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A�������: Quantum and noncommutative corrections to the Newtonian law of inertia

are considered in the general setting of Verlinde’s entropic force postulate. We demon-

strate that the form for the modified Newtonian dynamics (MOND) emerges in a classical

setting by seeking appropriate corrections in the entropy. We estimate the correction term

by using concrete coherent states in the standard and generalized versions of Heisenberg’s

uncertainty principle. Using Jackiw’s direct and analytic method we compute the explicit

wavefunctions for these states producing minimal length as well as minimal products.

Subsequently we derive a further selection criterium restricting the free parameters in the

model in providing a canonical formulation of the quantum corrected Newtonian law by

setting up the Lagrangian and Hamiltonian for the system.

1. Introduction

The weak equivalence principle is a well known concept, see e.g. [1], that identifies the

inertial mass mI occurring in Newton’s second law of motion �F = mI�a, with the gravi-

tational mass mG in Newton’s inverse square law of gravitation. The latter accounts for

the attractive force between a body of mass mG at the position �r and n different others

specified by their masses mi occupying positions �ri, i = 1, 2, ..., n, as

�F = −
�

i

GmGmi(�r − �ri)

|�r − �ri|3
, i = 1, 2, ..., n, (1.1)

where G is the gravitational constant. Equating these two expressions for the force when

using mI = mG readily yields an expression for the acceleration of a particle in a gravita-

tional field

�a = −G
�

i

mi(�r − �ri)

|�r − �ri|3
, i = 1, 2, ..., n. (1.2)
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A consequence of this is the curious feature, known since the time of Galileo, that objects

that are dropped from some height, say from the top of a building, will arrive at the

same time on the ground as long as their motion is not affected by air resistance or other

disturbances, i.e. they fall at the same rate with equal accelerations.

By invoking the holographic principle in the vicinity of a black hole E. Verlinde [2, 3]

demonstrated recently that Newton’s second law of motion for a particle when confronted

with the law of gravitation for celestial bodies, can be viewed as entropic in character.

Employing the holographic argument that any information of the black hole, which is

imagined as a sphere of Schwarzschild radius R, can emerge only from its surface (because

what is inside the black hole remains totally intractable to an outside observer), and using

the equipartition rule gave strong thermodynamical evidence to justify such a claim. Note

that the boundary of the black hole sphere which is basically an equipotential surface acts

as a holographic screen also popularly referred to as the event horizon.

Assuming the change of entropy ∆S near the holographic screen to be linear in the

displacement ∆x of a test particle, Verlinde suggested for ∆S the relation

∆S = 2πkB
mc

�
∆x = 2πkB

∆x

λ
, (1.3)

with λ := �/mc denoting the reduced Compton wavelength, kB the Boltzmann constant,

� the reduced Planck constant and c the speed of light. The change in entropy was also

assumed to generate an entropic force F acting on the particle to be of the form

F∆x = T∆S, (1.4)

where T is the temperature. Taking T to be given by Unruh’s temperature [4] for an

accelerated observer, namely

kBT =
�

2π

a

c
, (1.5)

where a stands for the acceleration of the particle, consistency gave Newton’s formula for

the second law of motion F = ma when combining (1.3)-(1.5). Next, to arrive at the law of

gravitation by restricting to the spherical boundary having an area A = 4πR2, R being the

radius of the sphere, he made use of the holographic principle that the total number of bits

making up the maximally storage space is proportional to A. This gave the number N of

used bits as N = Ac3/G�, G being identified as Newton’s gravitational constant as in (1.1).

Using the equipartition rule for the average energy for every bit, E = 1
2NkBT = mc2, M

denoting the mass in the part of the space enclosed by the holographic screen, yielded the

well known Newton’s law of gravitation: F = −GMm/R2.

It is worthwhile to recall some history behind Verlinde’s formulation. First, an early

work by Jacobson [5] attempted to derive Einstein’s relativistic equations from pure ther-

modynamical considerations by making the constant of proportionality between the area

and entropy universal following a preceding work of Bekenstein [6] who in turn looked at the

entropy of any isolated system to be bounded by its area. Second, Padmanabhan [7, 8] ar-

rived at a result of gravitational acceleration by reversing Unruh’s temperature-acceleration
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relation. Both Bekenstein as well as Padmanabhan’s discussions were carried out in a fully

relativistic frameworks which apparently have no analogue in Verlinde’s non-relativistic

formulation.

