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Pseudo-Hermiticity, weak pseudo-Hermiticity and
n-orthogonality condition
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Abstract

We discuss certain features of pseudo-Hermiticity and weak pseudo-Hermiticity
conditions and point out that, contrary to a recent claim, there is no inconsistency
if the correct orthogonality condition is used for the class of pseudo-Hermitian, PT-
symmetric Hamiltonians of the type Hg = [p +i8v(x)])?/2m + V(z).
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In recent times it has been stressed that neither Hermiticity nor PT symmetry serves as
a necessary condition for a quantum Hamiltonian to preserve the reality of its bound-state
eigenvalues [1, 2, 3, 4, 5]. In fact, it has been realized [5] that the existence of real eigenvalues

can be associated with a non-Hermitian Hamiltonian provided it is n-pseudo-Hermitian:
nH = H'n, (1)
where 7 is a Hermitian linear automorphism and, assuming 7 = 2m = 1,
H=7p*+V(z) (2)

for V(z) € C and p = —i0,. Then, in such a case, the spectrum of a diagonalizable H is

real if there exists a linear invertible operator O such that n = (OOT)~!. Moreover, one

can relax H to be only weak pseudo-Hermitian [6] by not restricting 1 to be Hermitian.
The purpose of this Letter is to establish the following results:

(i) The twin concepts of pseudo-Hermiticity and weak pseudo-Hermiticity are complemen-

tary to one another.

(ii) For a first-order differential realization, n may be anti-Hermitian but for the second-

order case, 1 is necessarily Hermitian. For both cases, we make connections to the same

PT-symmetric Scarf IT Hamiltonian (having normalizable eigenfunctions) to show that the

choice of 1 is not unique in ascertaining the character of the Hamiltonian.

(iii) For the class of n-pseudo-Hermitian, PT-symmetric Hamiltonians described by [7, 8] !
Hy=[p+ipv(@)* +V(z),  BER, (3)

where the odd function v(z) € R, V(z) is PT-symmetric, and
1= exp [—25 / ' V(y)dy} : (4)

our earlier derivation [9] of the generalized continuity equation for Hamiltonians of the
form (2) [with V(z) PT-symmetric] can be extended to Hsz as well. The resulting -

orthogonality condition needs to be implemented judiciously.

Note that in Ref. [8], it is assumed that h = m = 1 instead of h = 2m = 1.



We begin by addressing to the point (i) above. Consider some non-Hermitian 1 that
is subject to the condition (1). Taking Hermitian conjugate, we obtain, on adding and

subtracting, the following combinations
n+H = HTUJH n-H = HTU—a (5)

where ny = n £ nf. While the first one of (5) corresponds to strict pseudo-Hermiticity,
the second one points to weak pseudo-Hermiticity with a new anti-Hermitian operator 7_.
Note that 7, is Hermitian. It is thus clear that weak pseudo-Hermiticity is not more general
than pseudo-Hermiticity but works complementary to it.

We now turn to (ii). Decomposing V' (x) and n as

V(z) = Vr(z)+iVi(z),

d

1= o ) i), (6)

where Vg, Vi, f, g € R, we get, on inserting (6) into (1), the relations
Vi = i(.f/ + ig/)a
Ve +iV] = —(f"+1ig") - 2iVi(f +ig). (7)

In (7) the primes denote the order of differentiations with respect to the variable x. We are

then led to the conditions
Ve=—299', ¢d =0, ceR, (8)

which imply the existence of two solutions corresponding to ¢ = 0 and ¢’ = 0, respectively.
In the following we concentrate on the case ¢ = 0 because ¢’ = 0 yields a trivial result that
corresponds to a real constant potential with no normalizable eigenfunction.

For the choice ¢ = 0, it turns out that
f = 07 VR = _92 + k? ‘/I = _9,7 (9)

where k£ € R. In consequence, we have the results

Viz) = —g*(z)+k—ig'(z)
n = %ﬂLig(x). (10)



The above form of V' (x) shows that, in the framework of supersymmetric quantum mechan-
ics, we can associate to it an imaginary superpotential W (z) = ig(x), its partner being the
complex conjugate potential. We also observe that, for even g functions, the representation
of 7 makes it anti-Hermitian in character. Let us consider the following specific example

for g = dsechx, d € R. We get from (10)

V(r) = —d*sech®z + k + idsechztanhz,

n = %—l—idsech:c. (11)

It is obvious that V(x) is a particular case of the generalized PT-symmetric Scarf 11
potential investigated previously by us [10] in connection with the complex algebra sl(2, C).
A comparison with the results obtained there shows that, in the present case, we have

a single series of real eigenvalues with normalizable eigenfunctions provided d > The

L
corresponding Hamiltonian is both P-pseudo-Hermitian and n-weak-pseudo-Hermitian with
n given by (11). Our example confirms the assertion [11] that, for a given non-Hermitian
Hamiltonian, there could be infinitely many 7 satisfying the weak-pseudo-Hermiticity or

the pseudo-Hermiticity condition.

