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The TIM23 complex mediates translocation of proteins across,
and their lateral insertion into, the mitochondrial inner mem-
brane. Translocation of proteins requires both the membrane-
embedded core of the complex and its ATP-dependent import
motor. Insertion of some proteins, however, occurs in the
absence of ATP, questioning the need for the import motor
during lateral insertion. We show here that the import motor
associates with laterally inserted proteins even when its ATPase
activity is not required. Furthermore, our results suggest a role for
the import motor in lateral insertion. Thus, the import motor is
involved in ATP-dependent translocation and ATP-independent
lateral insertion.
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INTRODUCTION
A large fraction of proteins synthesized on cytosolic ribosomes are
sorted by protein translocases to the site of their activity in one of
the cell organelles. Whereas some protein translocases exclusively
transport proteins across or insert them into membranes, other
translocases—such as the SEC61 complex in the endoplasmic
reticulum and the TIM23 complex in the mitochondria—can
sort proteins both across and into membranes. The molecular
mechanisms underlying switching between different modes of
protein transport have remained largely unclear.

The TIM23 complex, the main protein translocase of the
mitochondrial inner membrane, uses the energy of the membrane
potential and ATP to transport almost all matrix proteins and many
inner-membrane proteins (Neupert & Herrmann, 2007; Endo
& Yamano, 2009; Schmidt et al, 2010). Its subunits are usually
classified as constituents of either the membrane-embedded core

of the complex or the import motor. The membrane-embedded
core comprises the intermembrane space (IMS)-exposed receptors
and the translocation channel. It is comprised of inner-membrane
proteins Tim17, Tim23 and Tim50. The import motor is
responsible for ATP-dependent translocation across the inner
membrane. It consists of mitochondrial Hsp70 (mtHsp70)—the
ATP-consuming subunit of the complex—and its cochaperones
Tim44, Tim14(Pam18), Tim16(Pam16) and Mge1, which regulate
the ATP-hydrolysis-driven cycle of mtHsp70. Tim21 and Pam17
are the only subunits that are dispensable for the viability of yeast
cells. They both seem to interact with the membrane-embedded
part of the complex (Popov-Čeleketić et al, 2008).

Most of the precursors transported by the TIM23 complex
contain amino-terminal presequences (Neupert & Herrmann,
2007; Endo & Yamano, 2009; Schmidt et al, 2010). These are
necessary and sufficient to transport proteins into the matrix
through the TOM complex in the outer membrane and the
TIM23 complex in the inner membrane. Some of the precursors
transported by the TIM23 complex also contain a stop-transfer
signal (Glick et al, 1992). These poorly defined hydrophobic
segments arrest translocation at the level of the TIM23 complex
and the complex opens laterally, leading to insertion of the
transmembrane segment into the inner membrane. Translocation
into the matrix of all precursors analysed so far depends on both
the membrane-embedded core of the TIM23 complex and its
import motor (Neupert & Herrmann, 2007; Endo & Yamano,
2009; Schmidt et al, 2010). Conversely, the requirements for the
ATP-dependent activity of the import motor during transport of
laterally sorted precursors differ between precursors. Proteins that
have a long stretch between the presequence and the stop-transfer
signal and/or have folded domains behind the stop-transfer signal
need the ATPase activity of mtHsp70 for import into the
mitochondria (Voos et al, 1993; Gartner et al, 1995; Mokranjac
et al, 2003; Chacinska et al, 2010). Insertion of other precursors
can occur even in its absence (Voos et al, 1993; Rojo et al, 1998).

There are two proposed models for protein transport by the
TIM23 complex. According to the single-entity model, all essential
subunits of the translocase function as one complex that is actively
remodelled on recognition of targeting signals in the translocating
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chain (Popov-Čeleketić et al, 2008; Tamura et al, 2009). Thus,
several conformational changes enable the TIM23 complex to sort
proteins into two mitochondrial subcompartments. Tim21 and
Pam17 facilitate these conformational changes, but are not
required for them to take place. Conversely, the modular model
suggests that the TIM23 complex exists in two forms (Chacinska
et al, 2005, 2010). One contains Tim21 but lacks the import
motor, and is responsible for lateral insertion. The other lacks
Tim21 but contains the import motor, and is responsible for
transport into the matrix. Both models reflect the highly dynamic
nature of the TIM23 complex and agree that transport into the
matrix and motor-dependent lateral insertion require both sectors
of the translocase.

