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Abstract

We discuss in detail the parasupersymmetric quantum mechanics
of arbitrary order where the parasupersymmetry is between the nor-
mal bosons and those corresponding to the truncated harmonic oscil-
lator. We show that even though the parasusy algebra is different from
that of the usual parasusy quantum mechanics, still the consequences
of the two are identical. We further show that the parasupersymmet-
ric quantum mechanics of arbitrary order p can also be rewritten in
terms of p supercharges (i.e. all of which obey Q2

i = 0). However, the
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Hamiltonian cannot be expressed in a simple form in terms of the p
supercharges except in a special case. A model of conformal parasu-
persymmetry is also discussed and it is shown that in this case, the p
supercharges, the p conformal supercharges along with Hamiltonian
H, conformal generator K and dilatation generator D form a closed
algebra.
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A great deal of attention is now being paid to study [1, 2, 3, 4] quantum
mechanics in a finite dmensional Hilbert space (FHS). In particular, we would
like to mention the recent developments [2, 3, 4] in quantum phase theory
which deals [2] with a quantized harmonic oscillator in a FHS and which
finds interesting applications [4] in problems of quantum optics.

Recently, two of us (BB and PKR) studied [5] some basic properties
of these oscillators. In particular it was pointed out that the raising and
lowering operators of the truncated oscillator behave like parafermi osilla-
tor. Inspired by this similarity, a parasupersymmetric quantum mechanics
(PSQM) of order 2 was also written down where the parasusy is between
the usual bosons and the truncated bosons. However, the explicit form of
the charge was not written down. Further the consequences were also not
elaborated upon. The purpose of this note is to generalize this construction
to arbitrary order. In particular, we show that for these PSQM models of
arbitrary order p, the algebra is given by

Qp+1 = 0; [H,Q] = 0 (1)

QpQ+ +Qp−1Q+Q + ...+Q+Qp = p(p+ 1)Qp−1H (2)

and the Hermitian conjugated relations and discuss their consequences in
some detail. In particular, we show that the consequences following from
this algebra are identical to those following from the well known PSQM
model of the same order p [6] [7] even though the two algebras are different.
In particular, whereas eq. (1) is identical in the two schemes, eq. (2) is
different in the two schemes in the sence that in the well known case the
coefficient on the r.h.s. is 2p instead of p(p+1) in eq. (2). In view of
the identical consequences, it is worth examining as to why the PSQM of
order p can be written down in an alternative way. To that end we show
that one can infact express PSQM of order p in terms of p super (rather
than parasuper) charges all of which satisfy Q2

i =0 and further all of them
commute with the Hamiltonian. However, unlike the usual supersymmetric
(SUSY) quantum mechanics (QM), here H cannot be simply expressed in
terms of the p supercharges except in a special case. In the special case we
show that the Hamiltonian has a very simple expression in terms of the p
supercharges

Q1Q
+

1 +
p

∑

j=1

Q+

j Qj = 2H (3)
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We also discuss a para superconformal model of order p and show that the di-
latation and conformal operators also can similarly be expressed in quadratic
form in terms of the p SUSY and p para superconformal charges.

Let us start with the truncated raising and lowering operatorss a+ and a.
It is well known that if one truncates at (p+1)’th level (p > 0 is an integer)
then a and a+ can be represented by (p + 1) × (p + 1) matrices and they
satisfy the commutation relation [8]

[a, a+] = I − (p+ 1)K (4)

where I is (p + 1) × (p + 1) unit matrix while K = diag(0, 0, ..., 0, 1) with
Ka = 0 and further K2 = K 6= 0. As shown by Kleeman [9], the irreducible
representations of eq.(4) are the same as those for the scheme

[a, a+a] = a; ap+1 = 0; aj 6= 0 if j < (p+ 1). (5)

A convenient set of representation of the matrices a and a+ is given by

(a)αβ =
√
αδα+1,β (6)

(a+)α,β =
√

βδα,β+1 (7)

where α, β = 1,2,...(p+1). As shown in [5], the nontrivial multilinear relation
between a and a+ is given by

apa+ + ap−1a+a+ ... + aa+ap−1 + a+ap =
p(p+ 1)

2
ap−1. (8)

These relations are strikingly similar to those of parafermi oscillator of
order p [7] except that in the later case, the coefficient on the right hand
side is p(p+1)(p+2)/6 unlike p(p+1)/2 in eq.(8). As expected, for the case
of the Fermi oscillator (p=1), both the coefficients are same while they are
different otherwise.