An important observation made by Verlinde was that since the maximally allowed

information stored in any continuum volume of space can only be finite, it is not sensible

to talk of localizing a particle with an infinite degree of accuracy. Even though in the

end he obtained the classical results which were devoid from the appearance of �, it is

pertinent to bear in mind that while the individual expressions of the change in entropy

as well as Unruh’s temperature contain an explicit presence of �, the latter fortunately

cancels out when we look for a force-acceleration relationship. A question then naturally

arises as to what happens if we seek higher corrections to the uncertainty principle as is

needed to accommodate various modifications of the short distance structure in quantum

theories that attempt to incorporate gravity [9]. This in turn calls for an introduction of

a so-called minimal length beyond which a localization of space-time events is no longer

possible. With a minimal observable length ∆x �= 0 that is characteristic of a physical

quantum state, it is evident that an eigenstate with a zero-uncertainty in position can

no longer depict a physical state. Models in string theory [10, 11] as well as in quantum

gravity [12] do indeed support the existence of such a minimal length [13]. Alternatively

one may also view ∆x as a change in the black hole radius [14]. It is also noteworthy that

one may derive the Friedmann equations describing the dynamics of the universe with any

spatial curvature when considering gravity as an entropic force [15, 16]. The presence of a

minimal length with impose corrections on these expressions [17, 18].

Many of the proposed corrections to the entropic force of gravitation are a matter of

speculation based on physical plausibility arguments. In particular, constants of propor-

tionality can often only be fixed by reasoning on their dimensionality so that the overall

expressions remain to be of a qualitative nature. The main purpose of our paper is to

investigate different types corrections more concretely by trying to obtain concrete quanti-

tative values. We achieve this by evaluating these expressions for various types of coherent

quantum states. In addition we analyze the Lagrangian ad Hamiltonian formulations for

these forces, which imposes further constraints on possible choices of the correction terms.

Our manuscript is organized as follows: In section 2 we discuss how Verlinde’s argument

can be modified by including quantum or noncommutative corrections in the energy and/or

the entropy. We compute the correction terms to the gravitational force for various choices

of the free parameters in the standard approach and generalized Heisenberg’s uncertainty

relations. We use concrete expressions for the uncertainties obtained from different types

of coherent states whose wave functions we derive explicitly in section 3 using Jackiw’s

direct and analytic method. In section 4 we derive some Lagrangians and Hamiltonians for

the corrected entropic force, which turn out to be explicitly time-dependent. Demanding

that the damping to be small provides a further criterion that allows to exclude certain

choices of the free parameters. We state our conclusions in section 5.

— 3 —
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2. Quantum corrections to Newton’s second law

Let us now see how the above effects might be incorporated into the above reasoning

by modifying the equations (1.3)-(1.5) and exploiting Verlinde’s observation that a strict

localization of the test particle is not possible. As argued by Santos and Vancea [19] the

total energy also depends on the momentum p in form of the kinetic energy or possibly in

a more general way. This means that the uncertainty in the total energy δE could also

acquire a term that depends on the uncertainty in the momentum δp. We assume here the

form

δE = Fδx+ α
p

m
δp = TδS, (2.1)

to be valid at thermal equilibrium where α is dimensionless, possibly a constant. In other

words when α = 1 there is correction term associated to the kinetic energy. Note that

TδS is not a perfect differential. To counterbalance the additional term one also needs to

modify the expression for δS. Here we take

δS = 2πkB

�
1

λ
δx+

β

mc
δp

�
, (2.2)

with a dimensionless parameter β introduced to the equation. We keep the equation for the

Unruh temperature (1.5) unchanged. In the limit α, β → 0 we recover the equations (1.3)-

(1.5). In [19] the options α = 1, β = 1 and α = 1, β = p/mc were explored. Combining

the equations (1.5), (2.1) and (2.2) leads easily to a corrected expression for the force

F = ma+

�
β
λ

c
a− α

p

m

�
δp

δx
= ma+ F cor. (2.3)

Our task is now to interpret the additional term F cor and test which choices of α and

β are permissible. Keeping in mind that the variations δp and δx are interpreted as the

uncertainties in a simultaneous measurement of x and p one can employ the standard

Robertson version of Heisenberg’s uncertainty relation for a simultaneous measurement of

two noncommuting operators A and B

(∆A)2 (∆B)2 ≥ 1

4
|�[A,B]	|2 , (2.4)

for A = x, B = p with [x, p] = i� to make estimations about the ratio δp/δx. In [19, 20]

δxδp ≥ �/2 was used at saturation point of the lower bound, i.e. it was assumed that

the test particle is in a coherent, possibly squeezed, state and δp was traded for �/(2δx).

