and

monotone [3]. The monotonicity of the Bures metric guarantees that it does not grow

under the action of a stochastic map, i.e. a completely positive trace preserving map [9].

Being a function of fidelity, the Bures metric is also Fubini-Study adjusted, i.e. for pure

states it agrees with the natural geometry on them. Additionally, the Bures distance, in

the subspace of diagonal matrices induces the statistical distance which is the Fisher-

Rao metric [19]. It turns out that the Bures metric is the only monotone metric which

is simultaneously Fisher adjusted and Fubini-Study adjusted [9]. These outstanding

mathematical properties of the Bures metric provides additional inspiration to study the

geometry it induces in the space of mixed quantum states. Interestingly, the measure

induced by the above two distance metrics coincide with (2) and (4) if m is set equal to

n, i.e., if the Hilbert-space dimension of the environment is same as that of the system

under observation. We should remark here that the terms Hilbert-Schmidt measure

and Bures-Hall measure are conventionally used for this m = n case, and therefore (2)

and (4) can be seen as generalizations.

The Hilbert–Schmidt measure is commonly known as the fixed trace Wishart-

Laguerre ensemble in the context of random matrix theory and has been extensively

studied. Consequently, the corresponding spectral statistics and behavior of the

associated observables are fairly well understood. For instance, based on the knowledge

of the joint probability density (jpd) of eigenvalues [5, 8, 11, 20–22], we know explicit

answers for the level density and two-point correlation function, moments and cumulants

of the eigenvalues and the entropy measures, asymptotic and universal behavior and

also extreme eigenvalue distributions and moments [4, 6, 22–45]. In comparison, the

fixed trace Bures–Hall ensemble has been explored very little due to its more involved

mathematical structure. The jpd of eigenvalues for this ensemble was derived by

Hall in [11]. Życzkowski, Sommers and co-workers have obtained several key results

pertaining to the fixed trace Bures–Hall ensemble in the study of statistical distribution

of random density matrices and the associated entropy measures [3–5, 9, 13, 14]. Borot

and Nadal have obtained the purity distribution for a generalized version of the

Bures–Hall fixed trace ensemble in the large dimension limit [39]. The corresponding

unrestricted trace variant has been investigated by Forrester and Kieburg in connection



Bures–Hall Ensemble: Spectral Densities and Average Entropies 4

with the Cauchy two-matrix model [46]. This connection was discovered by Bertola

et al. while investigating the Cauchy two-matrix model [47]. Despite these invaluable

contributions, there are several aspects related to the Bures–Hall ensemble that remain

to be explored.

In this work, we investigate the spectral statistics of both unrestricted trace and

fixed trace variants of the Bures–Hall ensemble. For the former, we obtain an exact

result for the r-point correlation function of arbitrary order in terms of a Pfaffian. This

Pfaffian expression offers an alternative representation for the correlation function than

the one derived by Forrester and Kieburg [46]. We then focus on the level density

and use it to obtain the corresponding exact closed-form expression for the fixed trace

ensemble. This, in turn, is used to calculate the average Havrda–Charvát–Tsallis (HCT)

entropy [48,49] of random density matrices which are described by the fixed trace Bures–

Hall ensemble. Appropriate limits of the HCT entropy also lead to exact expressions

for the average von-Neumann entropy and the average linear entropy or, equivalently,

the average purity. Based on exact evaluations, we also conjecture very simple formulae

for the average von-Neumann entropy and the average purity. Finally, we validate these

analytical results using numerical simulation based on Dyson’s log-gas formalism [50–52].

The presentation scheme of the paper is as follows. In section 2 we derive exact

results pertaining to the spectral statistics of unrestricted trace Bures–Hall ensemble.

This is then used in section 3 to obtain an exact result for the level density in the

fixed trace case. In section 4 we derive exact expressions for the average entropies. In

section 5 we conclude with a brief summary of our results and also indicate directions

in which this work can be extended. Appendices collect details of the derivations of the

analytical results presented in this paper.

2. Unrestricted trace Bures–Hall ensemble

We begin with the unrestricted trace Bures–Hall ensemble. The matrices constituting

this ensemble are given by [13,14,46]

B = (1n + U)GG†(1n + U †). (7)

In this, with n ≤ m, G is an n×m-dimensional complex Ginibre random matrix having

the associated probability measure

PG(G)dG ∝ exp(−v2 trGG†)dG (8)

with v2 = 4, and U is an n× n-dimensional random unitary matrix from the measure

PU(U)dµ(Un) ∝ |det(1n + U)|2(m−n)dµ(Un). (9)

Here dG represents the flat measure given by the product of differentials of all

independent components in G, and dµ(Un) is the Haar measure on the group of n-

dimensional unitary matrices. The related m×m random matrix

B′ = G†(1n + U †)(1n + U)G (10)
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possesses n eigenvalues identical toB and, in addition, hasm−n generic zero eigenvalues.

The jpd of eigenvalues (λj ε [0,∞), j = 1....n) for the random matrix B is given

by [5, 46],

P(λ1, . . . , λn) = C
∆2({λ})
∆+({λ})

n∏
i=1

λαi e
−λi , (11)

where, C is the normalization factor, ∆({λ}) = det[λj−1k ] =
∏

j<k(λk − λj) is the

Vandermonde determinant, ∆+({λ}) =
∏

j<k(λk + λj), and α = m − n − 1/2, which

assumes half-integer values only. However, one may relax this parameter to α > −1

if the above jpd is defined without reference to the matrix model (7). We should

remark that (11) pertains to a generalized Bures–Hall ensemble since the standard

one corresponds to the case m = n, or equivalently α = −1/2. The jpd in (11)

is related to that of the fixed trace Bures–Hall ensemble of random density matrices

via a Laplace transform [46], as discussed in section 3. Interestingly, the above jpd

also connects to the O(1) matrix model [53, 54], as was discovered by Bertola et al.

while investigating the Cauchy two-matrix model [47]. Later on, Forrester and Kieburg

demonstrated the explicit relationship between the unrestricted Bures–Hall ensembles

and the Cauchy two-matrix model in [46]. This is very interesting since the former

constitutes a Pfaffian point process, while the latter corresponds to a determinantal

point process. Also, very recently, Muttalib–Borodin kind of deformation has been

considered in the Cauchy two-matrix model and the unrestricted Bures–Hall ensemble

by Forrester and Li [55]. Furthermore, Hu and Li have shown that the partition function

of the unrestricted trace Bures-Hall ensemble can be identified as the τ -function of BKP

and DKP hierarchies [56].

