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Abstract

The simplest purely imaginary and piecewise constant PT -symmetric po-
tential located inside a larger box is studied. Unless its strength exceeds a
certain critical value, all the spectrum of its bound states remains real and
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1 Introduction and summary

One of the most intriguing experimental puzzles encountered in contemporary physics

is the evident absence of SUSY partners of elementary particles in nature. In the

context of field theory this means that SUSY, if it exists, must be spontaneously

broken. Witten [1] proposed a schematic model which, incidentally, failed to clarify

this breakdown but, nonetheless, survived and found a number of applications within

the so-called SUSY quantum mechanics (SUSYQM) [2].

In the latter formalism one introduces the so-called superpotential W (x) and

defines the two operators

A =
d

dx
+W (x) Ā = − d

dx
+W (x) (1.1)

with the property that the two related different (so-called ‘SUSY partner’) potentials

V (±) − E0 = W 2 ∓W ′ may prove both exactly solvable at the same time. An easy

explanation of this phenomenon lies in the fact that the related Hamiltonians

H(±) = − d2

dx2
+ V (±)(x)−E0 (1.2)

become inter-related, at a convenient auxiliary energy E = E0, by the factorization

rules H(+) = ĀA and H(−) = AĀ. The spectra of H(+) and H(−) are then alike

except possibly for the ground state. In the unbroken SUSY case, the ground state

at vanishing energy is nondegenerate and, in the present notational set-up, it belongs

to H(+). This means that

Aψ
(+)
0 (x) = 0 (1.3)

where ψ
(+)
n (x) (resp. ψ

(−)
n (x)), n = 0, 1, 2, . . . , denote the wavefunctions of H(+)

(resp. H(−)). The (double) degeneracy of
(

ψ
(+)
n+1(x), ψ

(−)
n (x)

)

for n = 0, 1, 2, . . . is

implied by the intertwining relationships

AH(+) = H(−)A H(+)Ā = ĀH(−). (1.4)

In the conventional setting, the Hamiltonians (1.2) are assumed self-adjoint.
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New horizons have been opened by the pioneering letter by Bender and Boettcher

[3] who noticed, in a slightly different context, that the latter condition H = H†

might be relaxed as redundant and replaced by its suitable weakened forms. For

our present purposes, we shall employ their proposal and in equation (1.2) allow

complex potentials that are merely constrained by the requirement that their real

and imaginary parts are spatially symmetric and antisymmetric, respectively [4].

It is not too difficult to show that the above SUSYQM factorization scheme re-

mains unchanged under such a non-Hermitian generalization [5, 6, 7, 8, 9]. Of course,

the relaxation of the usual condition H = H† is by far not a trivial step. Formally,

we may put H† = T HT with an antilinear ‘time-reversal’ operator T [10]. In such a

setting, Bender and Boettcher (loc. cit., cf. also some older studies [11] or newer de-

velopments [12]) merely replaced T by its product with parity P and conjectured that

the above-mentioned and physically well-motivated weakening of Hermiticity could

be most appropriately characterized as an antilinear ‘symmetry’ or ‘PT -symmetry’,

PT H = HPT , of all the Hamiltonians in question. Equivalently [13] one may speak

about the P-pseudo-Hermiticity defined by the relation

H† = P H P−1 . (1.5)

In this paper we intend to concentrate on implementing the resulting PT -

symmetric SUSYQM factorization scheme in the case of the ‘simplest’ model which

remains ‘realistic’ and ‘solvable’ at the same time. This means that our ‘initial’

Schrödinger equation

[

− d2

dx2
+ V r(x) + iV i(x)

]

ψ(x) = Eψ(x) (1.6)

(where we dropped the superscript ‘(+)’ as temporarily redundant) will contain just

the most trivial infinitely deep square-well form

V r(x) =











+∞ x < −L
0 −L < x < L

+∞ x > L

(1.7)
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for the real part of the potential and the most elementary short-range one

V i(x) =



















0 x < −l
−g −l < x < 0

+g 0 < x < l,

0 x > l

l < L, g > 0 (1.8)

for its imaginary part. As a consequence of (1.7), the wavefunctions will be defined on

a finite interval (−L, L) with a variable length 2L, on which they satisfy the standard

Dirichlet boundary conditions [14, 15]

ψ(±L) = 0. (1.9)

Given the background of the result obtained in [16], we derive in section 2, an

elegant trigonometric form of the standard matching conditions for wavefunctions at

the discontinuities of the potential (subsection 2.1) and discuss the practical semi-

numerical determination of the energies with arbitrary precision (subsection 2.2).