Motivated by the nontrivial relation between a and a+ as given by eq.(8)
it is worth enquiring if one can construct a kind of PSQM of order p in which
there will be symmetry between bosons and truncated bosons of order p. It
turns out that the answer to the question is yes. In particular, on choosing
the parasusy charges Q and Q+ as (p+ 1)× (p+ 1) matrices as given by

(Q)αβ = b+a =
√
α(P + iWα)δα+1,β (9)
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(Q†)αβ = ba+ =
√

β(P − iWβ)δα,β+1 (10)

where b, b+ denote the bosonic annihilation and creation operators and
α, β = 1, 2, ..., (p + 1), so that Q and Q† automatically satisfy Qp+1 = 0 =
(Q†)p+1 . Further, it is easily shown that the Hamiltonian (h̄ = m = 1)

(H)αβ = Hαδαβ, (11)

where (r = 1, 2, ..., p)

Hr =
P 2

2
+

1

2
(W 2

r −W ′
r) +

1

2
Cr

Hp+1 =
P 2

2
+

1

2
(W 2

p +W ′
p) +

1

2
Cp (12)

commutes with the PARASUSY charges Q and Q† (i.e. [H,Q] = 0 =
[H,Q+]) provided (s = 2, 3..., p)

W 2

s−1 +W ′
s−1 + Cs−1 = W 2

s −W ′
s + Cs. (13)

Here C1, C2, ..., Cp are arbitrary constants with the dimension of energy. It
turns out that the nontrivial relation given by eq.(2) between Q,Q† and H
is satisfied provided

C1 + 2C2 + ... + pCp = 0. (14)

It is interesting to notice that the PARASUSY charge as well as the
algebra as given by eqs.(1), (2), (9), (10) and (14) is very similar to that of
standard PSQM of order p [7] except that in the standard case the coefficient
on the r.h.s. of eq.(2) is 2p instead of p(p+1)/2 and instead of eq.(14) in the
standard case one has

C1 + C2 + ...+ Cp = 0 (15)

Besides, unlike in eq. (9), in the standard case, Q is defined without the
factor of

√
α. However, the Hamiltonian and the relation between the su-

perpotentials as given by eqs.(11) to (13) are identical in the two cases. As
a result the consequences following from the two different PSQM scemes of
order p are identical. In particular, as shown in [7], in both the cases (i)the
spectrum is not necessarily positive semidefinite unlike in SUSY QM (ii) the
spectrum is (p+1)-fold degenerate atleast above the first p levels while the
ground state could be 1,2,...,p fold degenerate depending on the form of the
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superpotentials and (iii) one can associate p ordinary SUSY QM Hamiltoni-
ans.

Why do the two seemingly different PSQM schemes give the same con-
sequences? The point is that in the case of parasusy of order p, one has p
independent parasusy charges and in the two schemes one has merely used
two of the p independent forms of Q. It is then clear that one can infact de-
fine p seemingly different PSQM schemes of order p but all of them will have
identical consequences. For example, the parafermi operators are usually
defined by the following (p+ 1)× (p+ 1) matrices [7]

(a)αβ =
√

α(p− α + 1)δα+1,β (16)

(a+)α,β =
√

β(p− β + 1)δα,β+1 (17)

So one could as well have defined the parasusy charges by

(Q)αβ = b+a =
√

α(p− α + 1)(P + iWα)δα+1,β (18)

(Q†)αβ = ba+ =
√

β(p− β + 1)(P − iWβ)δα,β+1 (19)

instead of the usual choice without the squareroot factor [7]. It is easily shown
that in this case too the parasusy charges Q and Q+ satisfy the algebra as
given by eqs. (1), (2) and (14) except that the factor on the r.h.s. of eq. (2)
is now p(p+1)(p+2)/3 and the constants Ci satisfy

p(C1 + Cp) + 2(p− 1)(C2 + Cp−1) + ... +
(p+ 1)

2
C p+1

2

= 0, p odd (20)

p(C1 +Cp) + 2(p− 1)(C2 +Cp−1) + ...+
p(p+ 2)

4
(C p

2
+C p+2

2

) = 0, p even

(21)
instead of eq. (14). However, as before the Hamiltonian and the relation
between the various superpotentials is unaltered and hence one would get
the same consequences as in the standard PSQM case [7].