To proceed, we need to rewrite the jpd in (11) as a product of a determinant and

a Pfaffian. The Pfaffian for a 2n× 2n antisymmetric matrix A is defined as [51,52],

Pf[A] =
∑
p

σpAi1,i2Ai3,i4 ...Ai2n−1,i2n . (12)

The sum in (12) is over all possible permutations,

p =

(
1 2 · · · 2n

i1 i2 · · · i2n

)
, (13)

with restrictions that i1 < i2, i3 < i4, ...., i2n−1 < i2n; i1 < i3 < i2n−1 and σp is the sign

of the permutation. Also the pfaffian is associated to the determinant as

det[A] = (Pf[A])2 . (14)

In connection with the random matrix theory, Pfaffian (or equivalently quaternion-

determinant) based formulae were introduced by Dyson to write down the eigenvalue

correlation functions for circular orthogonal and symplectic ensembles [57]. Pfaffian

based techniques and results now constitute an indispensable part of random matrix

theory and have been applied in several contexts [50–52, 58–63]. One of the most

noteworthy applications of Pfaffians is in the random matrix ensembles modeling
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crossovers between various symmetry classes [64–70]. Presently, for the jpd (11), we

use Schur’s Pfaffian identity [46,71,72],

∏
1≤j<k≤n

xk − xj
xk + xj

=


Pf [(xk − xj)/(xk + xj)]j,k=1,...,n , n even,

Pf

[
[(xk − xj)/(xk + xj)]j,k=1,...,n [1]j=1,...,n

[−1]k=1,...,n 0

]
, n odd,

(15)

and the result ∆({λ})
∏n

i=1 λ
α
i e
−λi = det[λj+α−1k e−λk ]. As a consequence, we have

P(λ1, ..., λn) = C det[fj,k]j,k=1,...,n Pf[gj,k]j,k=1,...,N , (16)

N =

{
n for n even,

n+ 1 for n odd.
(17)

In the above expression, the kernels are

fj,k = fj(λk) = λj+α−1k e−λk , (18)

gj,k = −gk,j = g(λj, λk) =
λk − λj
λk + λj

, (19)

and in addition, when n is odd,

gj,n+1 = −gn+1,j = 1− δj,n+1. (20)

The inverse of the normalisation factor (partition function) can be obtained using de

Brujin’s integration theorem [73] as

C−1 = n! Pf[H], (21)

where H is an N -dimensional matrix with elements,

Hj,k =

∫ ∞
0

dλ

∫ ∞
0

dν fj(λ)fk(ν)g(λ, ν) =
k − j

j + k + 2α
Γ(j + α)Γ(k + α), (22)

for 1 ≤ j, k ≤ n, and additionally,

Hj,n+1 = −Hn+1,j = (1− δj,n+1)

∫ ∞
0

dλ fj(λ) = (1− δj,n+1)Γ(j + α), (23)

when n odd. As shown in the Appendix A, the Pfaffian in (21) can be evaluated to a

yield a compact result for the normalization factor as [46]

C =
2n

2+2αn

πn/2

n∏
j=1

Γ(j + α + 1/2)

Γ(j + 1)Γ(j + 2α + 1)
. (24)

Given the jpd of eigenvalues, one is interested in calculating the r-point correlation

function, which is defined as

Rr(λ1, .., λr) =
n!

(n− r)!

∫ ∞
0

dλr+1...

∫ ∞
0

dλnP(λ1, .., λr, λr+1, .., λn). (25)
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In the present case an exact result for Rr can be obtained using the generalization of

the de Brujin’s theorem, as derived by Kieburg [74, Appendix A.1]. The result is in

terms of a Pfaffian of an (N + 2r)-dimensional antisymmetric matrix:

Rr(λ1, .., λr) = (−1)r(r−1)/2n!C Pf

 [0] j=1...r
k=1...r

[0] j=1...r
k=1...r

[Fkj] j=1...r
k=1...N

[0] j=1...r
k=1..r

[gjk] j=1...r
k=1...r

[Gkj] j=1...r
k=1...N

−[Fjk] j=1...N
k=1...r

−[Gjk] j=1...N
k=1...r

[Hjk] j=1...N
k=1...N

 . (26)

In the above expression, the j, k indices in a matrix block [ · ] j=...
k=...

are the row and column

indices, respectively. The kernels Gjk and Fjk appearing in the above Pfaffian are given

by

Fj,k = Fj(λk) = fj(λk) = λj+α−1k e−λk , (27)

Gj,k = Gj(λk) =

∫ ∞
0

dν fj(ν)g(ν, λk) = Γ(j + α)[2λk e
λk Ej+α(λk)− 1], (28)

for j = 1, ..., n; k = 1, ..., r. Here Ea(z) =
∫∞
1
dt e−zt/ta is the exponential integral

function. Moreover, when n is odd, we have

Fn+1,k = Fn+1(λk) = 0, (29)

Gn+1,k = Gn+1(λk) = −1, (30)

for k = 1, ..., r. The gjk and Hjk within the Pfaffian in (26) are as in (19), (22) and

(23). In reference [46], the r-point correlation function for the unrestricted Bures–

Hall ensemble has been derived by exploiting its relationship with the Cauchy two-

matrix ensemble. It involves the Pfaffian of a 2r × 2r antisymmetric matrix with

kernels involving integral over certain Meijer G-functions. While it appears difficult

to demonstrate a direct equivalence of the Pfaffian result of [46] with the above Pfaffian

result, it can be numerically verified on a case-by-case basis that they are indeed

equivalent.

The level density R1(λ) is of special interest since the first order marginal

density p(λ) = R1(λ)/n reveals the behavior of a generic eigenvalue of the ensemble.

Furthermore, it enables one to obtain the averages of observables which are linear

statistic on the eigenvalues. We use the Pfaffian-expansion result given in [75, Corollary

2.4] to obtain the following expression for the level density:

R1(λ) = n!C
∑

1≤j<k≤N

(−1)j+k [Φj,k(λ)− Φk,j(λ)] Pf[H(j,k)]. (31)

Here

Φj,k(λ) = Fj(λ)Gk(λ), (32)

and H(j,k) is the (N − 2)-dimensional antisymmetric matrix obtained after removing

the jth and kth rows and columns from H. For n = 1, Pf[H(1,2)] should be taken as

1. Moreover, as shown in Appendix A, this Pfaffian can be evaluated in terms of a

restricted product as

Pf[H(j,k)] =
∏
r<s

r,s6=j,k

s− r
r + s+ 2α

·
∏
l 6=j,k

Γ(l + α). (33)
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Figure 1: Marginal density of eigenvalues for the unrestricted trace Bures–Hall ensemble

for various values of n and m. The solid lines are analytical predictions and the symbols

denote the numerical result based on Dyson’s log-gas approach.