In section 3 we address the key concern of our present paper, viz., the inves-

tigation of the problem in the context of SUSYQM. Here the non-Hermiticity and

discontinuities create some specific features, which are dealt with in detail. After

deriving the superpotential and the partner potential in subsection 3.1, we construct

the eigenfunctions of the latter and analyze the discontinuities in subsections 3.2 and

3.3, respectively.

Some physical aspects of our results are finally discussed in more detail in section 4.

2 Trigonometric secular equation

2.1 PT -symmetric square well inside a real one

Let us denote the four regions −L < x < −l, −l < x < 0, 0 < x < l, l < x < L by

L2, L1, R1, R2, respectively. We shall henceforth append these symbols as subscripts

to all quantities pertaining to such regions. The complex potential V (x), defined in

equations (1.7) and (1.8), may therefore be rewritten as

VL2(x) = 0 VL1(x) = −ig VR1(x) = ig VR2(x) = 0. (2.1)
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The general solution of (1.6) satisfying the conditions (1.9) can be written as

ψ(x) =



















ψL2(x) = AL sin[k(L+ x)]

ψL1(x) = BL cosh(κ
∗x) + iCL

κ∗l
sinh(κ∗x)

ψR1(x) = BR cosh(κx) + iCR

κl
sinh(κx)

ψR2(x) = AR sin[k(L− x)]

(2.2)

where

κ = s+ it E = k2 = t2 − s2 g = 2st. (2.3)

Here s, t and k are real and, for the sake of definiteness, are assumed positive. A

priori, AL, BL, CL, AR, BR and CR are some complex constants.

On assuming that PT -symmetry is unbroken, we obtain the conditions

ψ∗
L2(−x) = ψR2(x) ψ∗

L1(−x) = ψR1(x) (2.4)

from which we get

A∗
L
= AR ≡ A B∗

L
= BR ≡ B C∗

L
= CR ≡ C. (2.5)

The derivative of (2.2), taking (2.5) into account, reads

∂xψ(x) =



















∂xψL2(x) = kA∗ cos[k(L+ x)]

∂xψL1(x) = κ∗B∗ sinh(κ∗x) + iC
∗

l
cosh(κ∗x)

∂xψR1(x) = κB sinh(κx) + iC
l
cosh(κx)

∂xψR2(x) = −kA cos[k(L− x)]

. (2.6)

Let us now match the wavefunction and its derivative at x = 0 and impose PT -

symmetry in the neighbourhood of the origin:

ψR1(0) = ψL1(0) ∈ R ∂xψR1(0) = ∂xψL1(0) ∈ iR. (2.7)

This leads to

B,C ∈ R. (2.8)

It now remains to match ψ and ∂xψ at x = ±l. Since ψ is PT -symmetric, it is

enough to impose matching conditions at x = l:

ψR2(l) = ψR1(l) ∂xψR2(l) = ∂xψR1(l). (2.9)
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This yields

A sin[k(L− l)] = B cosh(κl) + i
C

κl
sinh(κl) (2.10)

−kA cos[k(L− l)] = κB sinh(κl) + i
C

l
cosh(κl). (2.11)

We conclude that the final form of ψ is

ψ(x) =



















ψL2(x) = A∗ sin[k(L+ x)]

ψL1(x) = B cosh(κ∗x) + i C

κ∗l
sinh(κ∗x)

ψR1(x) = B cosh(κx) + iC
κl
sinh(κx)

ψR2(x) = A sin[k(L− x)]

(2.12)

where the complex constant A is determined by one of the equations (2.10) and (2.11),

while the real constants B and C have to satisfy a condition obtained by eliminating

A between (2.10) and (2.11):

κlB{k cos[k(L− l)] cosh(κl) + κ sin[k(L− l)] sinh(κl)}

+ iC{k cos[k(L− l)] sinh(κl) + κ sin[k(L− l)] cosh(κl)} = 0. (2.13)

We may therefore express both constants A and C in terms of B as

A = B
κ csc[k(L− l)] csch(κl)

k cot[k(L− l)] + κ coth(κl)
(2.14)