We reasoned that the two models could be distinguished by
studying the import pathway of ATP-independent, laterally sorted
precursors. The single-entity model would predict that the
components of the import motor are present in the translocase
during lateral insertion, even if its ATPase activity is not required.
By contrast, the modular model would suggest that the compo-
nents of the import motor are absent from the translocase during
the same process. Analysis of the molecular environment of
productive translocation intermediates of ATP-independent,
laterally sorted precursors showed that components of both the
import motor and the membrane-embedded core of the complex
are found in the vicinity of such laterally sorted proteins.
Furthermore, the data presented here suggest a specific role of
Tim14 during lateral insertion. Our results provide evidence for
the role of the import motor beyond the ATP-dependent
translocation, and thus support the single-entity model.

RESULTS AND DISCUSSION
Arrest of laterally sorted ATP-independent proteins
Chimeras that consist of up to 167 residues of yeast cytochrome b2
and mouse dihydrofolate reductase (DHFR) are laterally sorted by
the TIM23 complex in an ATP-independent manner (Fig 1A;
supplementary Fig S1A online; Glick et al, 1993; Voos et al,
1993). A construct that contains 220 residues of b2 is also laterally
sorted but requires the ATP-dependent action of the import motor,
due to the presence of a folded haem-binding domain (Fig 1A)
(Glick et al, 1993; Voos et al, 1993). During import, these
constructs are first processed by the matrix-processing peptidase—
which removes the presequence in the matrix—and subsequently
by the inner-membrane protease in the IMS, which cleaves the
stop-transfer signal. The latter cleavage requires folding of the
haem-binding domain, resulting in incomplete maturation of
shorter constructs (Glick et al, 1993). A particularly useful
characteristic of these chimeras is the possibility of generating
intermediates that span two membranes by stably folding the
DHFR domain in the presence of DHF, or its analogues, and
nicotinamide adenine dinucleotide phosphate (reduced form;
NADPH). On removal of DHF and NADPH, in vitro arrested ATP-
dependent fusion proteins can be chased to their final location
within the mitochondria, irrespective of whether they are sorted
laterally into the inner membrane or translocated into the matrix
(Chacinska et al, 2010). We asked whether the same is true for
ATP-independent constructs. Indeed, both cytb2(1–147)DHFR
and cytb2(1–167)DHFR could be arrested in this manner and
subsequently chased to the protease-protected location in the
mitochondria (Fig 1B; supplementary Fig S1B online). We

reasoned that stabilization of a folded DHFR domain in this
two-step import reaction might lead to an altered import pathway,
by which their transport becomes dependent on the ATPase
activity of the import motor. To test this, we used ssc1-3
mitochondria, which carry a temperature-sensitive mutant form
of mtHsp70 that, on inactivation, cannot support ATP-dependent
import (Fig 1C; Voos et al, 1993). Arrest and subsequent chase of
cytb2(1–147)DHFR took place in ssc1-3 mitochondria as effi-
ciently as in wild type (Fig 1D). The same was observed for
chimeras that contain 107, 127 and 167 residues of b2
(supplementary Fig S1C–E online). By contrast, arrest and chase
of ATP-dependent precursor cytb2(1–220)DHFR were impaired
(Fig 1E). We conclude that these ATP-independent, laterally sorted
precursors can be arrested and subsequently chased into the
mitochondria, and that folding of the DHFR domain does not
change their import pathway into an ATP-dependent one.