At this stage it is worth asking if parasusy QM of order p can be put in
an alternative form by making use of the fact that there are p independent
parasupercharges [7]? If yes this would be analogous to the so called Green
construction for parafermi and parabose operators [10]. We now show that
the answer to the question is yes. Let us first note that the supercharge as
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given by eq. (9) can be written down as a linear combination of the following
p supercharges [12]

Q =
p

∑

j=1

√

jQj  = 1, 2, ...p (22)

where
(Qj)αβ = (P − iWj)δα+1,β=j+1 (23)

It is easily checked that these p charges Qj are infact supercharges in the
sense that all of them satisfy Q2

j = 0. Further, all of them commute with
the Hamiltonian as given by eq. (11) provided condition (13) is satisfied.
Besides they satisfy

QiQj = 0 if j 6= i+ 1 (24)

QiQ
+

j = 0 = Q+

i Qj if i 6= j (25)

However, there is one respect in which these charges are different from the
usual SUSY charges in that unlike in that case, the nontrivial relation of the
usual parasusy algebra (i.e. eq. (2) but with 2p on the r.h.s. instead of
p(p+1)) now contains product of all p charges i.e.

Q1[Q
+

1 Q1Q2...Qp−1+Q2Q
+

2 Q2...Qp−1+...+Q2Q3...QpQ
+

p ] = 2pQ1Q2...Qp−1H
(26)

[Q+

1 Q1Q2...Qp−1 +Q2Q
+

2 Q2...Qp−1 + ...+Q2Q3...QpQ
+

p ]Qp = 2pQ2Q3...QpH
(27)

provided eq. (15) is satisfied. If one instead considers other versions of
PSQM of order p then one would have similar relations but with different
weight factors between the various terms and also different relations between
Ci which can easily be worked out.

There is one special case however when the algebra takes a particularly
simple form. In particular when all the constants Ci are zero then it is easily
checked that the Hamiltonian can be written as a sum over quadratic pieces
in Q as given by eq. (3) which is a generalization of the SUSY algebra in
the case of p supercharges. In this case, clearly the spectrum is positive
semidefinite and most of the results about SUSY breaking etc. would apply.
Further all the excited states are always (p+1)-fold degenerate. It is amusing
to note that in ortho supersymmetricsy QM too [11] the relation between H
and charges is exactly as given by eq. (3).
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Following the work of [7], we now consider a specific PSQM model of order
p which in addition is conformally invariant and show that the conformal
PSQM algebra is rather simple. Let us consider the choice

W1 = W2 = .... = Wp = −λ

x
(28)

Note that in this case the condition (13) is trivially satisfied when all Ci are
zero. The interesting point is that in this case, apart from the p parafermionic
charges Qi, we can also define the dilatation operator D, the conformal op-
erator K and p para superconformal charges Sj so that they form a closed
algebra. In particular, on defining

D = −1

4
(xP + Px); K = x2/2 (29)

(Sj)αβ = −xδα+1,β=j+1 (30)

it is easy to show that the algebra satisfied by D, H and K is standard

[H,K] = 2iD, [D,K] = iK, [D,H ] = −iH. (31)

Further
[K,Sj] = 0, [H,Sj ] = iQj , [K,Qj] = iSj , (32)

[D,Qj] = − i

2
Qj, [D,Sj] =

i

2
Sj . (33)

Besides, apart from the parasusy algebra as described above (with Ci = 0),
we have

SiSj = 0 = QiSj = SiQj if j 6= i+ 1 (34)

QiS
+

j = 0 = SiS
+

j = Qi+Sj if i 6= j (35)

S1S
+

1 +
p

∑

j=1

S+

j Sj = 2K (36)

S1Q
+

1 +Q1S
+

1 +
p

∑

j=1

(S+

j Qj +Q+

j Sj) = 4D (37)

It is quite remarkable that an identical algebra also follows in the case of the
conformal ortho supersymmetric case [11].
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