C = iκlB
k cot[k(L− l)] coth(κl) + κ

k cot[k(L− l)] + κ coth(κl)
. (2.15)

Since, from (2.8), the left-hand side of equation (2.15) is real, the same should be

true for the right-hand one. The resulting condition can be written as

k2 cot2[k(L− l)][κ coth(κl) + κ∗ coth(κ∗l)]

+ k cot[k(L− l)][κ2 + 2κκ∗ coth(κl) coth(κ∗l) + κ∗2]

+ κκ∗[κ coth(κ∗l) + κ∗ coth(κl)] = 0. (2.16)

On expressing k2, κ and κ∗ in terms of s and t through equation (2.3) and using some

elementary trigonometric identities, condition (2.16) is easily transformed into

k sin[2k(L− l)][s2 cosh(2sl) + t2 cos(2tl)]

− cos[2k(L− l)][s3 sinh(2sl)− t3 sin(2tl)]

+ st2 sinh(2sl)− s2t sin(2tl) = 0 (2.17)

where k =
√
t2 − s2.
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2.2 Graphical and numerical determination of the energies

The transcendental equation (2.17) has to be complemented by the constraint (2.3),

st =
1

2
g. (2.18)

The couples of roots (sn, tn), n = 0, 1, 2, . . . , of this pair of equations define all the

bound-state energies En by the elementary formula

En = t2
n
− s2

n
n = 0, 1, 2, . . . . (2.19)

In practice, the (sn, tn) values may be obtained as the intersection points in the (s, t)

plane of the curves representing the roots of the transcendental equation (2.17) with

the hyperbola (2.18).

Before proceeding to discuss the graphical and numerical determination of En in

general, it is worth reviewing three interesting limiting cases of equation (2.17). The

first one corresponds to the limit l → L, wherein the present square well with three

matching points reduces to the one with a single discontinuity. Equation (2.17) then

simply becomes

s sinh(2sL) + t sin(2tL) = 0 (2.20)

which coincides with equation (9) of [14] (where g is denoted by Z and L = 1).

The second limiting case corresponds to l → 0 and gives back the real square well.

Since the constraint (2.18) then disappears, we are only left with equation (2.17)

acquiring the simple form

sin(2kL) = 0. (2.21)

Its solutions are provided by the hyperbolas t2 − s2 =
(

nπ

2L

)2
, n = 1, 2, . . . , where the

n = 0 value is discarded because no acceptable wavefunction can be associated with

it. We therefore arrive at the well-known quadratic spectrum E2
n
=

(

nπ

2L

)2
, n = 1,

2, . . . , of the real square well.

The existence of the third special limiting regime is connected with the bounded

nature of our imaginary barrier (1.8). In the language of perturbation theory this

7



means [15] that the influence of this barrier on the values of the energies (2.19)

weakens quickly with the growth of the quantum number n. At the higher excitations,

as a consequence, the n−dependence of the energies will not deviate too much from

the l → 0 rule En ∼ n2 ≫ 1. In the other words, the growth of n will imply the

growth of tn ∼ n≫ 1 and the decrease and smallness of the roots sn = g/(2tn) ≪ 1.

In this regime, we may imagine that k = t
√

1− s2/t2 = t − s2/(2t) + O(s4/t3) =

t−g2/(8t3)+O(1/n7) so that the six components of our quantization condition (2.17),

viz.,

s2k sin[2k(L− l)] cosh(2sl) + t2k sin[2k(L− l)] cos(2tl)

− s3 cos[2k(L− l)] sinh(2sl) + t3 cos[2k(L− l)] sin(2tl)

+ st2 sinh(2sl)− s2t sin(2tl) = 0

may be characterized by their asymptotic sizesO(1/n), O(n3), O(1/n4), O(n3), O(n0)

and O(1/n), respectively. Once we omit all the negligible O(1/n) terms and insert

s = g/(2t) whenever necessary, we arrive at the thoroughly simplified approximate

secular equation

sin(2kL) +
g2l

2k3
+O

(

1

k4

)

= 0. (2.22)

Its roots are easily found,

k = kn =
π n

2L
+ (−1)n+12g

2lL2

π3n3
+O

(

1

n4

)

, (2.23)

and give

En = k2n =
(π n

2L

)2

+ (−1)n+12g
2lL

π2n2
+O

(

1

n3

)

(2.24)

i.e., a nice and elementary approximate energy formula for all the highly excited

states.