The notation r, s 6= j, k in the product means that both r and s do not assume the

values j, k.

In Fig. 1 we show the plots of the marginal density p(λ) for various values of n,m.

The solid curves are based on the above analytical result, and the symbols have been

obtained using the numerical simulation following Dyson’s log-gas formalism [51, 52],

as briefly described in the Appendix B. We can see very good agreements between the

analytical-expression based and numerical simulation based results.

3. Fixed trace Bures–Hall ensemble

We now focus on the fixed trace Bures–Hall ensemble. The matrices constituting this

ensemble are given by

ρ =
B

trB
, (34)

where B are as in (7). Here, we note that the choice of variance of the Gaussian matrix

elements of G constituting B in (8) is immaterial and hence any v2 > 0 leads to the

same distribution. The above matrix model is equivalent to (3) describing the reduced
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density matrices pertaining to the Bures–Hall measure. The related m×m dimensional

and rank n random matrix

ρ′ =
B′

trB′
, (35)

where B′ is as in (10), share the n eigenvalues of ρ and additionally has m − n zero

eigenvalues. The joint eigenvalue probability density of the eigenvalues (µj ∈ [0, 1], j =

1, ..., n) of ρ in (34), and hence of the n× n random density matrix appearing in (3), is

given by [5, 11]

P(F )(µ1, ..., µn) = C(F ) ∆2({µ})
∆+({µ})

δ

( n∑
i=1

µi − 1

) n∏
j=1

µαj . (36)

The parameter α, as discussed earlier, relates to the dimensions m and n. For n = m, we

have the standard Bures-Hall ensemble and the distribution (36) of eigenvalues coincides

with the one induced by the Bures metric over the space of random mixed states [13]. If

we consider m = 1, n too must be 1 as per our construction and this leads to α = −1/2.

The corresponding single eigenvalue then takes the value 1 and physically corresponds

to a pure state. In the limit of m→∞ with fixed n, α→∞ and then, as discussed in

the introduction, the n eigenvalues approach the value of 1/n. Physically, this signifies

a maximally mixed state for n > 1.

It can be observed that, by introducing an auxiliary variable to replace the 1

inside the delta function, performing Laplace transform [76] and then applying some

rescaling, we are led to the jpd given by (11) for the unrestriced Bures–Hall ensemble.

Consequently, the corresponding normalization factors are also related. As shown in

the Appendix C, the normalization factor C(F ) in the jpd (36) is given by

C(F ) = Γ[n(n+ 2α + 1)/2]C

=
2n(n+2α) Γ[n(n+ 2α + 1)/2]

πn/2

n∏
j=1

Γ(j + α + 1/2)

Γ(j + 1)Γ(j + 2α + 1)

=
2n(2m−n−1) Γ[n(2m− n)/2]

πn/2

n∏
j=1

Γ(j +m− n)

Γ(j + 1)Γ(j + 2m− 2n)
. (37)

For the square case m = n, i.e. α = −1/2, this reduces to the result conjectured by

Slater in [7] and later proved by Sommers and Życzkowski in [9], who also derived the

above general result.

Similar to the jpd of eigenvalues, the r-level correlation function R
(F )
r for the fixed

trace ensemble can be related to that of the unrestricted trace ensemble Rr by means

of an inverse Laplace transform; see the Appendix C. We have the result

R(F )
r (µ1, ..., µr) = Γ[n(n+ 2α + 1)/2]L−1

{
sr−n(n+2α+1)/2Rr(sµ1, ..., sµr)

}
(t)
∣∣∣
t=1
. (38)

In particular, the level density (r = 1) for the fixed trace Bures–Hall ensemble can be

obtained from unrestricted trace ensemble result using the relation

R
(F )
1 (µ) = Γ[n(n+ 2α + 1)/2]L−1

{
s1−n(n+2α+1)/2R1(sµ)

}
(t)
∣∣∣
t=1
. (39)
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Figure 2: Marginal density of eigenvalues for the fixed trace Bures–Hall ensemble for

various n and m values. The solid lines are based on analytical results and the symbols

are using numerical simulation based on Dyson’s log-gas formalism.

Based on this Laplace inversion relationship and using (31), an exact closed form

expression for the level density can be found. As shown in Appendix D, we obtain

the non-vanishing result for 0 ≤ µ ≤ 1 as

R
(F )
1 (µ) = n!C(F )

∑
1≤j<k≤N

(−1)j+k [Ψj,k(µ)−Ψk,j(µ)] Pf[H(j,k)]. (40)

In the above equation, Ψj,k is given by

Ψj,k(µ) = Γ(k + α)µj+α−1
[ 2µk+αΓ(1− k − α)

Γ(1− j − k − α + γ)

− 2µk+αBµ(1− k − α, γ − j)
Γ(γ − j)

− (1− µ)γ−j

Γ(γ − j + 1)

]
; j, k = 1, ..., n, (41)

and when n is odd, additionally, we have

Ψj,n+1 = −µ
j+α−1(1− µ)γ−j

Γ(γ − j + 1)
, Ψn+1,k(µ) = 0; j, k = 1, ..., n. (42)

Here, Bz(a, b) =
∫ z
0
du ua−1(1 − u)b−1 is the incomplete Beta function and, for

compactness, we have defined

γ = (n− 1)(n+ 2α + 2)/2 = (n− 1)(2m− n+ 1)/2. (43)
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In figure 2 we show the plots of the marginal density p(F )(µ) = R
(F )
1 (µ)/n for

various combination of n,m values. Again we find very good agreement between the

analytical predictions (solid lines) and the numerical results (symbols) obtained using

log-gas approach [51,52], as discussed in Appendix B.

4. Entropy Measures

Given an ensemble of random density matrices, a natural question to ask is,”how far or

close the associated states are to being pure or maximally mixed”? There are several

entropy measures which can be used to answer this. We focus here on the Havrda-

Charvát-Tsallis (HCT) [3,48,49] entropy, which is defined as

Sω(µ1, ..., µn) =
1

ω − 1

(
1−

n∑
i=1

µωi

)
. (44)

Here ω 6= 1 is a positive real parameter. The value of Sω varies from 0 to

(1 − n1−ω)/(ω − 1). The former indicates a pure state, while the latter signifies a

maximally mixed state. In the limit ω → 1, the HCT entropy leads to the von Neumann

entropy,

S1(µ1, ..., µn) = −
n∑
i=1

µi lnµi. (45)

For ω = 2, the HCT entropy yields the linear entropy,

S2(µ1, ..., µn) = 1−
n∑
i=1

µ2
i . (46)

The linear entropy S2 is related to the purity SP as

SP (µ1, ..., µn) = 1− S2(µ1, ..., µn) =
n∑
i=1

µ2
i . (47)

The HCT entropy is advantageous to use, as the ensemble averages are more easily done

with
∑n

i=1 µ
ω
i compared to the ln (

∑n
i=1 µ

ω
i ) in the Rényi entropy [77].

