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Abstract

We describe a model that enables us to analyze the running time of an algorithm in a computer with

a memory hierarchy with limited associativity, in terms of various cache parameters. Our model, an

extension of Aggarwal and Vitter’s I/O model, enables us to establish useful relationships between the

cache complexity and the I/O complexity of computations. As a corollary, we obtain cache-optimal al-

gorithms for some fundamental problems like sorting, FFT, and an important subclass of permutations

in the single-level cache model. We also show that ignoring associativity concerns could lead to infe-

rior performance, by analyzing the average-case cache behavior of mergesort. We further extend our

model to multiple levels of cache with limited associativity and present optimal algorithms for matrix

transpose and sorting. Our techniques may be used for systematic exploitation of the memory hierarchy

starting from the algorithm design stage, and dealing with the hitherto unresolved problem of limited

associativity.

1 Introduction

Models of computation are essential for abstracting the complexity of real machines and enabling the design

and analysis of algorithms. The widely-used RAM model owes its longevity and usefulness to its simplic-

ity and robustness. While it is far removed from the complexities of any physical computing device, it

successfully predicts the relative performance of algorithms based on an abstract notion of operation counts.

The RAM model assumes a flat memory address space with unit-cost access to any memory location.

With the increasing use of caches in modern machines, this assumption grows less justifiable. On modern

computers, the running time of a program is as much a function of operation count as of its cache reference

pattern. A result of this growing divergence between model and reality is that operation count alone is

not always a true predictor of the running time of a program, and manifests itself in anomalies such as a

matrix multiplication algorithm demonstrating O(n5) running time instead of the expected O(n3) behavior

predicted by the RAM model [5]. Such shortcomings of the RAM model motivate us to seek an alternative

model that more realistically models the presence of a memory hierarchy. In this paper, we address the issue

of better and systematic utilization of caches starting from the algorithm design stage.
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A challenge in coming up with a good model is achieving a balance between abstraction and fidelity, so

as not to make the model unwieldy for theoretical analysis or simplistic to the point of lack of predictiveness.

Memory hierarchy models used by computer architects to design caches have numerous parameters and

suffer from the first shortcoming [1, 26]. Early algorithmic work in this area focussed on a two-layered

memory model[21]—a very large capacity memory with slow access time (secondary memory) and a limited

size faster memory (internal memory). All computation is performed on elements in the internal memory

and there is no restriction on placement of elements in the internal memory (fully associative).

The focus of this paper is on the interaction between main memory and cache, which is the first level

of memory hierarchy once the address is provided by the CPU. The structure of a single level hierarchy of

cache memory is adequately characterized by the following three parameters: Associativity, Block size, and

Capacity. Capacity and block size are in units of the minimum memory access size (usually one byte). A

cache can hold a maximum of C bytes. However, due to physical constraints, the cache is divided into cache

frames of size B that contain B contiguous bytes of memory—called a memory block. The associativity A
specifies the number of different frames in which a memory block can reside. If a block can reside in any

frame (i.e., A = C
B ), the cache is said to be fully associative; if A = 1, the cache is said to be direct-mapped;

otherwise, the cache is A-way set associative.

For a given memory access, the hardware inspects the cache to determine if the corresponding memory

element is resident in the cache. This is accomplished by using an indexing function to locate the appropriate

set of cache frames that may contain the memory block. If the memory block is not resident, a cache miss is

said to occur. From an architectural standpoint, cache misses can be classified into one of three classes [20].

• A compulsory miss (also called a cold miss) is one that is caused by referencing a previously unref-

erenced memory block. Eliminating a compulsory miss requires prefetching the data, either by an

explicit prefetch operation or by placing more data items in a single memory block.

• A reference that is not a compulsory miss but misses in a fully-associative cache with LRU replace-

ment is classified as a capacity miss. Capacity misses are caused by referencing more memory blocks

than can fit in the cache. Restructuring the program to re-use blocks while they are in cache can reduce

capacity misses.

• A reference that is not a compulsory miss that hits in a fully-associative cache but misses in an A-way

set-associative cache is classified as a conflict miss. A conflict miss to block X indicates that block X

has been referenced in the recent past, since it is contained in the fully-associative cache, but at least

A other memory blocks that map to the same cache set have been accessed since the last reference to

block X. Eliminating conflict misses requires transforming the program to change either the memory

allocation and/or layout of the two arrays (so that contemporaneous accesses do not compete for the

same sets) or the manner in which the arrays are accessed.

Conflict misses pose an additional challenge in designing efficient algorithms in the cache. This class of

misses is not present in the I/O models, where the mapping between internal and external memory is fully

associative.

Existing memory hierarchy models [4, 2, 3, 5] do not model certain salient features of caches, notably

the lack of full associativity in address mapping and the lack of explicit control over data movement and

replacement. Unfortunately, these small differences are malign in the effect.1 The conflict misses that they

introduce make analysis of algorithms much more difficult [16]. Carter and Gatlin [9] conclude a recent

paper saying

1See the discussion in [9] on a simple matrix transpose program.
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What is needed next is a study of “messy details” not modeled by UMH (particularly cache as-

sociativity) that are important to the performance of the remaining steps of the FFT algorithm.

In the first part of this paper, we develop a two-level memory hierarchy model to capture the interaction

between cache and main memory. Our model is a simple extension of the two-level I/O model that Aggarwal

and Vitter [4] proposed for analyzing external memory algorithms. However, it captures three additional

constraints of caches: lower miss penalties; lack of full associativity in address mapping; and lack of explicit

program control over data movement. The work in this paper shows that the constraint imposed by limited

associativity can be tackled quite elegantly, allowing us to extend the results of the I/O model to the cache

model very efficiently.

Most modern architectures have a memory hierarchy consisting of multiple cache levels. In the second

half of this paper, we extend the two-level cache model to a multi-level cache model.

The remainder of this paper is organized as follows. Section 2 surveys related work. Section 3 defines

our cache model and establishes an efficient emulation scheme between the I/O model and our cache model.

As direct corollaries of the emulation scheme, we obtain cache-optimal algorithms for several fundamental

problems such as sorting, FFT, and an important class of permutations. Section 4 illustrates the importance

of the emulation scheme by demonstrating that a direct (i.e., bypassing the emulation) implementation of

an I/O-optimal sorting algorithm (multiway mergesort) is provably inferior, even in the average case, in the

cache model. Section 5 describes a natural extension of our model to multiple levels of caches. We present

an algorithm for transposing a matrix in the multi-level cache model that attains optimal performance in the

presence of any number of levels of cache memory. Our algorithm is not cache-oblivious, i.e., we do make

explicit use of the sizes of the cache at various levels. Next, we show that with some simple modifications,

the funnel-sort algorithm of Frigo et al. attains optimal performance in a single level (direct mapped) cache

in an oblivious sense, i.e., without prior knowledge of memory parameters. Finally, Section 6 presents

conclusions, possible refinements to the model, and directions for future work.

2 Related work

The I/O model assumes that most of the data resides on disk and has to be transferred to main memory to do

any processing. Because of the tremendous difference in speeds, it ignores the cost of internal processing

and counts only the number of I/Os. Floyd [15] originally defined a formal model and proved tight bounds on

the number of I/Os required to transpose a matrix using two pages of internal memory. Hong and Kung [21]

extended this model and studied the I/O complexity of FFT when the internal memory size is bounded by

M . Aggarwal and Vitter [4] further refined the model by incorporating an additional parameter B, the

number of (contiguous) elements transferred in a single I/O operation. They gave upper and lower bounds

on the number of I/Os for several fundamental problems including sorting, selection, matrix transposition,

and FFT. Following their work, researchers have designed I/O-optimal algorithms for fundamental problems

in graph theory [13] and computational geometry [19].