In the general case, the bound-state energies (2.19) of our model are determined

from the simultaneous solutions of equations (2.17) and (2.18). Although the former

is transcendental, one of its roots is quite obvious, namely s = t. When we realize

that this implies k = 0 and substitute the solution into equations (2.12) – (2.15), we
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obtain a vanishing wavefunction. This is in accordance with an insight provided by

the Hermitian limit g → 0 or l → 0.

The other solutions of (2.17) can be found numerically and graphically. As we can

see in figure 1 where we work with re-scaled length units in which L = 1, they form

semi-ovals in (s, t) plane. We can observe the absence of robustly real energy levels,

i.e., levels remaining real for any value of g, which played their role in [16].

The locally decreasing character of the semi-oval maxima could cause a complexifi-

cation of higher energy pairs while the lower pairs would remain real. In other words,

the semi-oval maxima might be decreasing faster then the hyperbola (2.18). This

race in decrease can be judged easily when we use a hyperbolic coordinate system.

As shown in figure 2, in this setting, the maxima prove to increase monotonically

while the hyperbola is represented by a horizontal straight line. Consequently, our

model preserves a sequential merging of the energy levels. The critical value gc of

the coupling constant g, for which the two lowest energy levels merge together, is of

high importance. It is the boundary of exact PT -symmetry, which we consider to be

physically relevant and assumed in deriving equation (2.17). For a higher value of g,

the wavefunction PT -symmetry would be broken.

We found gc for various values of the parameter l. Since gc rises rapidly as l → 0,

we present its values in combination of graph and table (see figure 3 and table 1).

As the parameter l approaches zero, gc tends to infinity and the semi-oval maxima

run to infinity as well. As explained in subsection 2.1, equation (2.17) then provides

the bound-state energies of the real square well. On the other hand, for l → L = 1,

we get back the critical coupling gc ≃ 4.4753, previously obtained for the square well

in [14] and [17].

3 The SUSY partner potential

The purpose of the present section is to construct and study the SUSY partnerH(−) of

the square-well Hamiltonian H(+), defined in equation (2.1), in the physically-relevant

unbroken PT -symmetry regime, corresponding to g < gc.
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3.1 Determination of the parameters

Identifying V (+) with the square-well potential (2.1), i.e., V
(+)
L2 (x) = 0, V

(+)
L1 (x) = −ig,

V
(+)
R1 (x) = ig, V

(+)
R2 (x) = 0 and E0 = k20 = t20 − s20 = −κ20 + ig, we obtain for the

superpotential and the partner potential the results

W (x) =



















WL2(x) = k0 tan[k0(x+ xL2)]

WL1(x) = −κ∗0 tanh[κ∗0(x+ xL1)]

WR1(x) = −κ0 tanh[κ0(x− xR1)]

WR2(x) = k0 tan[k0(x− xR2)]

(3.1)

and

V (−)(x) =























V
(−)
L2 (x) = 2k20 sec

2[k0(x+ xL2)]

V
(−)
L1 (x) = −2κ∗20 sech2[κ∗0(x+ xL1)]− ig

V
(−)
R1 (x) = −2κ20 sech

2[κ0(x− xR1)] + ig

V
(−)
R2 (x) = 2k20 sec

2[k0(x− xR2)]

(3.2)

respectively. Here xL2, xL1, xR1 and xR2 denote four integration constants.

We now choose xL2 and xR2 as

xL2 = L+
π

2k0
xR2 = L− π

2k0
(3.3)

to ensure that V
(−)
L2 and V

(−)
R2 blow up at the end points x = −L and x = L. This is

in tune with [9]. We thus get

V
(−)
L2 (x) = 2k20 csc

2[k0(x+ L)] V
(−)
R2 (x) = 2k20 csc

2[k0(x− L)]. (3.4)

Observe that for the superpotential, WL2(x) andWR2(x) also blow up at these points:

WL2(x) = −k0 cot[k0(x+ L)] WR2(x) = −k0 cot[k0(x− L)]. (3.5)

Let us next consider the unbroken SUSY condition (1.3), where according to (2.12)

the ground-state wavefunction of H(+) is given by

ψ
(+)
0R2(x) = ψ

(+)∗
0L2 (−x) = A

(+)
0 sin[k0(L− x)] (3.6)