The calculation of average entropy can be performed in two ways. In the first

approach, the result for the average entropy associated with the Bures–Hall ensemble

can be found by directly integrating with the fixed trace ensemble jpd (36),

〈Sω〉BH =

∫ 1

0

· · ·
∫ 1

0

Sω(µ1, ..., µn) P(F )(µ1, ..., µn) dµ1...dµn. (48)

Now, HCT entropy being a linear statistic, the symmetry of the eigenvalues in the jpd

allows us to reduce the above average involving n integrals to an average involving a

single integral on the level density R
(F )
1 (µ). We obtain

〈Sω〉BH =
1

ω − 1
− 1

ω − 1

∫ 1

0

µω R
(F )
1 (µ)dµ. (49)
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Table 1: Exact values and numerical values (6 significant digits) for the average von

Neumann entropy.

n m
Bures–Hall Hilbert–Schmidt

Exact Numerical value Exact Numerical value

2 2 2 ln 2− 7
6 0.2196277 1

3 0.333333

2 3 2 ln 2− 59
60 0.4029610 9

20 0.450000

2 4 2 ln 2− 379
420 0.4839134 107

210 0.509524

2 5 2 ln 2− 2159
2520 0.5295483 275

504 0.545635

2 6 2 ln 2− 22937
27720 0.5588413 15797

27720 0.569877

3 3 32
63 0.5079365 1669

2520 0.662302

3 4 4448
6435 0.6912199 21341

27720 0.769877

3 5 1272512
1616615 0.7871460 300863

360360 0.834896

3 6 386215616
456326325 0.8463584 239175

272272 0.878441

4 4 2 ln 2− 533
840 0.7517706 664789

720720 0.922396

4 5 2 ln 2− 13067
27720 0.9149019 15743083

15519504 1.014406

4 6 2 ln 2− 270769
720720 1.010602 1920308783

1784742960 1.075958

5 5 177377888
185910725 0.9541025 10107221087

8923714800 1.132625

5 6 4952992040384
4512611027925 1.097589 2822050213687

2329089562800 1.211654

6 6 2 ln 2− 3201673
12252240 1.124981 17169484377589

13127595717600 1.307893

The second approach relies on mapping the average entropy calculation as an average

over the level density of the unrestricted trace ensemble. This has been done in

the Appendix E, and yields the result

〈Sω〉BH =
1

ω − 1
− Γ(α + γ + 1)

(ω − 1) Γ(α + γ + ω + 1)

∫ ∞
0

λω R1(λ) dλ. (50)

As demonstrated in the Appendix F, after some simplification and rearrangement, both

approaches lead to the same expression, which is given by

〈Sω〉BH =
1

ω − 1
− n!C(F )

(ω − 1) Γ(α + γ + ω + 1)

×
∑

1≤j<k≤N

(−1)j+k(ηj,k − ηk,j)Pf
[
H(j,k)

]
, (51)

with

ηj,k =

(
j − k + ω

j + k + 2α + ω

)
Γ(j + α + ω)Γ(k + α); j, k = 1, ..., n. (52)
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Table 2: Exact values and numerical values (6 significant digits) for the average Purity.

n m
Bures–Hall Hilbert–Schmidt

Exact Numerical value Exact Numerical value

2 2 7
8 0.875000 4

5 0.800000

2 3 3
4 0.750000 5

7 0.714286

2 4 11
16 0.687500 2

3 0.666667

2 5 13
20 0.650000 7

11 0.636364

2 6 5
8 0.625000 8

13 0.615385

3 3 23
33 0.696970 3

5 0.600000

3 4 10
17 0.588235 7

13 0.538462

3 5 61
115 0.530435 1

2 0.500000

3 6 43
87 0.494253 9

19 0.473684

4 4 9
16 0.562500 8

17 0.470588

4 5 25
52 0.480769 3

7 0.428571

4 6 59
136 0.433824 2

5 0.400000

5 5 7
15 0.466667 5

13 0.384615

5 6 15
37 0.405405 11

31 0.354839

6 6 181
456 0.396930 12

37 0.324324

Moreover, when n is odd, we have

ηj,n+1 = −Γ(j + α + ω), ηn+1,k = 0; j, k = 1, ..., n. (53)

For ω = 2, (51) gives the average linear entropy 〈S2〉BH, and also the average

purity via the relation 〈SP 〉BH = 1−〈S2〉BH. The average von Neumann entropy can be

obtained by carefully taking the limit ω → 1, and after some rearrangement of terms,

as

〈S1〉BH = ψ(α + γ + 2)− n!C(F )

Γ(α + γ + 2)

∑
1≤j<k≤N

(−1)j+k(ξj,k − ξk,j)Pf
[
H(j,k)

]
, (54)

where

ξj,k =
(j − k + 1)

(j + k + 2α + 1)
Γ(j + α + 1)Γ(k + α)ψ(j + α + 1); j, k = 1, ..., n, (55)

along with

ξj,n+1 = −Γ(j + α + 1)ψ(j + α + 1), ξn+1,k = 0; j, k = 1, ..., n, (56)

when n is odd. Here ψ(y) is the digamma function with the integral representation

ψ(y) = [1/Γ(y)]
∫∞
0
e−rry−1 ln r dr.
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Figure 3: Average von Neumann entropy and average purity for the square case (m = n)

with varying n values. Results for both Hilbert–Schmidt ensemble and Bures–Hall

ensemble are shown. The von Neumann entropy varies from 0 for a pure state to lnn

for a maximally mixed state. The purity varies from 1/n for a maximally mixed state

to 1 for a pure state.

In Tables 1 and 2 we compile the evaluations for average von Neumann entropy

〈S1〉BH, and the average purity 〈SP 〉BH = 1− 〈S2〉BH. For comparison, we also show the

results for Hilbert–Schmidt ensemble, for which the average von Neumann entropy and

average purity are given by [4, 22,24,25]

〈S1〉HS =
mn∑

j=m+1

1

j
− n− 1

2m
= ψ(mn+ 1)− ψ(m+ 1)− n− 1

2m
, (57)

〈SP 〉HS =
m+ n

mn+ 1
. (58)

We should emphasise here that it is reasonable to compare the above entropic quantities

for the two ensembles. This is because in either case n signifies the dimension of the

density matrix and m refers to the dimension of the auxiliary subsystem (environment),

as discussed in the introduction for partial tracing approach to induced measure over

random density matrices.

