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Abstract

In a box of size L, a spatially antisymmetric square-well potential of a purely
imaginary strength ig and size l < L is interpreted as an initial element of the SUSY
hierarchy of solvable Hamiltonians, the energies of which are all real for g < gc(l).
The first partner potential is constructed in closed form and discussed.

1 Introduction

The technically slightly complicated but quantum-mechanically straightforward solution of

the one-dimensional, PT -symmetric Schrödinger equation

(

−
d2

dx2
+ V (x)

)

ψn(x) = Enψn(x), n = 0, 1, 2, . . . , (1)

with the Dirichlet boundary conditions ψ(±L) = 0 and with a purely imaginary V (x) may

be found elsewhere [1, 2, 3]. Here, such a model with real spectrum and

V (x) = V (+)(x) =

{

0 for L > |x| > l,

ig sign x, g > 0, for |x| ≤ l,
(2)

will be considered factorized and complemented by another similar model,

−
d2

dx2
+ V (+)(x)−D0 = ĀA ≡ H(+), AĀ = −

d2

dx2
+ V (−)(x)−D0 ≡ H(−), (3)
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where the well-known operators and identities

A =
d

dx
+W (x), Ā = −

d

dx
+W (x), V (±) −D0 = W 2 ∓W ′ (4)

are employed. We denote the wave functions of H(+) (resp. H(−)) by symbols ψ(+)
n

(x)

(resp. ψ(−)
n

(x)), n = 0, 1, 2, . . . , and we assume the so-called unbroken-supersymmetry

condition Aψ
(+)
0 (x) = 0 of Witten’s supersymmetric quantum mechanics (SUSYQM) [4]

(hence D0 = E
(+)
0 hereabove). As long as the application of such a formalism to non-

Hermitian operators is always subject to caution, we believe that both the construction and

some unusual properties of the partner potential V (−)(x) deserve an explicit description.

2 The PT -symmetric SUSY partner potential

V
(−)(x)

The purpose of the present section is to construct and study the SUSY partner H(−) of the

square-well Hamiltonian H(+) in the physically-relevant unbroken PT -symmetry regime,

corresponding to g < gc(l) of ref. [1].

2.1 Determination of the parameters

Let us denote the four regions −L < x < −l, −l < x < 0, 0 < x < l, l < x < L by L2,

L1, R1, R2, respectively, and write for V (+), defined in (2), V
(+)
L2 (x) = 0, V

(+)
L1 (x) = −ig,

V
(+)
R1 (x) = ig, V

(+)
R2 (x) = 0. Setting D0 = E

(+)
0 , where

E(+)
n

= k2
n
= t2

n
− s2

n
, κn = sn + itn, g = 2sntn, (5)

for n = 0, 1, 2, . . . , we obtain for the superpotential and the partner potential the respective

formulae

W (x) =



























WL2(x) = k0 tan[k0(x+ xL2)]

WL1(x) = −κ∗0 tanh[κ
∗

0(x+ xL1)]

WR1(x) = −κ0 tanh[κ0(x− xR1)]

WR2(x) = k0 tan[k0(x− xR2)]

(6)
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and

V (−)(x) =































V
(−)
L2 (x) = 2k20 sec

2[k0(x+ xL2)]

V
(−)
L1 (x) = −2κ∗20 sech2[κ∗0(x+ xL1)]− ig

V
(−)
R1 (x) = −2κ20 sech

2[κ0(x− xR1)] + ig

V
(−)
R2 (x) = 2k20 sec

2[k0(x− xR2)]

. (7)

Here xL2, xL1, xR1 and xR2 denote four integration constants. We choose

xL2 = L+
π

2k0
, xR2 = L−

π

2k0
(8)

to ensure that V
(−)
L2 and V

(−)
R2 blow up at the end points x = −L and x = L. This is in tune

with [5]. We thus get

V
(−)
L2 (x) = 2k20 csc

2[k0(x+ L)], V
(−)
R2 (x) = 2k20 csc

2[k0(x− L)]. (9)

Observe that for the superpotential, WL2(x) and WR2(x) also blow up at these points:

WL2(x) = −k0 cot[k0(x+ L)], WR2(x) = −k0 cot[k0(x− L)]. (10)

The ground-state wavefunction of H(+) is given by [1]

ψ
(+)
0R2(x) = ψ

(+)∗
0L2 (−x) = A

(+)
0 sin[k0(L− x)], (11)

