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Abstract

The family of complex PT-symmetric sextic potentials is studied to show that for
various cases the system is essentially quasi-solvable and possesses real, discrete energy
eigenvalues. For a particular choice of parameters, we find that under supersymmetric
transformations the underlying potential picks up a reflectionless part.
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1 Introduction

Searching for non-Hermitian PT-symmetric Hamiltonians has acquired much interest in

recent times (see e.g. [1, 2, 3, 4] and references quoted therein). For one thing, a rather

large subclass of such Hamiltonians has been found to possess real energy eigenvalues. For

another, in at least some cases, it is seen that a complex shift of the coordinate x ∈ (−∞,∞)

does not affect the overall normalizability of the wave functions, while at the same time

retaining the real character of the energy spectrum.

The purpose of this letter is twofold:

(i) We examine the general problem of a complex sextic potential from the point of view of

determining exactly a finite number of eigenvalues and eigenfunctions. A suitable ansatz

scheme leads us to find discrete real energy levels under quite general conditions.

(ii) We point out that some of our results can also be arrived at by performing a complex

shift of the coordinate on the reduced sextic potential consisting of even-power terms only.

However, our results cover a much greater ground. In particular, we find it possible to

generate an additional complex reflectionless term in the sextic potential by employing

supersymmetric transformations.

2 Complex sextic potentials and their solutions

To get started, let us consider the following general representation of a sixth-degree potential

V (x) =
6
∑

i=1

cix
i, (1)

satisfying the Schrödinger equation (in units ~ = m = 1)

[

−1

2

d2

dx2
+ V (x)

]

ψ(x) = Eψ(x), (2)

where for V (x) to be PT symmetric, c1, c3, c5 ∈ iR, but c2, c4, c6 ∈ R.

We make the ansatz that the wave function is of the form

ψ(x) = f(x) exp



−
4
∑

j=1

bjx
j



 , (3)
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where f(x) is some polynomial function of x, which, for complex potentials, is typically of

the type
∑n

m=0 αm(ix)
m. For the real analogue of (1) consisting of even power terms only,

f(x) is known to have a given parity.

We focus on the following choices of f :

(a) f(x) = 1,

(b) f(x) = x+ a0,

(c) f(x) = x2 + a1x+ a0,

but can generalize to higher degrees as well. For complex potentials, a0 is imaginary in (b),

whereas a1 is imaginary, but a0 is real in (c).

Without going into the details of calculations, which are quite straightforward, let us

summarize our results.

2.1 The f(x) = 1 case

Here the potential parameters are found to be related to the b’s as

c1 = −3b3 + 2b1b2, c2 = −6b4 + 3b1b3 + 2b22, c3 = 4b1b4 + 6b2b3,

c4 = 8b2b4 +
9

2
b23, c5 = 12b3b4, c6 = 8b24. (4)

Without loss of generality, we can choose c6 = 1

2
to fix the leading coefficient of V (x).

It gives b4 = ±1

4
. We take the positive sign to ensure normalizibility of the wave function,

which reads

ψ(x) = exp
(

−b1x− b2x
2 − b3x

3 − 1

4
x4
)

. (5)

The associated energy level is given by

E = b2 − 1

2
b21. (6)

Now b1 and b3 imaginary make c1, c3, c5 imaginary too, so we have a complex PT-

symmetric potential. Note that the energy eigenvalue in such a case is real, and the corre-

sponding wave function is PT-symmetric.
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2.2 The f(x) = x + a0 case

The wave function is of the form

ψ(x) = (x+ a0) exp
(

−b1x− b2x
2 − b3x

3 − 1

4
x4
)

(7)

for

c1 = −6b3 + 2b1b2 + a0, c2 = −5

2
+ 3b1b3 + 2b22, c3 = b1 + 6b2b3,

c4 = 2b2 +
9

2
b23, c5 = 3b3, c6 =

1

2
. (8)

There is also a condition on a0,

a30 − 3b3a
2

0 + 2b2a0 − b1 = 0. (9)

The energy is given by

E = −1

2
b21 + 3b2 − 3a0b3 + a20. (10)

Let us discuss some important special cases of this scheme.

2.2.1 b1 = b3 = 0

The condition (9) reduces to

a0
(

a20 + 2b2
)

= 0. (11)

(i) If a0 = 0, then there is no imaginary term in the potential, and this corresponds to

the n = 0, negative-parity result of ref. [5]. The energy eigenvalue is given by E = 3b2 and

shows a single level.

(ii) The other solution of (11), namely a20 = −2b2 can be studied according to whether

a20 > 0 or a20 < 0.

If a20 > 0, then a linear term is present in V (x) with c1 = ±
√

2|b2|, c2 = 2b22 − 5

2
, and

c4 = 2b2. Of course c3 = c5 = 0. The energy is E = b2 < 0. Thus we have two different

real potentials with the same energy eigenvalue. The linear term breaks PT invariance of

the potential and the wave function as well. So, in this respect, a0 real can be viewed as

an explicit symmetry breaking parameter.
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On the other hand, if a20 < 0, we get two different complex potentials, corresponding to

c1 = ±i
√
2b2, with the same real energy eigenvalue:

V (x) = 1

2
x6 + 2b2x

4 +
(

2b22 − 5

2

)

x2 ± i
√

2b2 x, (12)

E = b2 > 0, (13)

ψ(x) =
(

x± i
√

2b2

)

exp
(

−b2x2 − 1

4
x4
)

, (14)

The potential (12) is PT symmetric, while the wave function (14) is odd under PT symme-

try.