In figures 3 and 4 we show the average entropy results for S1 (von Neumann entropy)

and SP = 1 − S2 (purity) for both Bures–Hall and Hilbert–Schmidt ensembles. The

former figure depicts behavior of the entropies for the square (m = n) case which

corresponds to the standard Hilbert–Schmidt and Bures–Hall ensembles and is of a

special significance [3,5]. The latter deals with the general case and displays behavior of

the entropies for n fixed, m varying, and m fixed, n varying scenarios. We find that for

any n ≥ 2, on average, the Bures–Hall measure is concentrated more towards states of

higher purity than the Hilbert–Schmidt measure. This was shown in [4] for the square

case and now we see that it holds even for the rectangular case. Additionally, it can

be seen that for fixed m, the difference in averages increases as n is increased towards
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Figure 4: Average von Neumann entropy and average purity for various combination of

n,m values. Results for both Hilbert–Schmidt and Bures–Hall ensembles are depicted.

m. On the other hand, for fixed n, if the m value is increased, then the difference

approaches zero.

On examining the exact evaluations of the average von Neumann entropy and the

average purity (or, equivalently, the average linear entropy) for the Bures–Hall ensemble,

we come up with the conjecture that, similar to those of the Hilbert–Schmidt ensemble,

they are given by very simple formulae:

〈S1〉BH = ψ(mn− n2/2 + 1)− ψ(m+ 1/2) (59)

=



mn−n2/2∑
j=1

1

j
−

m∑
j=1

1

j − 1/2
+ 2 ln 2, n even,

mn−(n2−1)/2∑
j=m+1

1

j − 1/2
, n odd.

(60)

〈SP 〉BH =
2m(2m+ n)− (n2 − 1)

2m (2mn− n2 + 2)
, (61)
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or equivalently,

〈S2〉BH =
(n− 1)(2m− 1)(2m− n− 1)

2m (2mn− n2 + 2)
. (62)

Comparing these conjectural expressions with (54) and (51), we find that one way to

prove the above conjectures is to demonstrate the following equalities:∑
1≤j<k≤N

(−1)j+k(ξj,k − ξk,j)Pf
[
H(j,k)

]
=

(mn− n2/2)

n!C
ψ(m+ 1/2), (63)

∑
1≤j<k≤N

(−1)j+k(ηj,k − ηk,j)Pf
[
H(j,k)

]
=
n(2m− n)

n!C
· 2m(2m+ n)− (n2 − 1)

8m
, (64)

where ξj,k is given by (55), (56), and ηj,k is given by (52), (53) with ω set to 2.

It readily follows from (57), (58), (59) and (61) that in the limit m → ∞ the

average von-Neumann entropy and average purity for both Hilbert–Schmidt and Bures–

Hall ensembles assume the values lnn and 1/n, respectively. These values are expected

in view of the discussion in the introduction concerning the m→∞ limit with n fixed.

Moreover, we find that

〈SP 〉BH − 〈SP 〉HS =
(mn− 1)(n2 − 1)

2m(mn+ 1)(2mn− n2 + 2)
≥ 0, (65)

where the equality holds for n = 1. Therefore, this is in conformity with the conclusion

that on average the Bures–Hall measure is concentrated more towards the states of

higher purity compared to the Hilbert–Schmidt measure. The other observations found

in Fig. 4 for the difference of average purities are also consistent with this expression.

5. Summary and Outlook

In this work we investigated statistical properties of random matrix ensemble distributed

according to the Bures measure. We started our analysis with the unrestricted

trace Bures–Hall ensemble and obtained a new Pfaffian based representation for the

correlation function of arbitrary order. This was then used to obtain a closed-form

exact result for the level density of the fixed trace Bures–Hall ensemble. Based on this,

we computed the average HCT entropy and also obtained the average von-Neumann

entropy, average linear entropy and average purity by considering appropriate limits.

The exact evaluations of these average entropies enabled us to propose very simple

conjectural expressions for the average von-Neumann entropy and average linear entropy

or purity. We found that the Bures measure is concentrated more towards states of

higher purity than the Hilbert–Schmidt measure even for the rectangular case.

The simple conjectural expressions suggest that there is some additional structure

in the eigenvalue statistics of Bures-Hall ensemble that needs to be unveiled. Moreover,

it would be of interest to obtain higher order statistics for the entropies, i.e, higher

moments and cumulants. This would help provide a better understanding concerning

the statistics of these entropies when dealing with Bures measure.
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Appendix A. Evaluation of Pfaffians

We need to evaluate Pf[H], whereH is an antisymmetric matrix defined by (22) and (23).

First of all, we observe that factors Γ(i+α), i = 1, ..., n, can be pulled out of the Pfaffian

from the ith row as well as the ith column, thereby giving rise to an overall factor of∏n
i=1 Γ(i+ α). Therefore, we obtain

Pf[H] =
n∏
i=1

Γ(i+α)·


Pf [(k − j)/(k + j + 2α)]j,k=1,...,n , n even,

Pf

[
[(k − j)/(k + j + 2α)]j,k=1,...,n [1]j=1,...,n

[−1]k=1,...,n 0

]
, n odd,

(A.1)

Comparing this with the Schur’s Pfaffian identity, equation (15), we find that by setting

xi = i+ α, i = 1, ..., n, we can reduce the above Pfaffian to the following product:

Pf[H] =
n∏
i=1

Γ(i+ α) ·
∏

1≤j<k≤n

k − j
k + j + 2α

=
n∏
i=1

Γ(i+ α) ·
n∏
k=2

k−1∏
j=1

k − j
k + j + 2α

. (A.2)

Now,
∏k−1

j=1(k − j) = (k − 1)(k − 2) · · · (2)(1) = Γ(k), and
∏k−1

j=1(k + j + 2α) =

(k + 2α + 1)(k + 2α + 2) · · · (2k + 2α − 1) = Γ(2k + 2α)/Γ(k + 2α + 1). Therefore,

we have

Pf[H] =
n∏
i=1

Γ(i+α) ·
n∏
k=2

Γ(k)Γ(k + 2α + 1)

Γ(2k + 2α)
=

n∏
i=1

Γ(i+α) ·
n∏
k=1

Γ(k)Γ(k + 2α + 1)

Γ(2k + 2α)
, (A.3)

where the last step followed because the k = 1 term in the second product is 1. We now

use the identity Γ(2k + 2α) = 22k+2α−1Γ(k + α + 1/2)Γ(k + α)/π1/2. This yields

Pf[H] =
πn/2

2n2+2αn

n∏
k=1

Γ(k)Γ(k + 2α + 1)

Γ(k + α + 1/2)
=

πn/2

2n2+2αn n!

n∏
k=1

Γ(k + 1)Γ(k + 2α + 1)

Γ(k + α + 1/2)
, (A.4)

which is the required result.