ψ
(+)
0R1(x) = ψ

(+)∗
0L1 (−x) = B

(+)
0 cosh(κ0x) + i

C
(+)
0

κ0l
sinh(κ0x). (3.7)

Note that the superscript ‘(+)’ is appended to the wavefunction and the coefficients

to signify that we are dealing with Hamiltonian H(+). It is straightforward to see that
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equation (1.3) is automatically satisfied in the regions R2 and L2 due to the choice

made for the integration constants xR2, xL2 in equation (3.3). On the other hand, in

the region R1 we find a condition fixing the value of xR1,

tanh(κ0xR1) = − iC
(+)
0

κ0lB
(+)
0

=
k0 cot[k0(L− l)] coth(κ0l) + κ0
k0 cot[k0(L− l)] + κ0 coth(κ0l)

(3.8)

where in the last step we used equation (2.15). A similar relation applies in L1, thus

leading to the result

xL1 = x∗R1. (3.9)

Note that in contrast with the real integration constants xR2, xL2, the constants

xR1 and xL1 are complex. Separating both sides of equation (3.8) into a real and an

imaginary part, we obtain the two equations

sinhX coshX

cosh2X cos2 Y + sinh2X sin2 Y
=

N r

D
(3.10)

sin Y cosY

cosh2X cos2 Y + sinh2X sin2 Y
=

N i

D
(3.11)

where we have used the decompositions κ0 = s0 + it0, xR1 = xr
R1 + ixi

R1, κ0xR1 =

X + iY , implying that

X = s0x
r

R1 − t0x
i

R1 Y = t0x
r

R1 + s0x
i

R1 (3.12)

and we have defined

N r = {−s20 cos[2k0(L− l)] + t20} sinh(2s0l) + k0s0 sin[2k0(L− l)] cosh(2s0l) (3.13)

N i = {s20 − t20 cos[2k0(L− l)]} sin(2t0l)− k0t0 sin[2k0(L− l)] cos(2t0l) (3.14)

D = {−s20 cos[2k0(L− l)] + t20} cosh(2s0l) + {s20 − t20 cos[2k0(L− l)]} cos(2t0l)

+ k0 sin[2k0(L− l)][s0 sinh(2s0l) + t0 sin(2t0l)]. (3.15)

Equations (3.10) and (3.11), when solved numerically, furnish the values of both the

parameters xr
R1 and xi

R1.

One may also observe that the resulting superpotential W (−x) = −W ∗(x) and

partner potential V (−)(−x) = V (−)∗(x) are PT -antisymmetric and PT -symmetric,

respectively.
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3.2 Eigenfunctions in the partner potential

On exploiting the first intertwining relation in (1.4), the eigenfunctions ψ
(−)
n (x), n = 0,

1, 2, . . . , of H(−) can be obtained by acting with A on ψ
(+)
n+1(x), subject to the

preservation of the boundary and continuity conditions

ψ
(−)
nL2(−L) = 0 ψ

(−)
nR2(L) = 0 (3.16)

ψ
(−)
nL2(−l) = ψ

(−)
nL1(−l) ∂xψ

(−)
nL2(−l) = ∂xψ

(−)
nL1(−l) (3.17)

ψ
(−)
nL1(0) = ψ

(−)
nR1(0) ∂xψ

(−)
nL1(0) = ∂xψ

(−)
nR1(0) (3.18)

ψ
(−)
nR1(l) = ψ

(−)
nR2(l) ∂xψ

(−)
nR1(l) = ∂xψ

(−)
nR2(l). (3.19)

Application of A leads to the forms

ψ
(−)
nL2(x) = C

(−)
nL2A

(+)∗
n+1 sin[kn+1(L+ x)]

× {kn+1 cot[kn+1(L+ x)]− k0 cot[k0(L+ x)]} (3.20)

ψ
(−)
nL1(x) = C

(−)
nL1B

(+)
n+1 sinh(κ

∗
n+1x){κ∗n+1 − κ∗0 tanh[κ

∗
0(x+ x∗

R1)] coth(κ
∗
n+1x)}

+ C
(−)
nL1

iC
(+)
n+1

κ∗n+1l
sinh(κ∗n+1x)

× {κ∗
n+1 coth(κ

∗
n+1x)− κ∗0 tanh[κ

∗
0(x+ x∗

R1)]} (3.21)