Researchers have also modeled multiple levels of memory hierarchy. Aggarwal et al. [2] defined the

Hierarchical Memory Model (HMM) that assigns a function f(x) to accessing location x in the memory,

where f is a monotonically increasing function. This can be regarded as a continuous analog of the multi-

level hierarchy. Aggarwal et al. [3] added the capability of block transfer to the HMM, which enabled them

to obtain faster algorithms. Alpern et al. [5] described the Uniform Memory Hierarchy (UMH) model, where

the access costs differ in discrete steps. Very recently, Frigo et al. [18] presented an alternate strategy of

algorithm design on these models which has the added advantage that explicit values of parameters related

to different levels of the memory hierarchy are not required. Bilardi and Peserico [8] investigate further the
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complexity of designing algorithms without the knowledge architectural parameters.2 Other attempts were

directed towards extracting better performance by parallel memory hierarchies [32, 33, 14], where several

blocks could be transferred simultaneously.

Ladner et al. [23] describe a stochastic model for performance analysis in cache. Our work is different

in nature, as we follow a more traditional worst-case analysis. Our analysis of sorting in Section 4 provides

a better theoretical basis for some of the experimental work of LaMarca and Ladner [25].

To the best of our knowledge, the only other paper that addresses the problem of limited associativity in

cache is recent work of Mehlhorn and Sanders[27]. They show that for a class of algorithms based on merg-

ing multiple sequences, the I/O algorithms can be made nearly optimal by use of a simple randomized shift

technique. The emulation theorem in Section 3 of this paper not only provides a deterministic solution for

the same class of algorithms, but also works for a very general situation. The results in [27] are nevertheless

interesting from the perspective of implementation.

3 The cache model

The (two-level) I/O model of Aggarwal and Vitter [4] captures the interaction between a slow (secondary)

memory of infinite capacity and a fast (primary) memory of limited capacity. It is characterized by two

parameters: M , the capacity of the fast memory; and B, the size of data transfers between slow and fast

memories. Such data movement operations are called I/O operations or block transfers. The use of the

model is meaningful when the problem size N ≫ M .

The I/O model contains the following further assumptions.

1. A datum can be used in a computation iff it is present in fast memory. All data initially resides in

slow memory. Data can be transferred between slow and fast memory (in either direction) by I/O

operations.

2. Since the latency for accessing slow memory is very high, the average cost of transfer per element can

be reduced by transferring a block of B elements at little additional cost. This may not be as useful as

it may seem at first sight, since these B elements are not arbitrary, but are contiguous in memory. The

onus is on the programmer to use all the elements, as traditional RAM algorithms are not designed

for such restricted memory access patterns. We denote the map from a memory address to its block

address by B. The internal memory can hold at least three blocks, i.e., M > 3 ·B.

3. The computation cost is ignored in comparison to the cost of an I/O operation. This is justified by the

high access latency of slow memory.

4. A block of data from slow memory can be placed in any block of fast memory.

5. I/O operations are explicit in the algorithm.

The goal of algorithm design in this model is to minimize the number of I/O operations.

We adopt much of the framework of the I/O model in developing a cache model to capture the interac-

tions between cache and main memory. In this case, the cache is the fast memory, while main memory is

the slow memory. Assumptions 1 and 2 of the I/O model continue to hold in our cache model. However,

assumptions 3–5 are no longer valid and need to be replaced as follows.

• The difference between the access times of slow and fast memory is considerably smaller than in

the I/O model, namely a factor of 5–100 rather than factor of 10000. We will use L to denoted the

2However, none of these models address the problem of limited associativity in cache.
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normalized cache latency. This cost function assigns a cost of 1 for accessing an element in cache and

L for accessing an element in the main memory. This way, we also account for the computation in

cache.

• Main memory blocks are mapped into cache sets using a fixed and pre-determined mapping function

that is implemented in hardware. Typically, this is a modulo mapping based on the low-order address

bits. However, the results of this section will hold as long as there is a fixed address mapping function

that distributes the main memory evenly in the cache. We denote this mapping from main memory

blocks to cache sets by S. We will occasionally slightly abuse this notation and apply S directly to a

memory address x rather than to B(x).

• The cache is not visible to the programmer (not even at the assembly level). When a program issues

a reference to a memory location x, an image (copy) of the main memory block b = B(x) is brought

into the cache set S(b) if it is not already present there. The block b continues to reside in cache until

it is evicted by another block b′ that is mapped to the same cache set (i.e., S(b) = S(b′)). In other

words, a cache set c contains the latest memory block referenced that is mapped to this set.

To summarize, we use the notation C(M,B,L) to denote our three-parameter cache model, and the

notation I(M,B) to denote the I/O model with parameters M and B. We will use n and m to denote N/B
and M/B respectively. The assumptions of our cache model parallel those of the I/O model, except as noted

above.3 The goal of algorithm design in the cache model is to minimize running time, defined as the number

of cache accesses plus L times the number of main memory accesses.

3.1 Emulating I/O algorithms

The differences between the two models listed above would appear to frustrate any efforts to naively map an

I/O algorithm to the cache model, given that we neither have the control nor the flexibility of the I/O model.

Our main result in this section establishes a connection between the I/O model and the cache model using a

very simple emulation scheme.

Theorem 3.1 (Emulation Theorem) An algorithm A in I(M,B) using T block transfers and I processing

time can be converted to an equivalent algorithm Ac in C(M,B,L) that runs in O(I + (L+B) · T ) steps.

The memory requirement of Ac is an additional m+ 2 blocks beyond that of A.

Proof: Note that I is usually not accounted for in the I/O model, but we will keep track of the internal

memory computation done in A in our emulation. The idea behind the emulation is as follows. We will

mimic the behavior of the I/O algorithm A in the cache model, using an array Buf of m blocks to play the

role of the fast memory. We will view the main memory in the cache model as an array Mem of B-element

blocks. Although Buf is also part of the memory, we are using different notations to make their roles explicit

in this proof. Likewise, we will view the cache as an array of sets and denote the ith set by C[i].
As discussed above, we do not have explicit control on the contents of the cache locations. However, we

can control the memory access pattern through a level of indirection so as to maintain a 1-1 correspondence

between Buf and the cache. Wlog, we assume that S maps block i of Buf to cache set C[i] for i ∈ [1,m].
We divide the I/O algorithm into rounds, where in each round, the I/O algorithm A transfers a block

between the slow memory and the fast memory and (possibly) does some computations. The cache algorithm

Ac transfers the same blocks between Mem and Buf and then does the identical computations in Buf . Figure

1 formally describes the procedure. Note that the B elements must be explicitly copied in the cache model.

3Frigo et al. [18] independently arrive at a very similar parameterization of their model.
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Round t of the emulation

I/O Algorithm A Cache Emulation Ac

1. Transfer block bt from slow memory to

block at of the fast memory

1. Copy contents of the B locations of

Mem[bt] into Buf [at]
2. Perform computations in fast memory 2. Perform identical computations in Buf

Figure 1: The emulation scheme used in the proof of Theorem 3.1.