For the evaluation of Pf[H(j,k)] as a restricted product given in (33), first of

all, we pull out the Γ(i + α), i = 1, ..., n; i 6= j, k from the Pfaffian. This gives a

factor
∏n

i=1;i 6=j,k Γ(i + α). Now, we use Schur’s Pfaffian identity, equation (15), with

{x1, ..., xn−2} = {s+ α | s = 1, ..., n; s 6= j, k}. This gives the result (33).

Appendix B. Generating eigenvalues from the Bures–Hall ensemble

Dyson showed that the jpd of eigenvalues of classical random matrix ensembles coincide

with the Gibbs-Boltzmann factor associated with a log-gas system at three special values

of the inverse temperature β = 1, 2 and 4, with the Boltzmann constant set to 1 [51,52].

The ‘log’ has to do with the fact that the gas particles interact via Coulombic interaction,
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which is logarithmic in two-dimensional space. We can use the same idea here and, for

the unrestricted ensemble case, interpret the jpd in (11) as a Gibbs-Boltzmann weight:

P(λ1, . . . , λn) = Ce−βW , (B.1)

with β = 2. This gives the energy function as

W = −1

2
ln

(
∆2({λ})
∆+({λ})

n∏
i=1

λαi e
−λi

)

=
1

2

(
−2
∑
j<k

ln |λj − λk|+
∑
j<k

ln |λj + λk| − α
n∑
i=1

lnλi +
n∑
i=1

λi

)
. (B.2)

In this case, along with the two-dimensional Coulombic interaction, there is another

two-body interaction between the particles given by ln |λj + λk|. Moreover, the

particles are constrained to move on the positive real axis, and also feel the one-body

potential −α lnλi +λi. The above energy function can be implemented in the standard

Metropolis-Hastings algorithm based Monte Carlo simulation to generate the stationary

configurations, which yield the jpd. The generic one-eigenvalue density p(λ) can be

obtained by collecting the values of all λi and then plotting the histogram. We note

that numerically we have to put a “large” cut-off for the domain of eigenvalues (position

of the particles) as we cannot assign the full positive real domain. It should be large

enough so that the eigenvalues density resulting from the simulation becomes negligible

beyond this cut-off.

For the eigenvalues in the fixed trace case, we can use the eigenvalues λi generated

in the above simulation, and obtain µi = λi/(
∑n

j=1 λj). Another option is to implement

the simulation with the above energy function but restrict positions of the charges (µi)

in the domain [0, 1], along with the constraint that
∑n

i=1 µi = 1. In this case, for the

Metropolis-Hastings algorithm, we perturb positions of two charges simultaneously by

amounts δµ and −δµ, so that the fixed trace constraint remains imposed throughout

the simulation, if one starts with such an initial configuration [38]. Additionally, if

position of any of the two charges fall outside [0, 1] as a result of perturbation, that

move is rejected. In the present work, we have used the first approach as it generates

the eigenvalue densities for both unrestricted and restricted trace ensembles at once.

Yet another way to obtain the eigenvalues is to use the random matrix itself

using (7) and (34) for the unrestricted trace and fixed trace cases, respectively, and

then diagonalize it. For the square case (n = m), it is comparatively easier to

do so since one requires generating complex Ginibre (Gaussian) matrices, and Haar-

distributed unitary matrices. For the rectangular case (n < m), the unitary matrices

have to be generated from the measure |det(1n + U)|2(m−n)dµ(Un), and this requires

some additional work. One way to do this is to implement Monte Carlo simulation by

performing random walk in the space of unitary matrices and use Metropolis-Hastings

algorithm with the statistical weight |det(1n + U)|2(m−n), i.e. use the energy function

as −2(m − n) ln |det(1n + U)|. The perturbation moves in the unitary matrices can

be implemented using U → U exp(iδM), where M is an n × n-dimensional Hermitian
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random matrix from the Gaussian Unitary Ensemble (GUE) [51, 52], and δ is a small

scalar. Once the stationarity is achieved, the unitary matrices would be generated from

the measure |det(1n+U)|2(m−n)dµ(Un) and hence can be used to construct (7) and (34),

which can then be diagonalized to obtain the eigenvalues. It should be noted that the

eigenvalues for ρ can be obtained easily using those of B and therefore, in practice, one

needs to diagonalize B only.

Finally, in view of the invariant nature of the measure |det(1n + U)|2(m−n)dµ(Un),

we may first generate the corresponding eigenangles {ϑj} using the log-gas approach

and then obtain matrices U by conjugating diag(ϑ1, . . . , ϑn) with unitary matrices from

the Haar measure.

Appendix C. Relationship between level densities of fixed trace and

unrestricted trace ensembles

Establishing a relationship between the fixed trace and unrestricted trace variants of the

Bures–Hall ensemble is based on implementing a Laplace transform which has been used

in earlier works also. We use the same idea here and introduce an auxiliary variable t to

replace the 1 for the fixed trace condition in the expression for r-level density function

for the fixed trace Bures–Hall ensemble:

R(F )
r (µ1, ..., µr; t) =

n!

(n− r)!

∫ ∞
0

dµr+1...

∫ ∞
0

dµnC
(F )

× δ

(
n∑
i=1

µi − t

)
∆2({µ})
∆+({µ})

n∏
j=1

µαj . (C.1)

It should be noted that we have extended the integration domains from [0, 1] to (0,∞)

and this keeps the result of the multidimensional integral unchanged due to the delta-

function constraint. We now apply the Laplace transform (t→ s) and obtain

R̃(F )
r (µ1...µr, s) =

n!

(n− r)!

∫ ∞
0

dµr+1....