ψ
(−)
nR1(x) = C

(−)
nR1B

(+)
n+1 sinh(κn+1x){κn+1 − κ0 tanh[κ0(x− xR1)] coth(κn+1x)}

+ C
(−)
nR1

iC
(+)
n+1

κn+1l
sinh(κn+1x)

× {κn+1 coth(κn+1x)− κ0 tanh[κ0(x− xR1)]} (3.22)

ψ
(−)
nR2(x) = C

(−)
nR2A

(+)
n+1 sin[kn+1(L− x)]

× {−kn+1 cot[kn+1(L− x)] + k0 cot[k0(L− x)]} (3.23)

where C
(−)
nL2, C

(−)
nL1, C

(−)
nR1, C

(−)
nR2 denote some complex constants and equation (3.9)

has been used. It can be easily checked that the boundary conditions (3.16) are

automatically satisfied by these eigenfunctions. It therefore remains to impose the

continuity conditions (3.17) – (3.19).

Let us first match the regions L1 and R1 at x = 0. The continuity conditions
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(3.18) yield the two relations

C
(−)
nR1

[

B
(+)
n+1κ0 tanh(κ0xR1) +

iC
(+)
n+1

l

]

= C
(−)
nL1

[

−B(+)
n+1κ

∗
0 tanh(κ

∗
0x

∗
R1) +

iC
(+)
n+1

l

]

(3.24)

C
(−)
nR1

{

B
(+)
n+1[κ

2
n+1 − κ20 sech

2(κ0xR1)] +
iC

(+)
n+1

l
κ0 tanh(κ0xR1)

}

= C
(−)
nL1

{

B
(+)
n+1[κ

∗2
n+1 − κ∗20 sech2(κ∗0x

∗
R1)]−

iC
(+)
n+1

l
κ∗0 tanh(κ

∗
0x

∗
R1)

}

. (3.25)

Since equations (3.8) and (2.3) provide the two constraints

κ0 tanh(κ0xR1) = −κ∗0 tanh(κ∗0x∗R1) (3.26)

κ∗2n+1 − κ2n+1 = κ∗20 − κ20 = −2g (3.27)

equations (3.24) and (3.25) are compatible and lead to the condition

C
(−)
nR1 = C

(−)
nL1. (3.28)

Considering next the matching between R1 and R2 at x = l, we obtain from

equation (3.19) the two conditions

C
(−)
nR1{kn+1 cot[kn+1(L− l)] + κ0 tanh[κ0(l − xR1)]}

= C
(−)
nR2{kn+1 cot[kn+1(L− l)]− k0 cot[k0(L− l)]} (3.29)

C
(−)
nR1

(

κ2
n+1 − κ20 + κ0 tanh[κ0(l − xR1)]{kn+1 cot[kn+1(L− l)]

+ κ0 tanh[κ0(l − xR1)]}
)

= C
(−)
nR2

(

k20 − k2n+1 − k0 cot[k0(L− l)]{kn+1 cot[kn+1(L− l)]

− k0 cot[k0(L− l)]}
)

(3.30)

after making use of equations (2.14) and (2.15) to eliminate A
(+)
n+1, B

(+)
n+1 and C

(+)
n+1.

Equations (3.29) and (3.30) both yield the same result

C
(−)
nR1 = C

(−)
nR2 (3.31)

13



due to the two relations

κ0 tanh[κ0(l − xR1)] = −k0 cot[k0(L− l)] (3.32)

and

κ2
n+1 − κ20 = k20 − k2

n+1 (3.33)

deriving from (3.8) and (2.3), respectively.

Since a result similar to (3.31) applies at the interface between regions L2 and L1,

we conclude that the partner potential eigenfunctions are given by equations (3.20)

– (3.23) with

C
(−)
nL2 = C

(−)
nL1 = C

(−)
nR1 = C

(−)
nR2 ≡ C(−)

n . (3.34)

Such eigenfunctions are PT -symmetric provided we choose C
(−)
n imaginary:

C(−)∗
n = −C(−)

n . (3.35)

3.3 Discontinuities in the partner potential

In subsection 3.1, we have constructed the SUSY partner V (−)(x) of a piece-wise

potential with three discontinuities at x = −l, 0 and l. We may now ask the following

question: does the former have the same discontinuities as the latter or could the

discontinuity number decrease? We plan to prove here that the second alternative

can be ruled out.