ψ
(+)
0R1(x) = ψ

(+)∗
0L1 (−x) = B

(+)
0 cosh(κ0x) + i

C
(+)
0

κ0l
sinh(κ0x), (12)

where A
(+)
0 , B

(+)
0 , C

(+)
0 are three constants, B

(+)
0 , C

(+)
0 are real and

A
(+)
0 = B

(+)
0

κ0 csc[k0(L− l)] csch(κ0l)

k0 cot[k0(L− l)] + κ0 coth(κ0l)
, (13)

C
(+)
0 = iκ0lB

(+)
0

k0 cot[k0(L− l)] coth(κ0l) + κ0

k0 cot[k0(L− l)] + κ0 coth(κ0l)
, (14)

as a result of the matching conditions on ψ
(+)
0 (x) and its derivative at x = 0 and x = ±l.

It turns out that the unbroken-SUSY condition is automatically satisfied in the regions R2

and L2 due to the choice made for the integration constants xR2, xL2 in (8). In the region

R1, we find a condition fixing the value of xR1,

tanh(κ0xR1) = −
iC

(+)
0

κ0lB
(+)
0

=
k0 cot[k0(L− l)] coth(κ0l) + κ0

k0 cot[k0(L− l)] + κ0 coth(κ0l)
. (15)

3



A similar relation applies in L1, thus leading to the result

xL1 = x∗
R1. (16)

Note that in contrast with the real integration constants xR2, xL2, the constants xR1 and

xL1 are complex. Separating both sides of equation (15) into a real and an imaginary part,

we obtain the two equations

sinhX coshX

cosh2X cos2 Y + sinh2X sin2 Y
=

N r

D
, (17)

sinY cosY

cosh2X cos2 Y + sinh2X sin2 Y
=

N i

D
, (18)

where we have used the decompositions κ0 = s0 + it0, xR1 = xr
R1 + ixi

R1, κ0xR1 = X + iY ,

implying that

X = s0x
r

R1 − t0x
i

R1, Y = t0x
r

R1 + s0x
i

R1, (19)

and we have defined

N r = {−s20 cos[2k0(L− l)] + t20} sinh(2s0l) + k0s0 sin[2k0(L− l)] cosh(2s0l), (20)

N i = {s20 − t20 cos[2k0(L− l)]} sin(2t0l)− k0t0 sin[2k0(L− l)] cos(2t0l), (21)

D = {−s20 cos[2k0(L− l)] + t20} cosh(2s0l) + {s20 − t20 cos[2k0(L− l)]} cos(2t0l)

+ k0 sin[2k0(L− l)][s0 sinh(2s0l) + t0 sin(2t0l)]. (22)

Equations (17) and (18), when solved numerically, furnish the values of both the parameters

xr
R1 and xi

R1. One may also observe that the resulting superpotential W (x) = −W ∗(−x)

and partner potential V (−)(x) = V (−)∗(−x) are PT -antisymmetric and PT -symmetric,

respectively.

2.2 Eigenfunctions in the partner potential

On exploiting the SUSY intertwining relations, the eigenfunctions ψ(−)
n

(x), n = 0, 1, 2, . . . ,

of H(−) can be obtained by acting with A on ψ
(+)
n+1(x), subject to the preservation of the
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boundary and continuity conditions

ψ
(−)
nL2(−L) = 0, ψ

(−)
nR2(L) = 0, (23)

ψ
(−)
nL2(−l) = ψ

(−)
nL1(−l), ∂xψ

(−)
nL2(−l) = ∂xψ

(−)
nL1(−l), (24)

ψ
(−)
nL1(0) = ψ

(−)
nR1(0), ∂xψ

(−)
nL1(0) = ∂xψ

(−)
nR1(0), (25)

ψ
(−)
nR1(l) = ψ

(−)
nR2(l), ∂xψ

(−)
nR1(l) = ∂xψ

(−)
nR2(l). (26)

Application of A leads to the forms

ψ
(−)
nL2(x) = C

(−)
nL2A

(+)∗
n+1 sin[kn+1(L+ x)]

× {kn+1 cot[kn+1(L+ x)]− k0 cot[k0(L+ x)]}, (27)

ψ
(−)
nL1(x) = C

(−)
nL1B

(+)
n+1 sinh(κ

∗

n+1x){κ
∗

n+1 − κ∗0 tanh[κ
∗

0(x+ x∗
R1)] coth(κ

∗

n+1x)}

+ C
(−)
nL1

iC
(+)
n+1

κ∗n+1l
sinh(κ∗

n+1x)

× {κ∗
n+1 coth(κ

∗

n+1x)− κ∗0 tanh[κ
∗

0(x+ x∗
R1)]}, (28)