This leaves the resulting expression with an unknown factor δx−2. Furthermore it was

suggested in [19] that the classical limit is obtained by the simultaneous limit � → 0,

δp → 0. This gives indeed the classical expression, but the proposed prescription lacks

further justification. It addition, demanding δp → 0 is ambiguous as one might as well

require the simultaneous limit � → 0, δx → 0. The question is why is the classical limit

not obtainable simply from �→ 0? Here we go a step further trying to achieve just that.

Our main assumption is that we take the test particle to be in a specific state so that

δp/δx acquires a concrete value.
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2.1 Corrections from canonical coherent states and MOND dynamics

Let us now assume at first the test particle to be in a standard canonical coherent state

for which we have the well known expressions, see e.g. [21],

δxδp = �/2, with δx =

�
�

2mω
, δp =

�
mω�

2
. (2.5)

Using these equalities we can evaluate the ratio δp/δx for these states, such that the

quantum corrected force (2.3) becomes

Fcoherent = ma+

�
β
λ

c
a− α

p

m

�
mω = ma+ F corcoherent. (2.6)

We have now various options for the choice of α and β. We may take α �= 0, which suggests
that the second term in (2.6) becomes a pure quantum correction with α ∼ �. For instance,
α = ω�/mc2 is an admissible choice corresponding to a quantum correction in the energy

(2.1). Having introduced an additional quantum correction it is not a surprise that we

obtain also a quantum correction in F .

Taking α = 0 the correction term F corcoherent becomes a genuine quantum correction and

the classical limit is simply reached by taking � → 0. One might take β = 1 in this case,

so that a classical correction in δS has led us to a quantum correction in F .

Finally one may wonder if one can reverse the setting of the previous example and

obtain a classical correction to F from an additional quantum term in δS. This is similar to

Verlinde’s original argument in which also the � from the expression for δS has cancelled the

� appearing in the Unruh temperature. An example for such a classical theory of modified

Newtonian dynamics (MOND) was proposed in 1983 by Milgrom [22, 23] for situations

when the gravitational force shows a marked departure from the conventional Newtonian

expectation at low acceleration. The MOND theory, or so it is called, is typically applicable

to scales of acceleration (less than the threshold value of a0 ≈ 1.2× 10−10ms−2) which are

rather small compared to what is observed in the solar system and perhaps relevant towards

explaining galactic scale phenomena [24]. It has been noted [25] that the Milgrom scheme

might be justified as an alternative means to solve for the dark matter problem which is

still to find any experimental support, the prime reason being its rather poor coupling with

visible matter. A recent paper by Verlinde [3] has sought to explore this issue using the

standard thermodynamical arguments as a basis.

A MOND theory has the force form given by a deformed acceleration [26]

FMOND = maµ(a0/a), with µ(a0/a) =
1

1 + a0/a
, (2.7)

where a0 is the aforementioned small acceleration. It is, however, only a phenomenological

form but worthwhile to note that in place of the usual expression of the acceleration as

is implied by (1.1) namely, a = MGr−2, in MOND, a test particle which is at a distance

r from a large mass M is subject to the acceleration a given by a2/a0 = MGr−2, where

a ≪ a0. Other variants of a modified Newtonian equation have been proposed in the

literature [27], but we do not discuss them here.
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Choosing now α = 0 and β = −c(ωλ)(1 + a/a0) we obtain precisely the form of the

MOND force (2.7) with modified acceleration. Remarkably this means with a corrected

entropy, just taking the uncertainty of a particles position into account, we may interpret

the force in a MOND theory as a classically emerging entropic force.

2.2 Corrections from minimal value and minimal product coherent states

Let us now assume our system to be in a noncommutative space on which the canonical

Heisenberg commutation relations are generalized to [9, 28]

[x, p] = i�
�
1 + τp2

�
, (2.8)

with τ ∈ R+ denoting the dimensionful, i.e. [τ ] = s2/m2, noncommutative constant. Such

a generalized commutation relation arises as a particular case of an extended q-deformation

given by the commutator [28]

[x, p] = i�qg(N) +
i�

4
(q2 − 1)

�
x2

δ2
+

p2

γ2

�
, δ, γ ∈ R (2.9)

where g is some arbitrary function of the number operator N defined as the product of

the creation and annihilation operator for the harmonic oscillator. Taking g(N) = 0 and

parametrizing the deformation parameter q in the form q = e2τγ
2

, we found in the limit

γ → 0, the τ -corrected form (2.8).