For such a purpose, we will examine successively under which conditions V (−)(x)

could be continuous at x = l or at x = 0 and we will show that such restrictions would

not be compatible with some relations deriving from the unbroken-SUSY assumption

(1.3). Observe that we do not have to study continuity at x = −l separately, since
V (−)(x) being PT -symmetric must be simultaneously continuous or discontinuous at

x = −l and x = l.

Let us start with the point x = l. Matching there V
(−)
R1 (x) and V

(−)
R2 (x), given in

equations (3.2) and (3.4), respectively, leads to the relation

−2κ20 sech
2[κ0(l − xR1)] + ig = 2k20 csc

2[k0(L− l)]. (3.36)
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On using (3.32) and some simple trigonometric identities, such a relation can be

transformed into k20 = −κ20+ 1
2
ig, which manifestly contradicts equation (2.3). Hence

continuity of V (−)(x) at x = l is ruled out.

Consider next the point x = 0. On equating V
(−)
R1 (0) with V

(−)
L1 (0) and employing

(3.2) and (3.9), we obtain the condition

−2κ20 sech
2(κ0xR1) + ig = −2κ∗20 sech2(κ∗0x

∗
R1)− ig. (3.37)

Equations (2.8) and (3.8) then yield the relation −κ20 + 1
2
ig = −κ∗20 − 1

2
ig, which

contradicts equation (2.3) again. Continuity of V (−)(x) at x = 0 is therefore excluded

too.

We conclude that under the simplest assumption of unbroken SUSY with a factor-

ization energy equal to the ground-state energy of H(+), the partner potential V (−)(x)

has the same three discontinuities at x = −l, 0 and l as V (+)(x).

4 Discussion

Among all the PT -symmetric models, field-theoretical background explains the last-

ing interest in the purely imaginary long-range model V (x) = ix3 [18, 19] and its

generalizations V (x) = x2(ix)δ with the imaginary part V i(x) exhibiting, at any

δ ∈ [0, 2), a characteristic ‘strongly non-Hermitian’ (SNH) long-range growth in ‘co-

ordinate’ x ∈ R. Up to the harmonic oscillator at δ = 0, all of the latter SNH

PT -symmetric models are only solvable by approximate methods. Still, rigorous

proofs exist showing that their spectra are all real [19].

By rigorous means, the reality of the spectrum has also been shown for many

other PT -symmetric potentials V . Some of them turn out to be exactly solvable

[20, 21, 22], and those for which V i(±∞) = 0 may be called ’weakly non-Hermitian’

(WNH). Their WNH character is reflected not only by a less explicit influence of the

imaginary part of the potential upon the spectrum, but also by the existence of SUSY

partners [8, 21, 23] which, in some special cases, may be real and Hermitian [5, 21].

In the light of similar observation one might feel tempted to perceive WNH models

as ‘partially compatible’ with our intuitive expectations. This impression may be
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further enhanced by noticing that another exactly solvable model, viz., the typical

WNH spiked form of the δ = 0 harmonic oscillator, as described in [24], proved of

particular interest in the SUSYQM context as well [6, 23].

Potentials V (x) with shapes that are piece-wise constant may be considered

equally exceptional. All of these square-well-type models with forces located inside a

finite interval (−L, L) may be easily classified by the number of their discontinuities.

The simplest nontrivial non-Hermitian square-well potential must have at least

one discontinuity (= matching point at x = 0). While the real part of this V is just

a trivial shift of the energy scale, it may be kept equal to zero. Then, the non-zero

strength Z of the spatially antisymmetric and purely imaginary V is the only free

(real) parameter of the whole model with SNH features [9, 14]. Its PT -symmetry

remains unbroken in an interval of Z ∈ (−Zcrit, Zcrit) while its ground-state energy

becomes complex beyond Zcrit ≈ 4.48 (in standard units ~ = 2m = 1 [14, 17]).

It is known that some of these features are generic [15]. Quantitatively, their

occurrence has also been confirmed for the twice-constant SNH model V with two

discontinuities [16]. Qualitatively, all of these observations facilitate the applicabil-

ity and physical interpretation of the piece-wise constant models significantly [25],

especially because the numerical values of the maximal allowed couplings prove to

be, in general, quite large. This allows us to guarantee the (necessary) reality of the

energies by keeping simply our choice of Z safely below this maximum.