It must be obvious that the final outcome of algorithm Ac is the same as algorithm A. The more inter-

esting issue is the cost of the emulation.

A block of size B is transferred into cache if its image does not exist in the cache at the time of reference.

The invariant that we try to maintain at the end of each round is that there is a 1-1 correspondence between

Buf and C . This will ensure that all the I operations are done within the cache at minimal cost.

Assume that we have maintained the above invariant at the end of round t − 1. In round t, we transfer

block Mem[bt] into Buf [at]. Accessing the memory block Mem[bt] will displace the existing block in cache

set C[q], where q = S(bt). From the invariant, we know that the block displaced from C[q] is Buf [q],
which must be restored to cache to restore the invariant. We can bring it back by a single memory reference

and charge this to the round t itself, which is L. (Actually it will be brought back during the subsequent

reference, so the previous step is only to simplify the accounting.)

The cost of copying Mem[bt] to Buf [at] is L+B assuming that Mem[bt] and Buf [at] are not mapped to

the same cache set (S(bt) 6= S(at)). Otherwise it will cause alternate cache misses (thrashing) of the blocks

Mem[bt] and Buf [at] leading to L · B steps for copying. This can be prevented by transferring through an

intermediate memory block Mem[Y ] such that S(Y ) 6= S(bt). Having two such intermediate buffers that

map to distinct cache sets would suffice in all cases. So, we first transfer Mem[bt] to Mem[Y ] followed by

Mem[Y ] to Buf [j]. The first copying has cost 2L+B since both blocks must be fetched from main memory.

The second transfer is between blocks, one of which is present in the cache, so it has cost L+B. To this we

must also add cost L for restoring the block of Buf that was mapped to the same cache set as Mem[Y ]. So,

the total cost of the safe method is 4L+ 2B.

The internal processing remains identical. If It denotes the internal processing cost of step t, the total

cost of the emulation is at most
∑T

t=1(It + 2(L+B) + 2L) = I + 4L · T + 2B · T . ✷

Remark 1

• A possible alternative to using intermediate memory-resident buffers to avoid thrashing is to use

registers, since register access is much faster. In particular, if we have B registers, then we can save

two extra memory accesses, bringing down the emulation cost to 2L+ 2B.

• We can make the emulation somewhat simpler by using a randomized mapping scheme. That is, if

we choose the starting location of array Buf randomly, then the probability that Mem[bt] and Buf [at]
have the same image is 1/M . So the expected emulation cost is I + 2L · T + (B + (LB)/M) · T
without using any intermediate copying.

• The basic idea of copying data into contiguous memory locations to reduce interference misses has

been exploited before in some specific contexts like matrix multiplication [24] and bit-reversal per-

mutation [9]. Theorem 3.1 unifies these previous results within a common framework.
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The term O(B · T ) is subsumed by O(I) if computation is done on at least a constant fraction of the

elements in the block transferred by the I/O algorithm. This is usually the case for efficient I/O algorithms.

We will call such I/O algorithms block-efficient.

Corollary 3.2 A block-efficient I/O algorithm for I(M,B) that uses T block transfers and I processing can

be emulated in C(M,B,L) in O(I + L · T ) steps.

Remark 2 The algorithms for sorting, FFT, matrix transposition, and matrix multiplication described in

Aggarwal and Vitter [4] are block-efficient.

3.2 Extension to set-associative cache

The trend in modern memory architectures is to allow limited flexibility in the address mapping between

memory blocks and cache sets. The k-way set-associative cache has the property that a memory block

can reside in any (one) of k cache frames. Thus, k = 1 corresponds to the direct-mapped cache we have

considered so far, while k = m corresponds to a fully associative cache. Values of k for data caches are

generally small, usually in the range 1–4.

If all the k sets are occupied, a replacement policy like LRU is used (by the hardware) to find an as-

signment for the referenced block. The emulation technique of the previous section would extend to this

scenario easily if we had explicit control on the replacement. This not being the case, we shall tackle it indi-

rectly by making use of an useful property of LRU that Frigo et al. [18] exploited in the context of designing

cache-oblivious algorithms for a fully associative cache.

Lemma 3.1 (Sleator-Tarjan[30]) For any sequence s, FLRU , the number of misses incurred by LRU with

cache size nLRU is no more than (nLRU/(nLRU−nOPT+1)FOPT ), where FOPT is the minimimum number

of misses by an optimal replacement strategy with cache size nOPT .

We use this lemma in the following way. We run the emulation technique for only half the cache size, i.e.,

we choose the buffer to be of size m/2, such that for every k cache lines in a set, we have only k/2 buffer

blocks. From Lemma 3.1, we know that the number of misses in each each cache set is no more than twice

the optimal, which is in turn bounded by the number of misses incurred by the I/O algorithm.

Theorem 3.3 (Generalized Emulation Theorem) An algorithm A in I(M/2, B) using T block transfers

and I processing time can be converted to an equivalent algorithm Ac in the k-way set-associative cache

model with parameters M,B,L that runs in O(I + (L + B) · T ) steps. The memory requirement of Ac is

an additional m/2 + 2 blocks beyond that of A.

3.3 The cache complexity of sorting and other problems

Aggarwal and Vitter [4] prove the following lower bound for sorting and FFT in the I/O model.

Lemma 3.2 ([4]) The average-case and the worst-case number of I/O’s required for sorting N records and

for computing the N -input FFT graph in I(M,B) is Ω
(

N
B

log(1+N/B)
log(1+M/B)

)

.

Theorem 3.4 The lower bound for sorting in C(M,B,L) is Ω(N logN + LN
B

logN/B
logM/B ).

Proof: Any lower bound in the number of block transfers in I(M,B) carries over to C(M,B,L). Since

the lower bound is the maximum of the lower bound on number of comparisons and the bound in Lemma

3.2, the theorem follows by dividing the sum of the two terms by 2. ✷
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Theorem 3.5 In C(M,B,L), N numbers can be sorted in O(N logN + L · N
B · logN/B

logM/B ) steps and this is

optimal.

Proof: The M/B-way mergesort algorithm described in Aggarwal and Vitter [4] has an I/O complexity of

O(NB
logN/B
logM/B ). The processing time involves maintaining a heap of size M/B and O(logM/B) per output

element. For N elements, the number of phases is logN
logM/B , so the total processing time is O(N logN). From

Corollary 3.2, and Remark 2, the cost of this algorithm in the cache model is O(N logN +L · NB · logN/B
logM/B ).

Optimality follows from Theorem 3.4. ✷

Remark 3 The M/B-way distribution sort (multiway quicksort) also has the same upper bound.

We can prove a similar result for FFT computations.

Theorem 3.6 The FFT of N numbers can be computed in O(N logN + L · N logN/B
B logM/B ) in C(M,B,L).

Remark 4 The FFTW algorithm [17] is optimal only for B = 1. Barve [6] has independently obtained a

similar result.

The class of Bit Matrix Multiply Complement (BMMC) permutations include many important permutations

like matrix transposition and bit reversal. Combining the work of Cormen et al. [14] with our emulation

scheme, we obtain the following result.

Theorem 3.7 The class of BMMC permutations for N elements can be achieved in Θ
(

N + L · N
B

logM
log(M/B)

)

steps in C(M,B,L).

Remark 5 Many known geometric [13] and graph algorithms [19] in the I/O model, such as convex hull

and graph connectivity, can be transformed optimally into the cache model.