Molecular environment of arrested intermediates
We analysed the molecular environment of in vivo-arrested,
laterally sorted precursors by chemical crosslinking in intact
mitochondria. A version of the above-described fusion protein
cytb2(1–147)DHFRHis that has a C-terminal His-tag was ex-
pressed in yeast cells in the presence of aminopterin, a folate
analogue, so that it became arrested as a two-membrane spanning
intermediate in vivo (Wienhues et al, 1991; Popov-Čeleketić
et al, 2008). Crosslinking was performed with isolated, intact
mitochondria followed by isolation of arrested proteins and their
crosslinking adducts on NiNTA-Agarose beads. Tim23 and
Tim17—components of the membrane-embedded core of the
translocase—were crosslinked to the arrested protein (Fig 2A,B).
Crosslinks were detected if proteins were arrested in the translo-
case, but not if they were expressed under non-arrest conditions
(supplementary Fig S2 online). Interestingly, we also detected
crosslinks of cytb2(1–147)DHFRHis with Tim44 (Fig 2C), Tim16
(Fig 2D) and Tim14 (Fig 2E). This suggests that components of the
import motor are also found in the vicinity of laterally sorted
precursors. The sizes of the crosslinking adducts of cytb2
(1–147)DHFRHis were indistinguishable from those of cytb2
(1–167)D19DHFRHis, the matrix-targeted precursor, suggesting
that it is either the precursor or the intermediate form of cytb2
(1–147)DHFRHis that is crosslinked (supplementary Fig S3 online).

To analyse whether the observed crosslinks were derived from the
productive, on-pathway intermediates we combined the in vitro
arrest and chase assay using isolated mitochondria—as described
above—with crosslinking followed by immunoprecipitation with
affinity-purified antibodies to various subunits of the TIM23 complex.
Crosslinks between Tim23, Tim44 and Tim14 and the in vitro
arrested cytb2(1–147)DHFR were found (Fig 2F). This supports the
results obtained with the same precursor arrested in vivo.
Importantly, the crosslinks to the various TIM23 components
disappeared as the protein was chased into the mitochondria. Thus,
the observed crosslinks are the crosslinks of productive on-pathway
intermediates. This further supports the notion that the components
of the import motor are a genuine part of the translocase during
lateral insertion of transmembrane segments.

To determine which stage of lateral insertion the components
of the import motor are involved in, we performed crosslinking of
a series of laterally sorted precursors of different lengths.
Precursors comprising 107, 127, 147, 167 and 220 residues of
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b2 fused to DHFR were expressed at similar levels (Fig 3A).
However, their crosslinking patterns differed. Furthermore, the
intensities of their crosslinking adducts increased with precursor
length, yet disappeared in the longest one. This suggests that

the different precursors occupy different positions in the
TIM23 complex. Cytb2(1–220)DHFR progressed to a later trans-
port step and probably left the TIM23 complex. Precursors
comprising 107, 127, 147 and 167 residues of b2 were crosslinked
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Fig 1 | Translocation arrest of substrates laterally sorted by the TIM23 complex. (A) Schematic representation of fusion proteins consisting of different

segments of yeast cytochrome b2 (Cytb2; black box) and mouse DHFR (grey box). Zigzag line denotes the presequence and white boxes denote the

transmembrane segment of b2. (B) 35S-labelled cytb2(1–147)DHFR was imported into wild-type mitochondria in the presence or absence of DHF

and NADPH. DHF/NADPH-treated samples were reisolated, washed and incubated further for 5 and 20min (chase). Samples were treated with

PK where indicated and analysed by SDS–PAGE and autoradiography. Asterisk indicates a translation product arising from an internal methionine.