ψ
(−)
nR1(x) = C

(−)
nR1B

(+)
n+1 sinh(κn+1x){κn+1 − κ0 tanh[κ0(x− xR1)] coth(κn+1x)}

+ C
(−)
nR1

iC
(+)
n+1

κn+1l
sinh(κn+1x)

× {κn+1 coth(κn+1x)− κ0 tanh[κ0(x− xR1)]}, (29)

ψ
(−)
nR2(x) = C

(−)
nR2A

(+)
n+1 sin[kn+1(L− x)]

× {−kn+1 cot[kn+1(L− x)] + k0 cot[k0(L− x)]}, (30)

where C
(−)
nL2, C

(−)
nL1, C

(−)
nR1, C

(−)
nR2 denote some complex constants and equation (16) has been

used. Boundary conditions (23) are satisfied. It remains to impose the continuity conditions

(24) – (26).

The matching of the regions L1 and R1 at x = 0 leads to two conditions, which are

compatible because the two constraints

κ0 tanh(κ0xR1) = −κ∗0 tanh(κ
∗

0x
∗

R1), (31)

κ∗2
n+1 − κ2

n+1 = κ∗20 − κ20 = −2ig, (32)

are satisfied owing to (15) and (5), respectively. It therefore remains a single condition

C
(−)
nR1 = C

(−)
nL1. (33)
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For the matching between R1 and R2 at x = l, a similar situation happens due this time

to the two constraints

κ0 tanh[κ0(l − xR1)] = −k0 cot[k0(L− l)], (34)

κ2
n+1 − κ20 = k20 − k2

n+1. (35)

The resulting condition reads

C
(−)
nR1 = C

(−)
nR2. (36)

Since a result similar to (36) applies at the interface between regions L2 and L1, we conclude

that the partner potential eigenfunctions are given by equations (27) – (30) with

C
(−)
nL2 = C

(−)
nL1 = C

(−)
nR1 = C

(−)
nR2 ≡ C(−)

n
. (37)

Such eigenfunctions are PT -symmetric provided we choose C(−)
n

imaginary:

C(−)∗
n

= −C(−)
n
. (38)

3 Discontinuities in the partner potential V (−)(x)

In subsection 2.1, we have constructed the SUSY partner V (−)(x) of a piece-wise potential

with three discontinuities at x(i) = −l, 0 and l, where i = 1, 2, 3. We may now ask the

following question: does the former have the same discontinuities as the latter or could the

discontinuity number decrease? We plan to prove here that the second alternative can be

ruled out.

For such a purpose, let us determine the jump (if any) of the partner potential at

x(i), ∆V (−)(x(i)) ≡ lim
x→x

(i)
+
V (−)(x) − lim

x→x
(i)
−

V (−)(x). A simple calculation leads to

∆V (−)(0) = −2κ20 sech
2(κ0xR1)+ ig− [−2κ∗20 sech2(κ∗0x

∗

R1)− ig] = −2ig, where use has been

made of (31) and (32). Similarly, from equations (5) and (34) it follows that ∆V (−)(±l) = ig.

This confirms that V (−)(x) has the same discontinuities as V (+)(x). However, when we

compare the jumps of the former with those of the latter resulting from definition (2), we

find

∆V (−)(x(i)) = −∆V (+)(x(i)), i = 1, 2, 3. (39)
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Such a behaviour can be traced back to the superpotential, which turns out to be a contin-

uous function of x on (−L,+L), in contrast with its derivative, which is discontinuous at

x(i), i = 1, 2, 3. The third relation in (4) then immediately leads to (39).

4 Conclusion

Under the simplest assumption of unbroken SUSY, we have shown that for the weakly

non-Hermitian square well with three discontinuities at x = −l, 0 and l, the SUSY partners

H(±) are both non-Hermitian and PT -symmetric. Moreover, the partner potential V (−)(x)

has the same three discontinuities as V (+)(x).

It should be noted that in the two limiting cases l → 0 and l → L, our results give back

those relative to the real square well [8] and to the PT -symmetric square well with a single

discontinuity [5], respectively.

It is conjectured that as for the strongly non-Hermitian square well with a single disconti-

nuity at x = 0 [3], a charge-conjugation operator C [6] may be constructed in a specific form

differing from the unit operator mostly in a finite-dimensional subspace of the Hilbert space

[7]. This is one of the most important merits of all the square-well models with L <∞. It

seems to open a new inspiration for a direct physical applicability of non-Hermitian models

whenever their spectrum remains real.
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