4 Average-case performance of mergesort in the cache model

In this section, we analyze the average-case performance of k-way mergesort in the cache model. Of the

three classes of misses described in Section 1, we note that compulsory misses are unavoidable and that

capacity misses are minimized while designing algorithms for the I/O model. We are therefore interested

in bounding the number of conflict misses for a straightforward implementation of the I/O-optimal k-way

mergesort algorithm. It is easy to construct a worst-case input permutation where there will be a conflict

miss for every input element (a cyclic distribution suffices), so the average case is more interesting.

We assume that s cache sets are available for the leading blocks of the k runs S1, . . . , Sk. In other words,

we ignore the misses caused by heap operations (or equivalently ensure that the heap area in the cache does

not overlap with the runs).

We create a random instance of the input as follows. Consider the sequence {1, . . . , N}, and distribute

the elements of this sequence to runs by traversing the sequence in increasing order and assigning element i
to run Sj with probability 1/k. From the nature of our construction, each run Si is sorted. We denote j-th

element of Si as Si,j . The expected number of elements in any run Si is N/k.

During the k-way merge, the leading blocks are critical in the sense that the heap is built on the leading

element of every sequence Si. The leading element of a sequence is the smallest element that has not been

added to the merged (output) sequence. The leading block is the cache line containing the leading element.

8



Let bi denote the leading block of run Si. Conflict can occur when the leading blocks of different sequences

are mapped to the same cache set. In particular, a conflict miss occurs for element Si,j+1 when there is at

least one element x ∈ bk, for some k 6= i, such that Si,j < x < Si,j+1 and S(bi) = S(bk). (We do not count

conflict misses for the first element in the leading block, i.e., Si,j and Si,j+1 must belong to the same block,

but we will not be very strict about this in our calculations.)

Let pi denote the probability of conflict for element i ∈ [1, N ]. Using indicator random variables Xi to

count the conflict miss for element i, the total number of conflict misses X =
∑

i Xi. It follows that the

expected number of conflict misses E[X] =
∑

iE[Xi] =
∑

i pi. In the remaining section we will try to

estimate a lower bound on pi for i large enough to validate the following assumption.

A1 The cache sets of the leading blocks, S(bi), are randomly distributed in cache sets 1, . . . , s
independent of the other sorted runs. Moreover, the exact position of the leading element within

the leading block is also uniformly distributed in positions {1, . . . , sB}.

Remark 6 A recent variation of the mergesort algorithm (see [7]) actually satisfies A1 by its very nature.

So, the present analysis is directly applicable to its average-case performance in cache. A similar observation

was made independently by Sanders [27] who obtained upper-bounds for mergesort for a set associative

cache.

From our previous discussion and the definition of a conflict miss, we would like to compute the proba-

bility of the following event.

E1 For some i, j, for all elements x, such that Si,j < x < Si,j+1, S(x) 6= S(Si,j).

In other words, none of the leading blocks of the sorted sequences Sj , j 6= i, conflicts with bi. The prob-

ability of the complement of this event (i.e., Pr[E1]) is the probability that we want to estimate. We will

compute an upper bound on Pr[E1], under the assumption A1, thus deriving a lower bound on Pr[E1].

Lemma 4.1 For k/s > ǫ, Pr[E1] < 1 − δ, where ǫ and δ are positive constants (dependent only on s and

k but not on n or B).

Proof: See Appendix A. ✷

Thus we can state the main result of this section as follows.

Theorem 4.1 The expected number of conflict misses in a random input for doing a k-way merge in an

s-set direct-mapped cache, where k is Ω(s), is Ω(N), where N is the total number of elements in all the

k sequences. Therefore the (ordinary I/O-optimal) M/B-way mergesort in an M/B-set cache will exhibit

O(N logN/B
logM/B ) cache misses which is asymptotically larger than the optimal value of O(NB

logN/B
logM/B ).

Proof: The probability of conflict misses is Ω(1) when k is Ω(s). Therefore the expected total number of

conflict misses is Ω(N) for N elements. The I/O-optimal mergesort uses M/B-way merging at each of the
logN/B
logM/B levels, hence the second part of the theorem follows. ✷

Remark 7 Intuitively, by choosing k ≪ s, we can minimize the probability of conflict misses resulting

in an increased number of merge phases (and hence running time). This underlines the critical role of

conflict misses vis-a-vis capacity misses that forces us to use only a small fraction of the available cache.

Recently, Sanders [27] has shown that by choosing k to be O( M
B1+1/a ) in an a-way set associative cache with

a modified version of mergesort of [7], the expected number of conflict misses per phase can be bounded by

O(N/B). In comparision, the use of the emulation theorem guarantees minimal worst-case conflict misses

while making good use of cache.
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5 The Multi-level Cache Model

Most modern architectures have a memory hierarchy consisting of multiple levels of cache. Consider two

cache levels L1 and L2 preceding main memory, with L1 being faster and smaller. The operation of the

memory hierarchy in this case is as follows. The memory location being referenced is first looked up in L1.

If it is not present in L1, then it is searched for in L2 (these can be overlapped with appropriate hardware

support). If the item is not present in L1 but it is in L2, then it is brought into L1. In case that it is not in L2,

then a cache line is brought in from main memory into L2 and into L1. The size of cache line brought into

L2 (denoted by B2) is usually no smaller than the one brought into L1 (denoted by B1). The expectation is

that the more frequently used items will remain in the faster cache.

The Multi-level Cache Model is an extension to multiple cache levels of the previously introduced Cache

Model. Let Li denote the i-th level of cache memory. The parameters involved here are the problem size

N, the size of Li which is denoted by Mi, the frame size (unit of allocation) of Li denoted by Bi and the

latency factor li. If a data item is present in the Li, then it is present in Lj for all j > i (sometimes referred

to as the inclusion property). If it is not present in Li, then the cost for a miss is li plus the cost of fetching

it from Li+1 (if it is present in Li+1, then this cost is zero). For convenience, the latency factor li is the ratio

of time taken on a miss from the i-th level to the amount of time taken for a unit operation.

Figure 2 shows the memory mapping for a two-level cache architecture. The shaded part of main mem-

ory is of size B1 and therefore occupies only a part of a line of the L2 cache which is of size B2. There is a

natural generalization of the memory mapping to multiple levels of cache.

We make the following assumptions in this section, which are consistent with existing architectures.

A1. For all i, Bi, Li are powers of 2.

A2. 2Bi 6 Bi+1 and the number of Cache Lines Li ≤ Li+1.

A3. Bk ≤ L1 and 4Bk ≤ B1L1 (i.e. B1 > 4) where Lk is the largest and slowest cache. This

implies that

Li ·Bi > Bk ·Bi (1)

This will be useful for the analysis of the algorithms and are sometimes termed as tall cache in

reference to the aspect ratio.

5.1 Matrix Transpose

In this section, we provide an approach for transposing a matrix in the Multi-level Cache Model.

The trivial lower bound for matrix transposition of an N ×N matrix in the multi-level cache hierarchy

is clearly the time to scan N2 elements, namely,

Ω(
∑

i

N2

Bi
li)

where

Bi is the number of elements in one cache line in Li cache; Li is the number of cache lines in Li cache,

which is Mi
Bi

; and li is the latency for Li cache.

Our algorithm uses a more general form of the emulation theorem to get the submatrices to fit into cache

in a regular fashion. The work in this section shows that it is possible to handle the constraints imposed by

limited associativity even in a multi-level cache model.