∫ ∞
0

dµnC
(F ) ∆2({µ})

∆+({µ})

n∏
j=1

µαj e
−sµj . (C.2)

After some rearrangement, the right hand side of the above equation can be expressed

in terms of the level density of the unrestricted trace ensemble as

R̃(F )
r (µ1, ...µr, s) =

C(F )

C

1

sn(n+2α+1)/2−rRr(sµ1, ..., sµr), (C.3)

so that the application of inverse-Laplace transform and substitution of t = 1 yields

R(F )
r (µ1, ...µr) =

C(F )

C
L−1

{
1

sn(n+2α+1)/2−rRr(sµ1, ..., sµr)

}
(t)

∣∣∣∣
t=1

. (C.4)

To obtain the ratio C(F )/C we can set r = 0 in the above expression, which for the

correlation function means integrating the jpd over all eigenvalues and multiplying with

n!/(n− 0)! and therefore gives the result R0 = 1. As a consequence, we have

1 =
C(F )

C
L−1

{
1

sn(n+2α+1)/2

}
(t)

∣∣∣∣
t=1

, (C.5)
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which upon performing the inverse Laplace transform yields

C(F )

C
= Γ[n(n+ 2α + 1)/2] = Γ(α + γ + 1) = Γ(mn− n2/2), (C.6)

where γ = (n− 1)(n+ 2α + 2)/2 as in (43). Plugging this back in (C.4) gives (38).

Appendix D. Level density for the fixed trace ensemble using inverse

Laplace transform

We use the expression for R1(λ) from (31) into (39), along with the relationship (37)

between the normalization factors. The inverse Laplace transform acts on the relevant

parts of the full expression:

R
(F )
1 (µ) = n!C(F )

∑
j<k

(−1)j+k[L−1{s1−n(n+2α+1)/2Φj,k(sµ)}(t)

− L−1{s1−n(n+2α+1)/2Φk,j(sµ)}(t)]|t=1. (D.1)

Therefore, we essentially seek the inverse Laplace transform of s1−n(n+2α+1)/2Φj,k(sµ) =

s1−n(n+2α+1)/2Fj(sµ)Gk(sµ), where Fj(λ) and Gk(λ) are as in equations (27)–(30). This

requires the following results:

L−1{s−ae−sµ}(t)|t=1 =
(1− µ)a−1Θ(1− µ)

Γ(a)
, (D.2)

L−1{s−aEb(sµ)}(t)|t=1 =
µb−1

Γ(a)
[B(1− b, a)− Bµ(1− b, a)]Θ(1− µ). (D.3)

where Θ(u),B(u, v) and Bµ(u, v) are the Heaviside theta function, beta function and

incomplete beta function, respectively. Use of these in (D.1) with Fj(λ) and Gk(λ)

given by (27), (28) leads to

L−1{s1−n(n+2α+1)/2Φj,k(sµ)}(t)|t=1 = Γ(k + α)µj+α−1
[2µk+αB(1− k − α, γ − j)

Γ(γ − j)

− 2µk+αBµ(1− k − α, γ − j)
Γ(γ − j)

− (1− µ)γ−j

Γ(γ − j + 1)

]
. (D.4)

Expressing the (complete) beta function in terms of gamma functions and simplifying

gives us (40). Similarly, when n is odd, using (29), (30) we also have

L−1{s1−n(n+2α+1)/2Φj,n+1(sµ)}(t)|t=1 = −µ
j+α−1(1− µ)γ−j

Γ(γ − j + 1)
,

L−1{s1−n(n+2α+1)/2Φn+1,k(sµ)}(t)|t=1 = 0. (D.5)

Therefore, the desired expression (40) follows.

We should add that in reference [14], for the square case (m = n), the

distribution (4) has been shown explicitly to correspond to the matrix model (34) using

an approach aided by matrix Dirac delta function [78]. Moreover, in the references [4]

and [14], the moments and averages pertaining to the fixed trace ensembles have

been deduced by considering the matrix Laplace transforms for the unrestricted trace

ensemble and thereby formulating the generating functions. The formalism adopted in
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these references is equivalent to the current approach of working in the eigenvalue space

to derive the correlation function and moments. However, for the rectangular case, the

matrix-based approach seems mathematically more involved.

Appendix E. Average HCT entropy in terms of integral involving level

density of unrestricted trace ensemble

We begin with the expression (48) for the average entropy to obtain

〈Sω〉BH =
1

ω − 1
− C(F )

(ω − 1)

∫ ∞
0

· · ·
∫ ∞
0

(
n∑
i=1

µωi

)
δ

(
n∑
i=1

µi − 1

)

× ∆2({µ})
∆+({µ})

n∏
j=1

µαj dµj (E.1)

We now focus on the multidimensional integral part of the above expression and

introduce an auxiliary gamma function integral as

1

Γ(θ)

∫ ∞
0

e−rrθ−1
∫ ∞
0

· · ·
∫ ∞
0

(
n∑
i=1

µωi

)
δ

(
n∑
i=1

µi − 1

)
∆2({µ})
∆+({µ})

n∏
j=1

µαj dµj · dr (E.2)

where θ will be fixed later. Letting µj = λj/r and some simplification yields

1

Γ(θ)

∫ ∞
0

e−rrθ−1

rα+γ+ω

∫ ∞
0

· · ·
∫ ∞
0

(
n∑
i=1

λωi

)
δ

(
n∑
i=1

λi − r

)
∆2({λ})
∆+({λ})

n∏
j=1

λαj dλj · dr. (E.3)

We now set θ = α + γ + ω + 1, and integrate over r first by changing the order of

integration. This integration is trivial due to the delta function, and leaves us with

1

Γ(α + γ + ω + 1)

∫ ∞
0

· · ·
∫ ∞
0

(
n∑
i=1

λωi

)
∆2({λ})
∆+({λ})

n∏
j=1

λαj e
−λj dλj. (E.4)

We substitute this in (E.1) and introduce the normalization factor for the unrestricted

trace ensemble to obtain the average entropy as an integral involving the unrestricted

trace Bures–Hall measure (11),

〈Sω〉BH =
1

ω − 1
− C(F )

C(ω − 1)Γ(α + γ + ω + 1)

×
∫ ∞
0

· · ·
∫ ∞
0

(
n∑
i=1

λωi

)
P(λ1, . . . , λn)

n∏
j=1

dλj. (E.5)

The ratio C(F )/C of the normalization factors can now be replaced by Γ(α + γ + 1)

using (C.6) and the multidimensional integral can be reduced to a single integral

involving the level density owing to the symmetry between the eigenvalues and,

therefore, gives us the result (50).
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Appendix F. Calculation of the average HCT entropy

We first use the level density (40) for the fixed trace ensemble directly to obtain the

average HCT entropy using (49). This yields

〈Sω〉BH =
1

ω − 1
− n!C(F )

ω − 1

∑
1≤j<k≤N

(−1)j+k

×
[∫ 1

0

µωΨj,k(µ)dµ−
∫ 1

0

µωΨk,j(µ)dµ

]
Pf[H(j,k)], (F.1)

where Ψj,k(µ) is given by (41) and (42). For (41), we obtain∫ 1

0

µωΨj,k(µ)dµ =
2Γ(k + α)Γ(1− k − α)