The family of WNH square-well models may only start at the piece-wise potential

with three discontinuities. In our present study of such a model it was important to

demonstrate the parallelism of its properties with the exact solutions of the smooth

complex potentials of similar shapes [6].

The most obvious parallel lies in the observation that a key formal feature of the

SUSY partnersH(±) is that they may remain both non-Hermitian and PT -symmetric.

Of course, the parity P cannot define the positive-definite norm [12, 15, 26, 27]. A

consistent physical interpretation of the similar non-Hermitian models was recently

agreed (cf., e.g., [28]) to lie in the existence of a new metric-like operator P(+) > 0

which is positive definite. This Hermitian operator may be assumed to play the role of
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the ‘physical’ metric [29]. This means that once our equation (1.5) is satisfied by the

old Hamiltonian and by the new, positive-definite metric P(+), we may declare the un-

derlying quantum Hamiltonian quasi-Hermitian, leading to the standard probabilistic

interpretation of the theory (cf. the recent discussions of some related subtleties in

[30]). Against this background our attention has been concentrated upon the feasi-

bility of bound-state construction in a model with a phenomenologically appealing

shape of the potential.

A couple of consequences may be expected. Our model may open the way towards

addressing one of the most difficult problems encountered in PT -symmetric quantum

mechanics [27], viz., the control of a possible instability of the spectrum reality [16, 31].

Indeed, due to the pseudo-Hermiticity property (1.5) of our Hamiltonians H , the

energies need not be real (i.e., observable) in principle [13].

Our WNH model may be also characterized by the simplicity of the bound-state

wavefunctions. This allowed us to construct the superpotential yielding access, rather

easily, to the Witten-type SUSY hierarchy. In this regard the compact form of our

trigonometric secular equation was welcome and particularly important, especially for

any future projects trying to connect the mathematical PT -symmetry with physical

phenomenology.

In such a perspective, the most challenging mathematical problems attached to the

non-Hermitian models descend from the reality of their exceptional points [32]. The

simplest solvable models of the square-well type seem to offer a transparent laboratory

for their study since the indeterminate auxiliary pseudo-metric P coincides with the

common parity.

In the context of physics, the phenomenological appeal of all the piece-wise con-

stant analogues of the purely imaginary cubic force represented a strong motivation

for the systematic constructions of the positive-definite metric operators of [29] (cf.

also [12, 13, 25]). In particular, the highly appealing factorized form P(+) = CP > 0

of these metric operators has been used and, for physical reasons, the factor C itself

has been called ‘charge’ (cf. [28]). For all the models with relevance in field theory
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(like V ∼ ix3), the constructions of C were shown feasible by WKB and perturbative

methods [33].

In comparison, the solvability of all the simpler models facilitates the construc-

tion of C (called, usually, quasi-parity in this context [20, 24, 26, 34]). An interesting

energy-shift interpretation of the quasi-parity (which is a new symmetry of the Hamil-

tonian) emerged in the strongly spiked short-range model considered in [35].

After we return to the square-well models, the quasi-parity or charge operator C
may be constructed in the specific form which differs sufficiently significantly from the

unit operator just in a finite-dimensional subspace of the Hilbert space [15, 16, 25].

This is one of the most important merits of this class of models. It seems to open a

new inspiration for a direct physical applicability of non-Hermitian models whenever

their spectrum remains real.
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Figure captions

Figure 1: Solutions of (2.17) form the semi-ovals. Their in-
tersections with the hyperbola 2st = g determine energy levels
E = k2 = t2 − s2 of the system. Here g = 650 and l = 0.04.

Figure 2: The previous picture (Fig.1) in [ts, k] plane, where

k =
√
t2 − s2. We set g = 650 and l = 0.04 again.

Figure 3: Fifty values of critical couplings gc, increasing

rapidly as l decreases, l → 0.

Table captions

Table 1: Numerical values of gc in dependence on the parame-
ter l. The table suggests that the critical coupling grows faster

than 1/l for small l.

Table 1

l 1.00 0.70 0.50 0.40 0.30 0.20 0.10 0.01 0.001
gc ∼ 4.4753 4.8129 6.4364 8.6011 13.426 27.273 95.832 9895.4 486950
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