We subdivide the matrix into Bk × Bk submatrices. Thus we get ⌈n/Bk⌉ × ⌈n/Bk⌉ submatrices from

an n× n submatrix.
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Figure 2: Memory mapping in a two-level cache hierarchy
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A =

















a1 a2 . . . . . . an
an+1 an+2 . . . . . . a2n

...
...

...
...

...
...

...
...

...
...

an2−n+1 . . . . . . . . . an2

















=







A1 A2 . . . An/B
...

...
...

...

An2−nB/B . . . . . . An2/B2







Note that the submatrices in the last row and column need not be square as one side may have ≤ B rows

or columns.

Let m = n/B then

AT =

















AT
1 AT

m+1 . . . . . . AT
m2−m+1

AT
2 AT

m+2 . . . . . . AT
2m

...
...

...
...

...
...

...
...

...
...

AT
m . . . . . . . . . AT

m2

















For simplicity, we describe the algorithm as transposing a square matrix A in another matrix B, i.e.

B = AT . The main procedure is Rec Trans(A,B, s), where A is transposed into B by dividing A and B
into s2 submatrices and then recursively transposing the sub-matrices. Let Ai,j (Bi,j) denote the submatrices

for 1 6 i, j 6 s. Then B = AT can be computed as Rec Trans( Ai,j, Bj,i, s
′) for all i, j and some

appropriate s′ which depends on Bk and Bk−1. In general, if tk, tk−1, . . . , t1 denote the values of s′ at the

1, 2 . . . level of recursion, then ti = Bi+1/Bi. If the submatrices are B1 ×B1 (base case), then perform the

transpose exchange of the symmetric submatrices directly. We perform matrix transpose as follows, which

is similar to the familiar recursive transpose algorithm.

1. Subdivide the matrix as shown into Bk ×Bk submatrices.

2. Move the symmetric submatrices to contiguous memory locations.

3. Rec Trans( Ai,j, Bj,i, Bk/Bk−1).

4. Write back the Bk ×Bk submatrices to original locations.

In the following subsections we analyze the data movement of this algorithm to bound the number of

cache misses at various levels.

5.2 Moving a submatrix to contiguous locations

To move a submatrix we will move it cache line by cache line. By choice of size of submatrices (Bk ×Bk)

each row will be an array of size Bk, but the rows themselves may be far apart.

Lemma 5.1 If two memory blocks x and y of size Bk are aligned in Lk-cache map to the same cache set in

Li-cache for some 1 ≤ i ≤ k, then x and y map to the same set in each Lj-cache for all 1 ≤ j ≤ i.

Proof: If x and y map to the same cache set in Li cache then their i-th level memory block numbers (to

be denoted by bi(x) and bi(y)) differ by a multiple of Li. Let bi(x) − bi(y) = αLi. Since Lj |Li (both are

powers of two), bi(x) − bi(y) = βLj where β = α · Li/Lj . Let x′, y′ be the corresponding sub-blocks of

x and y at the j-th level. Then their block numbers bj(x′), bj(y′) differ by Bi/Bj · β · Lj , i.e., a multiple of

Lj as Bj |Bi. Note that blocks are aligned across different levels of cache. Therefore x and y also collide in

Lj . ✷
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Corollary 5.1 If two blocks of size Bk that are aligned in Lk-cache do not conflict in level i they do not

conflict in any level j for all i ≤ j ≤ k.

Theorem 5.2 There is an algorithm which moves a set of blocks of size Bk (where there are k levels of

cache with block size Bi for each 1 ≤ i ≤ k) into a contiguous area in main memory in

O

(

∑ N

Bi
li

)

where N is the total data moved and li is the cost of a cache miss for the ith level of cache.

Proof: Let the set of blocks of size Bk be I (we are assuming that the blocks are aligned). Let the target

block in the contiguous area for each block i ∈ I be in the corresponding set J where each block j ∈ J is

also aligned with a cache line in Lk Cache.

Let block a map to Rb,a, b = {1, 2, . . . , k} where Rb,a denote the set of cache lines in the Lb-cache.

(Since a is of size Bk, it will occupy several blocks in lower levels of cache.)

Let the ith block map to set Rk,i of the Lk Cache. Let the target block j map to set Rk,j . In the worst

case, Rk,j is equal to Rk,i. Thus in this case the line Rk,i has to be moved to a temporary block say x
(mapped to Rk,x) and then moved back to Rk,j . We choose x such that R1,x and R1,i do not conflict and

also R1,x and R1,j do not conflict. Such a choice of x is always possible because our temporary storage area

X of size 4Bk has at least 4 lines of Lk-cache (i and j will take up two blocks of Lk-cache, thus leaving at

least one block free to be used as temporary storage). This is why we have the assumption that 4Bk ≤ B1L1.

That is, by dividing the L1-cache into B1L1/Bk zones, there is always a zone free for x.

For convenience of analysis, we maintain the invariant that X is always in Lk-cache. By application of

the previous corollary on our choice of x (such that R1,i 6= R1,x 6= R1,j) we also have Ra,i 6= Ra,x 6= Ra,j

for all 1 ≤ a ≤ k. Thus we can move i to x and x to j without any conflict misses. The number of cache

misses involved is three for each level—one for getting the ith block, one for writing the jth block, and one

to maintain the invariant since we have to touch the line displaced by i. Thus we get a factor of 3.

Thus the cost of this process is

3

(

∑ N

Bi
li

)

where N is the amount of data moved.

✷

Remark 8 For blocks I that are not aligned in Lk Cache, the constant would increase to 4 since we would

need to bring up to 2 cache lines for each i ∈ I . The rest of the proof would remain the same.

Corollary 5.3 A Bk×Bk submatrix can be moved into contiguous locations in the memory in O(
∑i=k

i=1
Bk

2

Bi
li)

time in a computer that has k levels of (direct-mapped) cache.

This follows from the preceding discussion. We allocate memory say C of size Bk ×Bk for placing the

submatrix and memory, say, X of size 4Bk for temporary storage and keep both these areas distinct.

Remark 9 If we have set associativity (≥ 2) in all levels of cache then we do not need an intermediate

buffer x as line i and j can both reside in cache simultaneously and movement from one to the other will

not cause thrashing. Thus the constant will come down to two. Since at any point in time we will only be

dealing with two cache lines and will not need the lines i or j once we have read or written to them the

replacement policy of the cache does not affect our algorithm.
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Remark 10 If the capacity of the register file is greater than the size of the cache line (Bk) of the outermost

cache level (Lk) then we can move data without worrying about collision by copying from line i to registers

and then from registers to line j. Thus even in this case the constant will come down to two.

Once we have the submatrices in contiguous locations we perform the transpose as follows. For each of

the submatrices we divide the Br × Br submatrix (say S) in level Lr (for 2 ≤ r ≤ k) further into Br−1 ×
Br−1 size submatrices as before. Each Br−1 × Br−1 size subsubmatrix fits into Lr−1 cache completely

(since Br−1 · Br−1 6 Br−1 · Bk 6 Br−1 · Lr−1 from equation (1)). Let Br/Br−1 = kr.

Thus we have the submatrices as






S1,1 S1,2 . . . S1,kr
...

...
...

...

Skr,1 . . . . . . Skr,kr







So we perform matrix transpose of each Si,j in place without incurring any misses as it resides com-

pletely inside the cache. Once we have transposed each Si,j we exchange Si,j with Sj,i. We will show that

Si,j and Sj,i can not conflict in Lr−1-cache for i 6= j.