On a noncommutative space one needs to make an important distinction between what

we refer to as minimal factor coherent states (mfco) and minimal product coherent states

(mpco). The former are the states for which the minimal value is reached for one of the

factors in the uncertainty relation, e.g. δx in which case it is referred to as minimal length

coherent state (mlco). In contrast,the mpco-states is a state for which the entire product

in the uncertainty relation, e.g. δxδp, is minimized. Assuming now the test particle to be

in a mlco-state, we have

δxminδp = �, with δxmin = �
√
τ , δp =

1√
τ
. (2.10)

These values are easily obtained for (2.8) with (2.4), see the next section for the derivation.

We will comment also in more detail on the construction of meaningful explicit states that

produce these values. Using (2.10) in (2.3) the noncommutatively corrected force becomes

Fmlco = ma+

�
β
λ

c
a− α

p

m

�
1

�τ
= ma+ F cormlco. (2.11)

Since � as well as τ are very small, �τ ≪ 1, the correction term becomes very large, which

does not make sense as we expect only a small modification. However, by demanding that

α ∼ (�τ)2 and β ∼ �τ this can be achieved. For instance, α = (�τmω)2 and β = �τmω is an

admissible choice from a dimensional point of view. When using this option the modifying

terms proportional to δp in (2.1) and (2.2) acquire a new interpretation. They are now

noncommutative deformations that give rise to an entropically emergent noncommutative

space-time structure.
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As is clear from the argument above, the deformed equation (2.8) is only one of

many possibilities obtainable from (2.9) or other approaches. In [28] also higher order

τ -deformations were explored as for instance

[x, p] = i�

�
1 + τp2 +

1

2
τ2p4

�
, (2.12)

with δxmin = 1.14698�
√
τ , δp = 0.740664/

√
τ going up to

[x, p] = i�eτp
2

, (2.13)

with δxmin = 1.16582�
√
τ , δp = 1/

√
2τ . It was noted in [29] that 1.16582 . . . can be

expressed as
�

e/2. This means for the higher deformations the corrected force becomes

Fmlco(τ) = ma+ κτF
cor
mlco, (2.14)

where τ in κτ indicates the order in the deformation. So we have κ1 = 1, κ2 = 0.6458, . . . ,

κ∞ = e−1/2 = 0.6065.

One might suspect a different outcome in regard to the previous argument when using

mpco-states. Assuming still the emerging space-time structure to be noncommutative with

deformed uncertainty relation (2.8) we obtain in this case

(δxδp)min =
2

3
�, with δx =

2√
3
�
√
τ , δp =

1√
3
√
τ
. (2.15)

We note that indeed for these values the product δxδp is smaller and δx is larger in (2.15)

when compared to (2.10). As it is less obvious how to derive these values, we will comment

in detail on the derivation in the next section. The correction term to the force is in

this case half the correction term Fmpco = ma+F cormlco/2 which is a further reduction when

compared to κ∞. As the overall dependence on � and τ is unchanged the general discussion

and interpretation is the same as for the mlco-states resulting from (2.8).

3. Minimal length and minimal value coherent states

We will now provide the details on how the values for (2.10) and (2.15) are obtained

including a derivation of the associated explicit wavefunctions. Since the discussion for

the values in (2.15) has not been presented elsewhere before, we provide also a general

discussion on the appropriate method to be used.

We distinguish here two fundamental questions regarding the measurement of an ob-

servable A in any quantum mechanical system: a) what minimal value can the variance

(∆A)2 :=
�
A2
	
− �A	2 =



Â2
�
with Â = A− �A	 or the standard deviation ∆A take and

b) what is the associated state |ψ	min,A in �A	 := �ψ|A |ψ	 that realises that minimum?
These questions are then naturally extended to simultaneous measurements related to two

or more operators. For two operators A and B the questions a) and b) have now three

variants, i.e. what are the minimal values and corresponding states for ∆A, ∆B or the

product ∆A∆B within the simultaneous measurement of A and B? For three operators A,
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B and C this extends to seven variants, i.e. what are the minimal values and corresponding

states for ∆A, ∆B, ∆C, ∆A∆B, ∆A∆C, ∆B∆C or ∆A∆B∆C within the simultaneous

measurement of the expectation values of all three operators A, B and C? Naturally the

states that realise these different possibilities are usually non-identical.