(C) Schematic representation of the translocation arrest and lateral release in the ssc1-3 mutant mitochondria, which carry a temperature-sensitive

mutant of mitochondrial Hsp70. (D,E) Wild-type and ssc1-3 mitochondria were preincubated for 10min at 37 1C and used for import of indicated

precursor proteins in the presence of DHF and NADPH. Mitochondria were reisolated, incubated further without NADPH/DHF for the indicated time

periods and subsequently treated as described in (B). Autoradiographs are shown in the upper panels and quantifications of PK-protected material

in the lower panels. PK-protected mature form at 30min in WT was set to 100%. DHFR, dihydrofolate reductase; HBD, haem-binding domain;

i, intermediate form of imported protein; IM, inner membrane; IMP, inner membrane protease; m, mature form of imported protein; MPP,

mitochondrial processing peptidase; NADPH, nicotinamide adenine dinucleotide phosphate (reduced form); OM, outer membrane; p, precursor form

of imported protein; PK, proteinase K; SDS–PAGE, SDS–polyacrylamide gel electrophoresis; WT, wild-type.
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EMBO reports VOL 12 | NO 6 | 2011 &2011 EUROPEAN MOLECULAR BIOLOGY ORGANIZATION

scientificreport

544



to Tim23 (Fig 3B). Notably, the same precursors were also
crosslinked to Tim44 (Fig 3C) and Tim14 (Fig 3D). Thus, the
components of the import motor remain in the vicinity of the
translocating chain during the entire process of lateral insertion.

Role of Tim14 in lateral insertion
The import motor is exposed largely to the matrix. Yet, Tim14 is
integrated into the inner membrane and exposes an approximately
60-residue-long segment to the IMS (Mokranjac et al, 2003). This
segment of Tim14 has been shown to interact with Tim17 and the
IMS domain of Tim23 (Chacinska et al, 2005; D’Silva et al, 2008;
Tamura et al, 2009). We therefore reasoned that it might have a
role in lateral insertion. To test this, a laterally sorted, ATP-
independent precursor, DLD(1–72)DHFR (Rojo et al, 1998), was
imported into wild-type mitochondria and mitochondria lacking
the IMS domain of Tim14 (Tim14D60). Surprisingly, removal of
the IMS domain of Tim14 resulted in a considerably higher import
efficiency of this precursor (Fig 4A). As missorting of this precursor

into the matrix might have occurred, we checked its sub-
mitochondrial location. Mitochondria were subjected to hypo-
tonic swelling to rupture the outer membrane and treated with
protease (supplementary Fig S4A online). The mature form of
DLD(1–72)DHFR was degraded in both wild-type and Tim14D60
mitoplasts, showing that DLD(1–72)DHFR was correctly
sorted into the inner membrane. We asked whether the same
effect of Tim14D60 mitochondria would be observed with other
laterally sorted precursors. Indeed, import of both cytb2
(1–127)DHFR and cytb2(1–147)DHFR was more efficient in
Tim14D60 than in wild type (supplementary Fig S4B,C
online). By contrast, the import of matrix-targeted precursor
cytb2(1–167)D19DHFR and a TIM23 complex-independent
precursor, ATP/ADP carrier, were indistinguishable between
the two types of mitochondria (Fig 4B; supplementary Fig S4D
online). Thus, the IMS domain of Tim14 seems to modulate
the rate of lateral release of transmembrane segments into the
lipid bilayer.
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How can this be explained? The IMS domain of Tim14 might
influence the rate of lateral insertion by affecting the conformation
of the TIM23 complex. We therefore compared the crosslinking
patterns of Tim23 in wild-type and Tim14D60 mitochondria. This
assay is sensitive to changes in the conformation of the translocase
(Popov-Čeleketić et al, 2008). The crosslinking patterns of Tim23
in the two types of mitochondria were indistinguishable (supple-
mentary Fig S4E online). Furthermore, coimmunoprecipitation
experiments from digitonin-solubilized mitochondria revealed no
effect of removal of the IMS domain of Tim14 (Mokranjac et al,
2007; data not shown). Even the Triton X100-stable dimer of
Tim14 and Tim16 (Kozany et al, 2004) was present in Tim14D60
mitochondria (supplementary Fig S4F online). However, the
oligomeric complex of Tim14 and Tim16 on the blue native–
PAGE, that is present in wild type, was absent in Tim14D60
mitochondria (Fig 4C). The other complexes, including the
Tim17–Tim23 complex or the TOM complex, were not affected
by removal of the IMS domain of Tim14. In contrast to full-length
Tim14, Tim14D60 was not found in the crosslinking distance to
the in vivo arrested cytb2(1–107)DHFRHis (Fig 4D, upper panel),
although the expression levels and the processing pattern of the
arrested protein did not differ between the two types of
mitochondria (Fig 4D, lower panel). In addition, the Tim14D60
cells grew more slowly than wild type on lactate medium at higher

temperatures (Fig 4E). Taken together, these results suggest an
active role of Tim14 in modulating the rate of lateral insertion of
transmembrane segments by the TIM23 complex.