Since Si,j and Sj,i lie in different parts of the Lr-cache lines, they will map to different cache sets in the

Lr−1-cache. The rows of Si,j and Sj,i correspond to (iBr−1 + a1)kr + j and (jBr−1 + a2)kr + i where

a1, a2 ∈ {1, 2....Br−1} and

Br/Br−1 = kr.

If these conflict then

(iBr−1 + a1)kr + j ≡ (jBr−1 + a2)kr + i(modLr−1).

Since Br−1 = 2u and Br = 2v and Lr−1 = 2w (all powers of two)

kr = 2v−u

Therefore kr divides Lr−1 (because kr = Br/Br−1 < Br ≤ Lr−1). Hence

j ≡ i(modkr).

Since i, j ≤ kr the above implies

i = j.

Note that Si,i’s do not have to be exchanged. Thus, we have shown that a Br × Br matrix can be di-

vided into Br−1 × Br−1 which completely fits into Lr−1-cache. Moreover, the symmetric sub-matrices do

not interfere with each other. The same argument can be extended to any Bj × Bj submatrix for j < r.

Applying this recursively we end up dividing the Bk × Bk size matrix in Lk-cache to B1 × B1 sized sub-

matrices in L1-cache, which can then be transposed and exchanged easily. From the preceding discussion,

the corresponding submatrices do not interfere in any level of the cache.

(Note that even though we keep subdividing the matrix at every cache level recursively and claim that

we then have the submatrices in cache and can take the transpose and exchange them, the actual movement,

i.e., transpose and exchange happens only at the L1-cache level, where the submatrices are of size B1×B1.)

The time taken by this operation is
∑ N2

Bi
li.

This is because each Si,j and Sj,i pair (such that i 6= j) has to be brought into Lr−1 Cache only once

for transposing and exchanging of B1 × B1 submatrices. Similarly, at any level of cache, a block from the
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matrix is brought in only once. The sequence of the recursive calls ensures that each cache line is used

completely as we move from sub-matrix to sub-matrix.

Finally, we move the transposed symmetric submatrices of size Bk × Bk to their location in memory,

i.e., reverse the process of bringing in blocks of size Bk from random locations to a contiguous block. This

procedure is exactly the same as in Theorem 5.2 in the previous section that has the constant 3.

Remark 11 The above constant of 3 for writing back the matrix to an appropriate location depends on the

assumption that we can keep the two symmetric submatrices of size Bk ×Bk in contiguous locations at the

same time. This would allow us to exchange the matrices during the write back stage. If we are restricted to

a contiguous temporary space of size Bk ×Bk only, then we will have to move the data twice, incurring the

cost twice.

Remark 12 Even though in the above analysis we have always assumed a square matrix of size N ×N the

algorithm works correctly without any change for transposing a matrix of size M ×N if we are transposing

a matrix A and storing it in B. This is because the same analysis of subdividing into submatrices of size

Bk × Bk and transposing still holds. However if we want to transpose a M × N matrix in place then the

algorithm fails because the location to write back to would not be obvious and the approach used here would

fail.

Theorem 5.4 The algorithm for matrix transpose runs in

O

(

i=k
∑

i=1

N2

Bi
li

)

+O(N2)

steps in a computer that has k levels of direct-mapped cache.

If we have temporary storage space of size 2Bk ×Bk +4Bk and assume block alignment of all subma-

trices then the constant is 7. This includes 3 for initial movement to contiguous location, 1 for transposing

the symmetric submatrices of size Bk × Bk and 3 for writing back the transposed submatrix to its original

location. Note that the constant is independent of the number of levels of cache.

Remark 13 Even if we have set associativity (≥ 2) in any level of cache the analysis goes through as before

(though the constants will come down for data copying to contiguous locations). For the transposing and

exchange of symmetric submatrices the set associativity will not come into play because we need a line only

once in the cache and are using only 2 lines at a given time. So either LRU or even FIFO replacement policy

would only evict a line that we have already finished using.

5.3 Sorting in multiple levels

We first consider a restriction of the model described above where data cannot be transferred simultaneously

across non-consecutive cache levels. We use Ci to denote
∑j=i

j=1Mj .

Theorem 5.5 The lower bound for sorting in the restricted multi-level cache model is Ω(N logN+
∑k

i=1 ℓi·
N
Bi

logN/Bi

logCi/Bi
).

Proof: The proof of Aggarwal and Vitter can be modified to disregard block transfers that merely rearrange

data in the external memory. Then it can be applied separately to each cache level, noting that the data

transfer in the higher levels do not contribute for any given level. ✷

16



These lower bounds are in the same spirit as those of Vitter and Nodine [32] (for the S-UMH model)

and Savage [28], that is, the lower bounds do not capture the simultaneous interaction of the different levels.

If we remove this restriction, then the following can be proved along similar lines as Theorem 3.4.

Lemma 5.2 The lower bound for sorting in the multi-level cache model is

Ω(
k

max
i=1

{N logN, ℓi ·
N · logN/Bi

Bi logCi/Bi
}).

✷

This bound appears weak if k is large. To rectify this, we observe the following. Across each cache

boundary, the minimum number of I/Os follow from Aggarwal and Vitter’s arguments. The difficulty arises

in the multi-level model as a block transfer in level i propagates in all levels j < i although the block

sizes are different. The minimum number of I/Os from (the highest) level k remains unaffected, namely,
N
Bk

logN/Bk

logCk/Bk
. For level k − 1, we will subtract this number from the lower bound of N

Bk−1

logN/Bk−1

logCk−1/Bk−1
.

Continuing in this fashion, we obtain the following lower bound.

Theorem 5.6 The lower bound for sorting in the multi-level cache model is

Ω



N logN +
k
∑

i=1

ℓi ·





N · logN/Bi

Bi logCi/Bi
−





k
∑

j=i+1

N · logN/Bj

Bj logCj/Bj











 .

✷

If we further assume that Ci
Ci−1

>
Bi

Bi−1
> 3, we obtain a relatively simple expression that resembles

Theorem 5.5. Note that the consecutive terms in the expression in the second summation of the previous

lemma decrease by a factor of 3.

Corollary 5.7 The lower bound for sorting in the multi-level cache model with geometrically decreasing

cache sizes and cache lines is Ω(N logN + 1
2

∑k
i=1 ℓi ·

N ·logN/Bi

Bi logCi/Bi
). ✷

Theorem 5.8 In a multi-level cache, where the Bi blocks are composed of Bi−1 blocks, we can sort in

expected time O
(

N logN +
(

logN/B1

logM1/B1

)

·
∑k

i=1 ℓi ·
N
Bi

)

.

Proof: We perform a M1/B1-way mergesort using the variation proposed by Barve et al. [7] in the context

of parallel disk I/Os. The main idea is to shift each sorted stream cyclically by a random amount Ri for the

ith stream. If Ri ∈ [0,Mk − 1], then the leading element is in any of the cache sets with equal likelihood.

Like Barve et al. [7], we divide the merging into phases where a phase outputs m elements, where m is the

merge degree. In the previous section we counted the number of conflict misses for the input streams, since

we could exploit symmetry based on the random input. It is difficult to extend the previous arguments to a

worst case input. However, it can be shown easily that if m
s < 1

m3 (where s is the number of cache sets), the

expected number of conflict misses is O(1) in each phase. So the total expected number of cache misses is

O(N/Bi) in the level i cache for all 1 6 i 6 k.