A typical example for the measurement of two operators A and B are the aforemen-

tioned position and momentum operators x and p, respectively. To measure the position

of a particle in space is an example for three operators corresponding to the coordinate

components x, y and z. This measurement is of course trivial in conventional space, but

becomes nontrivial and interesting when one considers a noncommutative space in which

coordinate component operators do not commute, see e.g. [30, 31] for concrete examples

and [32] for a recent review.

The question regarding the minimal values of ∆A and ∆B is not challenging when

the commutator on the right hand side of (2.4) is a constant, as one can always achieve

∆A → 0 or ∆B → 0 by taking ∆B → ∞ or ∆A → ∞, respectively, and still respect the
lower bound. This is the standard scenario of Heisenberg’s uncertainty relation in which

one must give up all the information about A or B to measure B or A, respectively, with

absolute precision. However, when the resulting commutator on the right hand side of the

inequality involves operators, i.e. when the lower bound becomes a function of A and/or B

it is no longer possible to carry out the limits in this trivial manner. Such a scenario arises

for theories formulated on certain noncommutative spaces as discussed in section 2.2. In

that case one may assume that the minima are reached for coherent states that is at equality

in (2.4). By defining the function f(∆A,∆B) := ∆A∆B − 1
2 |�[A,B]	|, the critical values

are simply obtained by simultaneously solving f(∆A,∆B) = 0 and ∂∆Bf(∆A,∆B) = 0

for ∆A or ∂∆Af(∆A,∆B) = 0 for ∆B from which one can identify the minimum ∆Amin
or ∆Bmin, respectively, see e.g. [28]. We note that there is no reason to expect that the

product of the individual minimal values ∆Amin and ∆Bmin is equal to the minimal value

of the product (∆A∆B)min. From this argument we do not obtain any information about

the states involved.

3.1 The direct versus the analytic method

Let us now see how to derive the associated minimizing states |ψ	min,A, |ψ	min,B and

|ψ	min,AB for which these minima are reached. Following Jackiw [33] we recall the differ-
ence between the direct and analytic method that determine the state |ψ	 minimizing the
uncertainty product. Making the same assumption as above, namely that the minimum

is reached for equality, the direct method follows from a comparison of the Schwartz and

triangle inequality for
���


ÂB̂

����
2
. It then consists of solving


A− α+

�[A,B]	
2b2

(B − β)

�
|ψ	 = 0 (3.1)

for |ψ	 involving the three free parameters α := �A	, β := �B	 and b2 :=
�
B2
	
− �B	2.

Once the eigenvalue problem in (3.1) is solved, these parameters are just computed in a self-

consistent manner via their defining relations. They may be used to convert the solutions
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into proper square integrable functions and to minimize the desired quantities, that are

either the separate minimal values ∆Amin , ∆Bmin or the minimal product (∆A∆B)min. In

the derivation of (3.1) one makes two assumptions: First that the minimal state is reached

for the equality sign in (2.4) and second that the commutator [A,B] is a c-number rather

than a q-number, that is a constant and not an operator.

The analytic method on the other hand makes no assumptions about the right hand

side in the inequality (2.4). In that scheme one treats the left hand side as a functional,

minimizing it together with the supplementary assumption that |ψ	 is normalizable, i.e.
one solves

δ

δ �ψ|
��
�ψ|A2 |ψ	 − �ψ|A |ψ	2

��
�ψ|B2 |ψ	 − �ψ|B |ψ	2

�
−m (�ψ |ψ	 − 1)

�
= 0, (3.2)

with Lagrange multiplier m, for |ψ	. In a straightforward manner this leads to the eigen-
value problem

�
(A− α)2

a2
+
(B − β)2

b2

�

|ψ	 = 2 |ψ	 . (3.3)

As no assumption is made about the right hand side in (2.4) an additional parameter

a2 :=
�
A2
	
−�A	2 enters the scheme when compared to the direct method. By re-expressing

the direct method as

�
(A− α)2

a2
+
(B − β)2

b2

�

|ψ	 = 2 [A,B]

�[A,B]	 |ψ	 , (3.4)

Jackiw [33] demonstrated that the two schemes coincide if and only if |ψ	 is an eigenstate
of the commutator [A,B]. Thus when this is not the case at least one of the assumptions

on which the direct method is based ceases to be valid.

