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We point out a connection between the underlying function of the representations of the 50(2, 1) 
algebra and the superpotential of SUSY quantum mechanics. We also write down the expressions 
of the generators of 50(2, 1) in D·dimensions. 

In a recent paper Barut, Beker and Rador0 have explored a class of realization 

of S0(2, 1) algebra within the framework of dynamical 0(4, 2) to study the radial 

Schrodinger equation 

(1) 

where VE(r)= t(l + 1)/r2+ V(r) represents the effective potential. 

Since it is well-accepted [Refs. 2), 3) and references therein] that superpotential 

resides in the radial equation in an obvious manner, a natural question arises whether 

a link could be set up connecting supersymmetry (SUSY) with S0(2, 1). The purpose 

of this paper is to establish this by expressing the superpotential in terms of the 

underlying function of S0(2, 1). Our results turn out to be generalizable to systems 

of D-dimensions also. 

The S0(2, 1) algebra defined by the generators (To, I4, T) satisfies the commuta

tion relations 

[I4, T]=- i10, [ T, 10]= il4, [10, I4]= iT. (2) 

The Casimir operator C2 is given by 102
- !42

- T 2
• In terms of an arbitrary function 

G( r) the algebra (2) admits the following representations: 

10=(G/G'2)K2+ C2 /G- GG"' /2G'3 +3GG"2 /4G'4 + G/4, 

I4=(G/G'2)K2 + C2 /G- GG"' /2G'3 +3GG"2 /4G'4 - G/4, 

T=(G/G')K-iGG"/2G'2
, (3) 

where K =- i(d/dr + 1/r ). 

Taking the eigenvalue of C2 to be (1/2)r((1/2)r-1) and the spectrum 10 given by 

v+(1/2)r, v=O, 1, 2···, Barut et al. 0 have compared 10 with (1) to arrive at the 

following relation: 

G"' /2G' -3G"
2 
/4G'

2
- ~ r( ~ r-1 )c'2 

/G
2
+( v+ f )c'2 

/G- G'
2
/4 

=- VE(r)+En,z, (4) 
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where n=2m=1 has been set. 

We wish to point out that the above relation is manifestly supersymmetric if the 

superpotential is chosen as 

W(r)=(G'-rG'/G+G"/G')/2. 

Indeed for such a choice of W(r) we find 

VE(r)- Eo= W
2

- W'' 

(5) 

(6) 

where Eo stands for the ground state energy (v=O). As is well-known with a super

potential at hand one can define the supercharges Q=(p- iW)o-+, Q+=(p+ iW)a-. 

One is thus led to a supersymmetric Hamiltonian Hs={Q, Q+}/2 whose structure 

induces a pair of partner Hamiltonians H+=-d 2 /dr 2 ±(W2
- W'). It is clear from 

(6) that solvability of W depends on the functional form of the potential and involves 

solving an equation of the Ricatti type. 

The advantage with (5) is that given G(r) the superpotential W(r) can be 

immediately determined. The converse problem, however, may not be easy to solve 

since it may not always be possible to obtain W(r) in a closed form from the 

knowledge of G(r). Further not all G(r) will produce a constant on the lhs of (4) to 

match with the energy term on the rhs (for example, G(r)=logr). One should note 

that having obtained a W(r) care is to be taken to ensure that the ground state wave 

function is suitably normalizable. It may be mentioned that in the unbroken version 

of SUSY the ground state is non-degenerate and may be chosen to be associated with 

H+. 

We now turn to some applications of our equation (5). The Coulomb and 

harmonic oscillator potential are the potentials which exibit accidental degeneracies 

and solve the radial Schrodinger equation_ From SUSY quantum mechanics we 

know2> that the corresponding superpotentials are W =1/2(/ + 1)-(l + 1)/r (Coulomb) 

and W=r/2-(!+1)/r (isotropic oscillator). Inserting these forms for W in our 

equation (5) we find on integrating G=tlr (Coulomb) and G=tlr2 /2 (isotropic oscil

lator) where tl is a constant. These agree with the G's used in Ref_ 1) as potential 

applications of Eq. (4)_ 

More generally we may take the following representation4
> for the superpotential 

of the type: 

W=ar+1/2r-arr/[ar 2 +c] _ (7) 

It implies G(r)=ar2 +c and corresponds to the Coulomb and cutoff Coulomb poten

tial5> perturbed by a polynomial in r. 

The extension to D-dimensions (D arbitrary) of the representations may be 

obtained by taking advantage of the following proposition_ 

Proposition For an arbitrary function G( r) the commutation relations 

[K, G/G'] =- i(1- GG" /G'2 ) , 

[K, G" /G'] = - i( G"' /G'- G"2 /G'2
) 

hold, where K=-i[d/dr+(D-1)/2r]. 
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Proof These are easy to verify by direct evaluation of the commutators. 

As a result we can write down the following representations for the generators in 

D-dimensions: 

T=(CIC')K- iCC" I2C'2 , 

where K 2 = -(d2ldr 2 +{(D-l)lr}dldr +(D-l)(D-3)I4r2
). It may be checked that 

these representations satisfy the S0(2, 1) algebra. 

Noting that the radial SchrOdinger equation in D-dimension reads as 

[ -(d2ldr 2 +{(D-l)lr}dldr)+ l(l + D-2)lr 2 + V(r)- En.t]=O, (8) 

the superpotential in D-dimension may be worked out readily. We have 

C"' I2C' -3C"2 I 4 C'2-( rl2)(( rl2) -l)C'2 IC2 + (Y+( ri2))C'2 /C- C'2 I 4 

= -(D-l)(D-3)14r2-l(l +d -2)lr2
- V(r)+ En,l. (9) 

For the Coulomb and the isotropic oscillator problems W( r) assumes the forms 

Wcoi=l/(2l+D-l)-(2l+D-l)l2r, En.t=-[2n+2l+D-1]- 2
, (lOa) 

Wosc=r/2-(2l+D-l)l2r, En.t=[2n+l+DI2] (lOb) 

for C(r)=tlr (Coulomb, r=2l+D-l) and C(r)=tlr212 (isotropic oscillator, r=l 

+DI2). 

To conclude we have examined the possibility of expressing the underlying 

function C( r) of the S0(2, 1) algebra in terms of the superpotential within the 

framework of SUSY quantum mechanics. We have applied our results to some 

physical problems. We have also sought generalizations and, to this end, have 

written down the repesentations of the S0(2, 1) algebra in D-dimensions. As applica

tions we have considered the Coulomb and isotropic oscillator problems for which we 

have determined the superpotentials for specific choices of C( r ). 

We thank the Council of Scientific & Industrial Research, New Delhi for financial 

support. 
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