The cost of writing a block of size B1 from level k is spread across several levels. The cost of transferring

Bk/B1 blocks of size B1 from level k is ℓk + ℓk−1
Bk

Bk−1
+ ℓk−2

Bk
Bk−1

Bk−1

Bk−2
+ · · · + ℓ1

Bk
B1

. Amortizing this

cost over Bk/B1 transfers gives us the required result. Recall that O
(

N/B1(
logN/B1

logM1/B1
)
)

B1 block transfers

suffice for (M1/B1)
1/3-way mergesort. ✷
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Remark 14 This bound is reasonably close to that of Corollary 5.7 if we ignore constant factors. Extending

this to the more general emulation scheme of Theorem 3.1 is not immediate as we require the block transfers

across various cache boundaries to have a nice pattern, namely the sub-block property. This is satisfied by

the mergesort and quicksort and a number of other algorithms but cannot be assumed in general.

5.4 Cache-oblivious sorting

In this section, we will focus on a two-level cache model that has limited associativity. One of the cache-

oblivious algorithms presented by Frigo et al. [18] is the funnel sort algorithm. They showed that the

algorithm is optimal in the I/O model (which is fully associative). However it is not clear whether the

optimality holds in the cache model. In this section, we show that, with some simple modification, funnel

sort is optimal even in the direct-mapped cache model.

The funnel sort algorithm can be described as follows.

• Split the input into n1/3 contiguous arrays of size n2/3 and sort these arrays recursively.

• Merge the n1/3 sorted sequences using a n1/3-merger, where a k-merger works as follows.

A k-merger operates by recursively merging sorted sequences. Unlike mergesort, a k-merger stops

working on a merging sub-problem when the merged output sequence becomes “long enough” and resumes

working on another merging sub-problem (see Figure 4).

INVARIANT The invocation of a k-merger outputs the first k3 elements of the sorted sequence obtained

by merging the k input sequences.

BASE CASE k = 2 producing k3 = 8 elements whenever invoked.

NOTE The intermediate buffers are twice the size of the output obtained by a k1/2 merger.

To output k3 elements, the k-merger is invoked k3/2 times. Before each invocation the k-merger fills

each buffer that is less than half full so that every buffer has at least k3/2 elements—the number of elements

to be merged in that invocation.

Frigoet al. [18] have shown that the above algorithm (that does not make explicit use of the various

memory-size parameters) is optimal in the I/O model. However, the I/O model does not account for conflict

misses since it assumes full associativity. This could be a degrading influence in the presence of limited

associativity (in particular direct-mapping).

5.4.1 Structure of k-merger

It is sufficient to get a bound on cache misses in the cache model since the bounds for capacity misses in the

cache model are the same as the bounds shown in the I/O model.

Let us get an idea of what the structure of a k-merger looks like by looking at a 16-merger (see Figure 5).

A k-merger, unrolled, consists of 2-mergers arranged in a tree-like fashion. Since the number of 2-mergers

gets halved at each level and the initial input sequences are k in number there are lg k levels.

Lemma 5.3 If the buffers are randomly placed and the starting position is also randomly chosen (since the

buffers are cyclic this is easy to do) the probability of conflict misses is maximized if the buffers are less than

one cache line long.

The worst case for conflict misses occurs when the buffers are less than one cache line in size. This is

because if the buffers collide then all data that goes through them will thrash. If however the size of the

buffers were greater than one cache line then even if some two elements collide the probability of future

collisions would depend upon the data input or the relative movement of data in the two buffers. The
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probability of conflict miss is maximized when the buffers are less than one cache line. Then probability of

conflict is 1/m, where m is equal to the cache size M divided by the cache line size B, i.e., the number of

cache lines.

5.4.2 Bounding conflict misses

The analysis for compulsory and capacity misses goes through without change from the I/O model to the

cache model. Thus, funnel sort is optimal in the cache model if the conflict misses can be bounded by

N

B
×

logN/B

logM/B

Lemma 5.4 If the cache is 3-way or more set associative, there will be no conflict misses for a 2-way

merger.

Proof: The two input buffers and the output buffer, even if they map to the same cache set can reside

simultaneously in the cache. Since at any stage only one 2-merger is active there will be no conflict misses

at all and the cache misses will only be in the form of capacity or compulsory misses. ✷

5.4.3 Direct-Mapped case

For an input of size N , a N1/3-merger is created. The number of levels in such a merger is logN1/3 ( i.e.,

the number of levels of the tree in the unrolled merger). Every element that travels through the N1/3-merger

sees logN1/3 2-mergers (see Figure 6). For an element passing through a 2-merger there are 3 buffers that

could collide. We charge an element for a conflict miss if it is swapped out of the cache before it passes

to the output buffer or collides with the output buffer when it is being output. So the expected number of

collisions is 3C2 times the probability of collision between any two buffers (two input and one output). Thus

the expected number of collisions for a single element passing through a 2-merger is 3C2 × 1/m ≤ 3/m
where m = M/B.

If xi,j is the probability of a cache miss for element i in level j then summing over all elements and all

levels we get

E





N
∑

i=1

N1/3
∑

j=1

xi,j



 =

N
∑

i=1

logN1/3
∑

j=1

E(xi,j)

≤

N
∑

i=1

logN1/3
∑

j=1

3

m
=

3N

m
× logN1/3

= O

(

N

m
× logN

)

Lemma 5.5 The expected performance of funnel sort is optimal in the direct-mapped cache model if log M
B ≤

M
B2 logB

. It is also optimal for a 3-way associative cache.

Proof: If M and B are such that

log
M

B
≤

M

B2 logB
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Figure 6: A k-merger expanded out into 2-mergers
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we have the total number of conflict misses

N logN

m
=

N logN

B logB M
B2 logB

≤
N

B
×

logN/B

logM/B

Note that the condition is satisfied for M > B2+ǫ for any fixed ǫ > 0 which is similar to the tall-cache

assumption made by Frigo et al..

The set associative case is proved by Lemma 5.4. ✷

The same analysis is applicable between successive levels Li and Li+1 of a multi-level cache model.

This yields an optimal algorithm for sorting in the multilevel cache model.

Theorem 5.9 In a multi-level cache model, the number of cache misses at level Li in the funnel sort algo-

rithm can be bounded by
N log(N/Bi)
Bi log(Mi/Bi)

.

This bound matches the lower bound of Lemma 5.5 within a constant factor, which makes it an optimal

algorithm when simultaneous transfers are not allowed across multiple levels.

6 Conclusions

We have presented a cache model for designing and analyzing algorithms. Our model, while closely related

to the I/O model of Aggarwal and Vitter, incorporates three additional salient features of cache: lower miss

penalty, limited associativity, and lack of direct program control over data movement. We have established

an emulation scheme that allows us to systematically convert an I/O-efficient algorithm into a cache-efficient

algorithm. This emulation provides a generic starting point for cache-conscious algorithm design; it may

be possible to further improve cache performance by problem-specific techniques to control interference

misses. We have also demonstrated the relevance of the emulation scheme by demonstrating that a direct

mapping of an I/O-efficient algorithm does not guarantee a cache-efficient algorithm. Finally, we have

extended our basic cache model to multiple cache levels.