(j + k + 2α + ω)Γ(1− j − k − α + γ)

− 2Γ(k + α)

(j + k + 2α + ω)Γ(γ − j)
[B(1− k − α, γ − j)− B(j + α + ω + 1, γ − j)]

− Γ(k + α)

Γ(γ − j + 1)
B(j + α + ω, γ − j + 1). (F.2)

Here, along with elementary integrals, we used
∫ 1

0
µaBµ(b, c) dµ = (a+ 1)−1[B(b, c) −

B(a + b + 1, c)]. Now, we write the beta functions in terms of gamma functions and

simplify to obtain∫ 1

0

µωΨj,k(µ)dµ =
2Γ(k + α)Γ(j + α + ω + 1)

(j + k + 2α + ω)Γ(α + γ + ω + 1)
− Γ(k + α)Γ(j + α + ω)

Γ(α + γ + ω + 1)

=

(
j − k + ω

j + k + 2α + ω

)
Γ(j + α + ω)Γ(k + α)

Γ(α + γ + ω + 1)
. (F.3)

Additionally, when n is odd, using (42) we get∫ 1

0

µω Ψj,n+1(µ)dµ = − Γ(j + α + ω)

Γ(α + γ + ω + 1)
,

∫ 1

0

µω Ψn+1,k(µ)dµ = 0. (F.4)

Equation (51) then follows using (F.3) and (F.4) obtained above and defining ηj,k =

Γ(α + γ + ω + 1)
∫ 1

0
µωΨj,k(µ)dµ.

This result can be also obtained using the equation (50) which involves integration

with the level density of the unrestricted trace ensemble. We have

〈Sω〉BH =
1

ω − 1
− n!C Γ(α + γ + 1)

(ω − 1)Γ(α + γ + ω + 1)

∑
1≤j<k≤N

(−1)j+k

×
[∫ ∞

0

λωΦj,k(λ)dλ−
∫ ∞
0

λωΦk,j(λ)dλ

]
Pf[H(j,k)], (F.5)

where Φj,k(λ) = Fj(λ)Gk(λ). Using (27) and (28), we obtain∫ ∞
0

λωΦj,k(λ)dλ = Γ(k + α)

[
2Γ(j + α + ω + 1)

j + k + 2α + ω
− Γ(j + α + ω)

]
=

(j − k + ω) Γ(j + α + ω)Γ(k + α)

j + k + 2α + ω
, (F.6)
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where along with the gamma function integral, we used
∫∞
0
λaEb(λ) dλ = Γ(a+1)/(a+b).

Also, when n is odd, using (29) and (30), we obtain∫ ∞
0

λω Φj,n+1(λ)dλ = −Γ(j + α + ω),

∫ ∞
0

λω Φn+1,k(λ)dλ = 0. (F.7)

Substituting these in (F.5) gives back (51) again.

Appendix G. Calculation of the average von Neumann entropy

We will calculate the average von Neumann entropy by taking the limit ω → 1 in the

average HCT entropy. First of all, we notice that, since
∑n

i=1 µ
ω
i = 1 for ω = 1,

the ensemble average over it using the fixed trace jpd also yields 〈
∑n

i=1 µ
ω
i 〉BH =∫ 1

0
µωR

(F )
1 (µ)dµ = 1. Therefore, if we compare the respective factors appearing with

1/(ω − 1) in the second term on the right side of (49) and (51), we obtain

n!C(F )

Γ(α + γ + ω + 1)

∑
1≤j<k≤N

(−1)j+k(ηj,k − ηk,j)Pf
[
H(j,k)

] ∣∣∣
ω=1

= 1. (G.1)

This, in turn, leads us to the result∑
1≤j<k≤N

[
2

N(N − 1)
− n!C(F )

Γ(α + γ + ω + 1)
(−1)j+k(ηj,k − ηk,j)Pf

[
H(j,k)

]]
ω=1

= 0. (G.2)

Now, we can write down (51) in the following form:

〈Sω〉BH =
1

(ω − 1)

∑
1≤j<k≤N

[
2

N(N − 1)
−
n!C(F )(−1)j+k(ηj,k − ηk,j)Pf

[
H(j,k)

]
Γ(α + γ + ω + 1)

]

=
∑

1≤j<k≤N

[
2Γ(α + γ + ω + 1)− n!C(F )N(N − 1)(−1)j+k(ηj,k − ηk,j)Pf

[
H(j,k)

]
N(N − 1)(ω − 1)Γ(α + γ + ω + 1)

]
.(G.3)

In view of the identity (G.2) above, this is clearly of 0/0 form for ω = 1. Therefore, we

may apply L’Hospital’s rule in this expression to evaluate the ω → 1 limit, and thereby

obtain the average von Neumann entropy. We use the following results:

∂

∂ω
Γ(α + γ + ω + 1)

ω→1
= Γ(α + γ + 2)ψ(α + γ + 2), (G.4)

∂

∂ω
(ω − 1)Γ(α + γ + ω + 1)

ω→1
= Γ(α + γ + 2), (G.5)

∂

∂ω
ηj,k

ω→1
=

2Γ(j + α + 1)Γ(k + α + 1)

(j + k + 2α + 1)2

+
(j − k + 1)

(j + k + 2α + 1)
Γ(j + α + 1)Γ(k + α)ψ(j + α + 1); j, k = 1, ..., n, (G.6)

∂

∂ω
ηj,n+1

ω→1
= −Γ(j + α + 1)ψ(j + α + 1),

∂

∂ω
ηn+1,k

ω→1
= 0; j, k = 1, ..., n. (G.7)

We note that the first term in (G.6) is symmetric in j and k, and since we are concerned

with the difference ηj,k− ηk,j, we may drop it and define ξj,k as in (55) for j, k = 1, ..., n,
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along with ξj,n+1 and ξn+1,k given in (56). Therefore, the limit gives us∑
1≤j<k≤N

[
2Γ(α + γ + 2)ψ(α + γ + 2)− n!C(F )N(N − 1)(−1)j+k(ξj,k − ξk,j)Pf

[
H(j,k)

]
N(N − 1)Γ(α + γ + 2)

]
,

which, in turn, leads to (54) after separating the two terms in the summation.

Instead of performing the above limit, the average von Neumann entropy calculation

can also be performed by directly averaging over −
∑

i µi lnµi using the level density

expression of the fixed trace ensemble or mapping it to an average over the level density

of the unrestricted trace level density, similar to what has been done for the average

HCT entropy. This again leads to the same expression as (54) after some simplification.
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