As there are no obvious analogs to the Schwartz and triangle inequality for three

operators, it is not evident how to formulate the direct method for that situation. However,

it is straightforward to generalize the analytic method to three observables, that is to

minimize triple products of variances (∆A)2 (∆B)2 (∆C)2. Using the analogue to (3.2),

simply with an additional factor
�
�ψ|C2 |ψ	 − �ψ|C |ψ	2

�
on the first term, one easily

derives �
(A− α)2

a2
+
(B − β)2

b2
+
(C − γ)2

c2

�

|ψ	 = 3 |ψ	 , (3.5)

now with two additional free parameters γ = �C	 and c2 =
�
C2
	
− �C	2, see [34] for an

example computation and [35] for an experimental verification.

The advantage of the analytic over the direct method is that it is applicable a) irre-

spective of the nature of [A,B], i.e. resulting to a number or an operator b) even when

the minimum is not reached for equality in (3.3) and c) to generalizations of uncertainty

relations involving more than two observables.
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3.2 Minimal value coherent states from direct method

When one wishes to obtain more information about the wavefunctions |ψ	min,A, |ψ	min,B
and |ψ	min,AB via the direct or analytic method one needs to specify a concrete repre-

sentation for the operators involved. For the algebra (2.8) there are various meaningful

representations Π(i) that we label by i. For instance, with regard to the standard inner

product a non-Hermitian and a Hermitian one are

x(1) = (1 + τp2s)xs, p(1) = ps, and x(2) = xs, p(2) =
1

τ
tan

�√
τps
�
, (3.6)

respectively. Here xs and ps are standard canonical variables satisfying [xs, ps] = i�.

Naturally for τ → 0 one recovers the standard Heisenberg commutation relations. Models

in terms of these variables and further representations have been studied in more detail in

[28, 36]. As demonstrated in [36] the corresponding physical quantities, namely expectation

values for adjoint operators, are representation independent and one may simply chose the

most suitable one for one’s purpose.

Using now the non-Hermitian representation Π(1) in the equation for the direct method

(3.1) for the observables A = x and B = p, we obtain in momentum space simply a first

order differential equation

i�
�
1 + τp2s

�
∂ps + i�

1 + τb2 + τβ2

2b2
(ps − β)− α

�
ψd(ps) = 0, (3.7)

for the minimal state ψd(ps). Setting the constant β = 0, equation (3.7) is easily solved to

ψd(ps) =

�√
τΓ
�
3
2 +

1
2τb2

�

√
πΓ
�
1
2 +

1
2τb2

�

�1/2
�
1 + τp2s

�− 1

4τb2
−
1

4 exp


−iα arctan (ps

√
τ)

�
√
τ

�
. (3.8)

The constant pre-factor is chosen so that these states are normalized with regard to the

quasi-Hermitian inner product

�ψ |ψ	ρ :=
�
∞

−∞

ρ(ps)ψ
∗(ps)ψ(ps)dps = 1, (3.9)

with metric operator ρ =
�
1 + τp2s

�
−1
. As this is by now well established in the literature we

do not justify the choice of ρ here any further, but instead refer the reader to [37, 38, 39, 40,

41, 42, 43] for the general formalism on how to construct meaningful metric operators and

how to define consistent inner products for non-Hermitian systems. A well-known argument

in [37] states that the metric becomes unique when two observables with specific properties

are specified, see also [44]1. Using the states ψd in the expression �.	ρ = �ψd| . |ψd	ρ, we
then easily compute the relevant expectation values

�x	ρ = α,
�
x2
	
ρ
= α2 +

�
2(1 + τb2)2

4b2
, �p	ρ = 0,

�
p2
	
ρ
= b2. (3.10)

The values for �x	ρ, �p	ρ and
�
p2
	
ρ
are to be expected by definition from the formalism and

the explicit computations are just consistency checks. Minimizing (∆x)2 as a function of

1 In [45] this argument was incorrectly attributed to our previous work [28].

— 10 —



Quantum, NC and MOND corrections to the entropic law of gravitation

b we find b = 1/
√
τ , such that the minimal length becomes ∆xmin = �

√
τ , which coincides

with the findings reported in (2.10) and those in [9]. For this value of b we have ∆p = 1/
√
τ

so that the product ∆xmin∆p = � does not saturate the lower bound. In the light of the

discussion in the previous section this was to be expected and in fact the minimal value for

∆x∆p = �/2(1+ τb2), as well for ∆p = b, would be obtained for b = 0. However, while the

corresponding minimal length state |ψ	min,p = ψd(b = 1/
√
τ) is well-defined, ψd(ps) is ill-

defined for b = 0. So the direct method does not allow us to compute the product coherent

states |ψ	min,xp. Let us therefore employ the analytical method to determine them.