2.2.2 b1 = 0, b3 6= 0

The solution for a0 = 0 turns out to give the same conclusions as previously obtained. The

second solution

a0 =
1

2

(

3b3 ±
√

9b23 − 8b2

)

(15)

yields two possibilities according as b3 ∈ R or b3 ∈ iR. If b3 ∈ R, we have b23 ≥ 8

9
b2, implying

two different real potentials with the same energy eigenvalue, except for the equality sign

in (15).

If however b3 ∈ iR, then a0 must be imaginary with b23 = −|b3|2 ≤ 8

9
b2. Here too we have

two possibilities of obtaining two different complex potentials with the same real energy

eigenvalue, except for the equality sign in (15).

2.3 The f(x) = x2 + a1x + a0 case

The complete set of solutions leading to more than one energy level corresponds to

a1 = 2b3, a0 =
1

2

(

2b2 − b23 ±
√

(2b2 − 3b23)
2
+ 2

)

, (16)

and gives

V (x) = 1

2
x6 + 3b3x

5 +
(

2b2 +
9

2
b23
)

x4 + 2b3
(

4b2 − b23
)

x3 +
[

2
(

b22 + 3b2b
2

3 − 3b43
)

− 7

2

]

x2

+ b3
(

4b22 − 4b2b
2

3 − 7
)

x, (17)

E± = −2b23
(

b2 − b23
)2

+ 3b2 − b23 ±
√

(2b2 − 3b23)
2
+ 2, (18)

ψ± =
[

x2 + 2b3x+
1

2

(

2b2 − b23 ∓
√

(2b2 − 3b23)
2
+ 2

)]

× exp
[

−2b3
(

b2 − b23
)

x− b2x
2 − b3x

3 − 1

4
x4
]

. (19)
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The results (16)–(19) are valid both for real and imaginary b’s. In the latter case, PT

symmetry is good for the potential and the wave function, whereas in the former one has

a symmetry breaking. Note that in both cases E+ > E−.

Concerning the case where b3 is imaginary, we have a complex PT-symmetric two-

parameter family of potentials with two distinct real energy levels. This is truly a non-

trivial result and puts the spirit of quasi-solvability in the complex domain. Indeed, for

the particular case of b3 = 0 and b2 = γ/2, we recover the n = 1, positive-parity results

of the one-dimensional even-power potential V (x) = 1

2
x6 + γx4 + 1

2
(γ2 + µ)x2, where µ =

−3− 4n− 2r and r is associated with the (−1)r parity of n + 1 levels.

The converse also works. The results (16)–(19) can be derived from the even-power

sextic potential of ref. [5] by a translation x → x + b3. If b3 is imaginary, then this

translation amounts to a complex shift, whose viability has already been pointed out in

refs. [2, 3].

3 A supersymmetric viewpoint

In order to enlarge the class of PT-invariant potentials, SUSY methods have been used

thoroughly [2, 4]. Here, we also outline the procedure to generate superpartners of the po-

tentials considered in the previous section, which share their PT properties. The procedure

is based on the construction of a superpotential W (x) = −ψ′(x)/ψ(x), and therefore is

sound in so far as the logarithmic derivative of ψ(x) is well behaved on the real axis.

One can start from the wave function (5), the parameters b1 and b3 being assumed

imaginary. Then the superpartner

Ṽ (x) = V (x)−
(

ψ′′(x)

ψ(x)
− ψ′2(x)

ψ2(x)

)

(20)

becomes again a sextic potential, and there is no real enlargement.

More interesting is the case where one starts from the wave function (14) and constructs

the partner of (12). By substituting (14) into (20), we find Ṽ to be

Ṽ (x) = V (x) +

(

1

x± i
√
2b2

)2

+ 2b2 + 3x2, (21)
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where the piece in parentheses is clearly reflectionless. The latter is indeed reminiscent of

the “transparent” complex potential obtained in ref. [2], which is invariant under PT and

gives a trivial S-matrix. Moreover this piece has an associated zero-energy bound state,

given by Ψ0(x) = C
(

x± i
√
2b2
)−1

, where C is a constant.1

The form (21) also generalizes the result obtained for the harmonic oscillator in ref. [3]

to the sextic case. The fact that b2 6= 0 makes the potential rather appealing in that if b2

were vanishing, there would be a singularity on the real axis and the potential would be

rendered ill defined. Here, because of a shift of the singularity, (21) remains well posed in

the complex plane cut from x = ∓i
√
2b2 to x = ∓i∞, respectively.

Finally, one can consider the wave function (19) and construct the partner of (17).

Again one can see that Ṽ (x) is not trivial: for b3 imaginary, ψ′(x)/ψ(x) is well behaved on

the real axis.

All results we have obtained can be generalized to the case where one shifts the variable

x by a translation b, with b real. In such a case, the potentials and wave functions are

reparametrized correspondingly. One may worry however about PT properties since one

can generate subleading powers in x from a given power. However, one should realize that

now the parity operation can be defined with respect to a mirror placed at x = −b, so that

x+ b = x− (−b) goes to −x− 2b− (−b) = −(x+ b). When this translation b is performed,

the reflectionless potential contained in (21) becomes precisely that considered in ref. [2].

4 Conclusion

To conclude, we have solved a complex PT-symmetric sextic potential in its most general

form within a suitable ansatz scheme for the wave functions and shown how the associated

energy levels turn out to be real. We have also demonstrated using SUSY the possibility of

generating a complex reflectionless part in the potential. Although we have restricted our

discussion up to the quadratic order in the coefficient of the exponential representing the

wave function, it is obvious that we can build up, in an identical way, higher-order states.

1This transparent potential may also be viewed as the particular case l = 1 of the generic potential
1

2
l(l+ 1)

(

x± i
√
2b2
)−2

that is typical of a centrifugal barrier in a radial context (but with no singularity)

and which has a zero-energy bound state Ψ0(x) = C
(

x± i
√
2b2
)−l

.
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