Our single-level cache model is based on a blocking direct-mapped cache that does not distinguish

between reads and writes. Modeling a non-blocking cache or distinguishing between reads and writes would

appear to require queuing-theoretic extensions and does not appear to be appropriate at the algorithm design

stage. The translation lookaside buffer or TLB is another important cache in real systems that caches virtual-

to-physical address translations. Its peculiar aspect ratio and high miss penalty raise different concerns for

algorithm design. Our preliminary experiments with certain permutation problems suggests that TLBs are

important to model and can contribute significantly to program running times.

We have begun to implement some of these algorithms to validate the theory on real machines, and

also using cache simulation tools like fast-cache, ATOM, or cprof. Preliminary observations indicate that

our predictions are more accurate with respect to miss ratios than actual running times (see [12]). We have

traced a number of possible reasons for this. First, because the cache miss latencies are not astronomical, it

is important to keep track of the constant factors. An algorithmic variation that guarantees lack of conflict

misses at the expense of doubling the number of memory references may turn out to be slower than the

original algorithm. Second, our preliminary experiments with certain permutation problems suggests that

TLBs are important to model and can contribute significantly to program running times. Third, several

low-level details hidden by the compiler related to instruction scheduling, array address computations, and

alignment of data structures in memory can significantly influence running times. As argued earlier, these

factors are more appropriate to tackle at the level of implementation than algorithm design.

Several of the cache problems we observe can be traced to the simple array layout schemes used in

current programming languages. It has shown elsewhere [10, 11, 31] that nonlinear array layout schemes
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based on quadrant-based decomposition are better suited for hierarchical memory systems. Further study of

such array layouts is a promising direction for future research.
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A Approximating probability of conflict

Let µ be the number of elements between Si,j and Si,j+1, i.e., one less than the difference in ranks of

Si,j and Si,j+1. (µ may be 0, which guarantees event E1.) Let Em denote the event that µ = m. Then

Pr[E1] =
∑

m Pr[E1 ∩ Em], since Em’s are disjoint. For each m, Pr[E1 ∩ Em] = Pr[E1|Em] · Pr[Em].
The events Em correspond to a geometric distribution, i.e.,

Pr[Em] = Pr[µ = m] =
1

k

(

1−
1

k

)m

. (2)

To compute Pr[E1|Em], we further subdivide the event into cases about how the m numbers are dis-

tributed into the sets Sj, j 6= i. Wlog, let i = 1 to keep notations simple. Let m2, . . . ,mk denote the

case that mj numbers belong to sequence Sj (
∑

j mj = m). We need to estimate the probability that for

sequence Sj , bj does not conflict with S(b1) (recall that we have fixed i = 1) during the course that mj

elements arrive in Sj . This can happen only if S(bj) (the cache set position of the leading block of Sj right

after element S1,t) does not lie roughly ⌈mi/B⌉ blocks from S(b1). From assumption A1 and some careful

counting this is 1 −
mj−1+B

sB for mj > 1. For mj = 0, this probability is 1 since no elements go into Sj

and hence there is no conflict.4 These events are independent from our assumption A1 and hence these can

4The reader will soon realize that this case leads to some non-trivial calculations.
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be multiplied. The probability for a fixed partition m2, . . . ,mk is the multinomial m!
m2!···mk!

·
(

1
k−1

)m
(m is

partitioned into k − 1 parts). Therefore we can write the following expression for Pr[E1|Em].

Pr[E1|Em] =
∑

m2+···+mk=m

m!

m2! · · ·mk!
·

(

1

k − 1

)m
∏

mi 6=0

(

1−
mj − 1 +B

sB

)

(3)

In the remainder of this section, we will obtain an upper bound on the right hand side of equation (3).

Let nz(m2, . . . ,mk) denote the number of js for which mj 6= 0 (non-zero partitions). Then equation (3)

can be rewritten as the following inequality.

Pr[E1|Em] 6
∑

m2+···+mk=m

m!

m2! · · ·mk!
·

(

1

k − 1

)m(

1−
1

s

)nz(m2...mk)

(4)

since
(

1−
mj−1+B

sB

)

6
(

1− 1
s

)

for mj > 1. In other words, the right side is the expected value of
(

1− 1
s

)NZ(m,k−1)
, where NZ(m,k − 1) denotes the number of non-empty bins when m balls are thrown

into k− 1 bins. Using equation (2) and the preceding discussion, we can write down an upper bound for the

(unconditional) probability of E1 as

∞
∑

m=0

1

k

(

1−
1

k

)m

·E

[

(

1−
1

s

)NZ(m,k−1)
]

(5)

We use known sharp concentration bounds for the occupancy problem to obtain the following approxi-

mation for the expression (5) in terms of s and k.

Theorem A.1 ([22]) Let r = m/n, and Y be the number of empty bins when m balls are thrown randomly

into n bins. Then

E[Y ] = n

(

1−
1

m

)m

∼ ne−r

and for λ > 0

Pr[|Y − E[Y ]| > λ] 6 2 exp

(

−
λ2(n− 1)/2

n2 − µ2

)

.

✷

Corollary A.2 Let NZ be the number of non-empty bins when m balls are thrown into k bins. Then

E[NZ] = k(1− e−m/k)

and

Pr[|NZ − E[NZ]| > α
√

2k log k] 6 1/kα.

✷

So in equation (4), E[
(

1− 1
s

)NZ(m,k−1)
] can be bounded by

1/kα (1− 1/s) +

(

1−
1

s

)k(1−e−m/k−α
√
2k log k/k)

(6)

for any α and m > 1.
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Proof: (of Lemma 4.1): We will split up the summation of (5) into two parts, namely, m 6 e/2 · k and

m > e/2 · k. One can obtain better approximations by refining the partitions, but our objective here is to

demonstrate the existence of ǫ and δ and not necessarily obtain the best values.

∞
∑

m=0

1

k

(

1−
1

k

)m

· E[

(

1−
1

s

)NZ(m,k−1)

] =

ek/2k
∑

m=0

1

k

(

1−
1

k

)m

· E[

(

1−
1

s

)NZ(m,k−1)

]

+
∞
∑

m=ek/2+1

1

k

(

1−
1

k

)m

· E[

(

1−
1

s

)NZ(m,k−1)

] (7)

The first term can be upper bounded by

ek/2
∑

m=0

1

k

(

1−
1

k

)m

which is ∼ 1− 1
ee/2

∼ 0.74.

The second term can be bounded using equation (6) using α > 2.

∞
∑

m=ek/2+1

1

k

(

1−
1

k

)m

·E[

(

1−
1

s

)NZ(m,k−1)

] 6

∞
∑

m=ek/2+1

1

k

(

1−
1

k

)m

· 1/k2 (1− 1/s)

+

∞
∑

m=ek/2+1

1

k

(

1−
1

k

)m

·

(

1−
1

s

)k(1−e−m/k−α
√
2k log k/k)

(8)

The first term of the previous equation is less than 1/k and the second term can be bounded by

∞
∑

m=ek/2+1

1

k

(

1−
1

k

)m

·

(

1−
1

s

)0.25k

for sufficiently large k (k > 80 suffices). This can be bounded by ∼ 0.25e−0.25k/s, so equation (8) can be

bounded by 1/k + 0.25e0.25k/s. Adding this to the first term of equation (7), we obtain an upper bound of

0.75 + 0.25e−0.25k/s for k > 100. Subtracting this from 1 gives us 1−e−0.25k/s

4 , i.e., δ >
1−e−0.25k/s

4 . ✷
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