The stop-transfer signal is specifically recognized by the TIM23
complex, although the molecular mechanisms for this remain
unknown. Data presented here raise the possibility that Tim14
might be part of this recognition element.

CONCLUSION
The TIM23 complex mediates translocation of precursor proteins
across, and their lateral insertion into, the mitochondrial inner
membrane. Previous data have demonstrated that both the
membrane-embedded part of the complex and its import motor
are involved in translocation of precursors across the inner
membrane. However, lateral insertion of some precursors can
occur even in the absence of the ATPase activity of the import
motor. It was thus not clear whether the import motor has a role in
the process of lateral insertion. We show here that components of
the import motor are in the vicinity of laterally sorted proteins and
affect the efficiency of insertion even when the ATPase activity of
the import motor is not required. Thus, the function of the import
motor of the TIM23 complex extends beyond its ATP-dependent
action during translocation of proteins across the inner membrane
into the matrix.
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protein; m, mature form of imported protein; p, precursor form of imported protein; PK, proteinase K; SDS–PAGE, SDS–polyacrylamide gel

electrophoresis; WT, wild-type.
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METHODS
Plasmids, yeast strains and growth conditions. Chimeras consist-
ing of different segments of yeast cytochrome b2 and mouse DHFR
were made using standard techniques. For in vitro transcription
and translation, all constructs were cloned under the Sp6
promoter in pGEM4 (Promega). For expression in yeast they were
cloned in pYES2 (Invitrogen) and transformed into wild-type yeast
strain YPH499. Expression and in vivo arrest of chimeric constructs
was performed as described previously (Popov-Čeleketić et al,
2008). The generation and growth conditions of Tim14D60 yeast
strain have been described previously (Mokranjac et al, 2007).
Chemical crosslinking and isolation of crosslinking adducts. Che-
mical crosslinking and isolation of crosslinking adducts were
performed as described previously (Mokranjac et al, 2003).
Briefly, isolated mitochondria were incubated in the presence of
disuccinimidyl glutarate for 30min on ice. Disuccinimidyl
glutarate is an amino-group-specific crosslinker with a spacer
arm of 7.7 Å. After quenching the excess crosslinker, mitochondria
were reisolated and solubilized in SDS-containing buffer to
dissociate all non-covalent interactions. Samples were diluted
with Triton X-100-containing buffer and incubated with either
NiNTA-Agarose beads (for isolation of His-tagged precursors and
their crosslinking adducts) or affinity-purified antibodies to TIM23
components bound to ProteinA-Sepharose (for isolation of cross-
linking adducts of translocation intermediates arrested in vitro).
Bound proteins were eluted with Laemmli buffer and samples
were analysed by SDS–polyacrylamide gel electrophoresis and
transferred to nitrocellulose membrane, followed by immuno-
decoration or autoradiography.
Miscellaneous. Previously described methods were used for
protein import into isolated mitochondria (Mokranjac et al,
2003), in vitro arrest of precursor proteins with NADPH/DHF
and subsequent chase into mitochondria (Chacinska et al, 2010)
and coimmunoprecipitation from Triton-X100-solubilized mito-
chondria (Kozany et al, 2004). NativePAGE 4–16% Bis–Tris Gel
system (Invitrogen) was used for BN-PAGE analysis. Mitochondria
were solubilized with digitonin and further processed according to
the manufacturer’s instructions. For all figures, one of at least three
independent experiments are shown.
Supplementary information is available at EMBO reports online
(http://www.emboreports.org).
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