3.3 Minimal product coherent states from the analytical method

For the representation Π(1) the eigenvalue equation for the analytical method (3.3) in

momentum space becomes the second order differential equation

�

−�
2
�
1 + τp2s

�2

a2
∂2ps −

2�(iα+ �psτ)
�
1 + τp2s

�

a2
∂ps +

α2

a2
+
(ps − β)2

b2
− 2
�

ψa(ps) = 0.

(3.11)

One may verify that ψd(ps) does not satisfy this equation, which is to be expected. Instead,

setting β = 0 this equation is solved in terms of associated Legendre polynomials of Pmℓ (x)

and Legendre functions of the second kind Qmℓ (x)

ψa(ps) = exp


−iα arctan (ps

√
τ)

�
√
τ

� �
c1P

m
ℓ (ips

√
τ) + c2Q

m
ℓ (ips

√
τ)
�
, (3.12)

with ℓ =
√
4a2 + �2τ2b2/(2bτ�)−1/2 andm = a

√
1 + 2τb2/(bτ�). Setting ℓ andm to small

integer values we find the first meaningful solutions, in the sense of being nonvanishing real

numbers, for the parameters a and b for ℓ = 1 and m = 2. For those values we have

P 21 (ips
√
τ) = 0 and Q21(ips

√
τ) = 2/(1 + τp2s). Suitably normalized with regard to the

inner product (3.9) the minimizing solution becomes

ψa(ps) =

�
8

3π

τ1/4

1 + τp2s
exp


−iα arctan (ps

√
τ)

�
√
τ

�
. (3.13)

Using this solution we then easily compute the expectation values

�x	ρ = α,
�
x2
	
ρ
= α2 +

4�2τ

3
, �p	ρ = 0,

�
p2
	
ρ
=
1

3τ
, (3.14)

for �.	ρ = �ψa| . |ψa	ρ. For these values the product of uncertainties (∆x∆p)min = 2�/3 is

minimized by construction. Indeed this value is smaller than ∆xmin∆p obtained from the

direct method by just minimizing ∆x. On the other hand the uncertainty in x computed

from these states ∆x = 2�
�

τ/3 is corrected by a factor 1.15 and therefore slightly larger

than the one computed from the direct method or the minimization of f(∆x,∆p). Since

the contributions from the two observables to the minimal product is not the same, i.e.

∆x = 2�
�

τ/3 and ∆p = 1/
√
3τ , the states ψa(ps) are squeezed coherent states for all

values of α.
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4. Lagrangian and Hamiltonian formulation of the entropic force law

Let us now investigate the modified force equation (2.3) further with a special focus on

the question of which choices for α and β are meaningful. We observed in the previous

section that an important feature of the entropic force law is that it comes in two parts -

one corresponding to the inertial term which is the so-called Newtonian or inertial mass

mI times acceleration and the other due to quantum or classical correction F cor which

influences it. The entire expression was derived purely on the basis of thermodynamical

arguments and the use of the uncertainty principle for particular states. The latter sets a

lower limit on the product of the uncertainties of position and canonical momentum but a

canonical momentum (defined as the partial derivative of the Lagrangian with respect to

the time-derivative of the generalized coordinate) has no place in Newtonian theory which

is concerned only with the ordinary momentum given simply by mass times velocity. To

keep things in order it would be reasonable to identify the p appearing in (2.3) with ẋ

whose rate of change is the acceleration a = ẍ.

With this understanding we re-express the modified force equation(2.3) as

F = Pẍ−Qẋ = −∂V

∂x
, (4.1)

where the quantities P and Q stand for

P := m+ β
�

mc2
δp

δx
, Q := −α

δp

δx
. (4.2)

We also used in (4.1) the definition F = −∂V/∂x, where V is a potential. It is straightfor-

ward to see that when taking

L =
�
P

2
ẋ2 − V

�
e−

Q
P
t (4.3)

to be a Lagrangian, the corresponding Euler-Lagrange equation of motion

d

dt

�
∂L
∂ẋ

�
=

∂L
∂x

(4.4)

is equivalent to (2.3) or (4.1) for time-independent P and Q. We notice that L depends
explicitly on the damping factor

Q

P
= − αω

mω δxδp + β �ω
mc2

, (4.5)

which evidently needs to very small or vanishing altogether. We can use this fact to con-

strain possible choices for α and β even further. For convenience we summarize previously

discussed scenarios in table 12

2Alternatively there exist also proposals for corrections to the entropic force resulting from rainbow

gravity [46], which is not accounted for in our table.
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trial states α β δx/δp |Q/P |
canonical coherent states 1 1 1

mω
ω

1+�ω/mc2 ≫ 1

canonical coherent states �ω
mc2

1 1
mω

ω
1+mc2/�ω

≫ 1

canonical coherent states 0 1 1
mω 0

MOND 0 −c(ωλ)(1 + a/a0)
1
mω 0

mlco states (�τmω)2 �τmω �τ/κτ
�τmω2

1/κτ+�ω/mc2
≪ 1

mvco states (�τmω)2 �τmω 2�τ �τmω2

2+�ω/mc2
≪ 1

Table 1: Choices for the dimensionless parameters α, β and different types of coherent states leading

to admissible (≪ 1) and nonphysical (≫ 1) damping factors.

The values in table 1 suggest that the framework discussed in [19], based on a quantum

correction for the energy is inconsistent. However, two choices survive this simple test. First

of all any choice with α = 0 and arbitrary nonvanishing but dimensionally acceptable β

is consistent. In particular that includes the values leading to a classical MOND theory.

Furthermore, the deformations of the energy and entropy expressions corresponding to

noncommutative deformations also yield consistent damping factors.

Finally let us also comment on a Hamiltonian H that is readily derived from the

Langrangian L when taking the associated canonical momentum p (not to be confused

with ẋ) to be

p =
∂L
∂ẋ

= ẋPe−
Q

P
t. (4.6)

This leads us to

H = ẋ
∂L
∂ẋ

− L =
p2

2P
e
Q

P
t + V e−

Q

P
t, (4.7)

so that depending on the sign of Q/P we obtain a damped kinetic term and amplified

potential term, or vice versa, unless Q = 0.

Evidently the explicit time dependence in the coefficients provides a major hindrance

for the quantization of this system. However, one might follow for instance recent work,

using a modified Prelle-Singer approach, in which explicit time-independent first integrals

have been identified in different parameter regimes for the damped linear harmonic oscil-

lator problem in order to facilitate the quantization procedure [47].

5. Conclusions

We have re-examined Verlinde’s argument on the derivation of the entropic law of gravita-

tion by taking into account a possible modification in the form of adding a term linearly

dependent on the momentum uncertainty δp in the energy (2.1) and/or the entropy (2.2)

uncertainty. These terms involve two free parameters α and β that are only constraint by

dimensional arguments. We then computed the general correction term for the entropic

force resulting as a consequences of this modification for various choices for the parame-

ters. The uncertainty ratio δp/δx, on which these terms depend, was computed exactly
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for some concrete coherent states with underlying standard and generalized Heisenberg

uncertainty relation. In addition, we derive explicit expressions for the normalizable wave-

functions associated to minimal length and minimal value coherent states. Furthermore, we

found that the Lagrangian and Hamiltonian associated to the entropic force are explicitly

time-dependent in an exponential form. Demanding for obvious physical reasons that this

exponential is damped provided us with a further criterion to select possible values for the

parameters α and β.

On a standard space with conventional commutation relations for x and p we found

consistent correction terms for α = 0 accompanied by any choice for β. The latter can be

chosen to implement classical or quantum corrections in the entropy. Remarkably a specific

version of the latter option allows for the emergence of a classical MOND theory (2.7).

Keeping α = 0 other choices for β can lead to classical as well as quantum corrections.

Any scenario with α �= 0 and β �= 0 leads to exponentially growing Langrangians and

Hamiltonians and therefore appear to be inconsistent from a physical perspective. This

includes the scenario advocated in [19].

However, when considering the equations in a noncommutative setting with deformed

canonical commutation relations (2.8), (2.12), (2.13) dimensional consistency together with

the requirement that the classical and noncommutative limit can be carried out by �→ 0

and τ → 0, respectively, leads to consist solutions with a very mild damping or amplifying

factor in the Langrangian. One may say that this setting leads to an emergent theory of

noncommutative space-time.

There are many interesting issues left to investigate, as for instance to clarify the link

to a relativistic theory and to extend the analysis to higher dimensions, using (3.5), to

name only two.

Acknowledgments: One of us (BB) thanks Siddharth Seetharaman for useful comments.
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