We next attend to a second-order differential representation of #:

n:%—2 (x)%+b(x), (12)

where p, b € C. Substituting (12) into the condition (1), we obtain the constraints

1" 1\ 2
by g2 (P
p+p % + » + 1
AN
Vo= e () -
P +p 2 <2p 0
! o 2 5
Vo= i+ o (E) - L 13
vyt <2> il (13)
where 7, 6 € R. From the last two relations in (13), it is clear that p(x) must be pure

imaginary,

p(z) = ia(z), (14)



where a(z) € R. As such V(z) and 7 acquire the forms

7\ 2
V(z) = 2ia'—a2+a——<i> +- L5

2a 2a 4a?
d? ) d
no= o 21a(:c)% + b(z), (15)

with b(z) = =V (z) +id’ — 2a® — 6. In (15), n can be easily recognized to be a Hermitian

operator since it can be written in the form n = —Ot0, where O = % +r —ia, OF =
" / 2
—L 4t r+ia, and r? — 7' =L — (g—a) + 122. In Ref. [12], such a decomposition of 7 was

assumed, a priori, to arrive at some non-Hermitian Hamiltonians with real spectra.

Let us, however, confine ourselves to the following choice

a(z) = —1B(2A + 1) sech z, v =0, §=1, (16)

where A + % >0,B>0,and A— B+ % is not an integer. We are again led to the PT-
symmetric Scarf IT potential having a more general form than obtained with the first-order

differential realization of n:
V(z) = —Visech? z — iV sech x tanh z, (17)

where Vi = 1[B*(2A+1)? + 3] > 0 and V, = —B(2A+ 1) # 0. According to Refs. [13, 14],
the condition for real eigenvalues for the Hamiltonian corresponding to (17) is [Va| < Vi +1.
Here it amounts to [B(2A + 1) — 2]> > 0, which is always met.

Of particular interest is the special case B = 1:
V(z) = —(A*+ A+ 1)sech® z +i(24 + 1) sech 2 tanh z. (18)

On setting A+ 1 = =X (A < 0), Eq. (18) can be seen to reduce to the potential V1) — 1
of Ref. [15] for pn = 1. The associated energy levels of (18) are [10]: E{N = —(A+n+ 1)?
and coincide with E(?) — i of [15]. Note that there is, in general, a doubling of energy levels
in transiting from the real to the PT-symmetric Scarf II potential. In fact, the second
algebra of sl(2, C) leads to an additional energy level E(()l) = —i that is consistent with the

zero-energy state of [15].



Finally, we take up a general derivation of the continuity equation for the class of

Hamiltonians Hz given by (3). The associated Schrédinger equation reads

) 0 ’
2het) (_% ; Mx)) b(ad) + V@)l ). (19)
From this it follows that the function *(—z,t) satisfies
o 2
i <_ag - 6u<x>> P (=, )+ V(@) (=, 1) (20)

On considering Eq. (19) for some solution ¢4 (z,t) and Eq. (20) for some other so-
lution v¥(x,t) and then multiplying (19) and (20) by exp [—208 [* v(y)dy] ¢35 (—=,t) and
exp [—20 [* v(y)dy] Y1 (x,t), respectively, we obtain, on subtracting, a natural generalization
of the continuity equation for PT-symmetric quantum mechanics to its n-pseudo-Hermitian

extension, namely
OF,(z,t) N 0Jy(,t)

ot or (21)
where
Pn(l’,t) = 77@(—%15)1#1(%15)7
i) = 2usean 280D g 0 2EE20), 2)

and 7 is defined in (4). If ¢y(x,t) — 0 and ¥9(x,t) — 0 as * — £oo, as is normally
expected for bound-state wave functions, then integration of (21) over the entire real line

gives the conservation law

O [ dwnys(—a (e =0 (23)
In the case of energy eigenfunctions
Uy (x,t) = uy(z)e B Uo(x,t) = ug(w)e F2t, (24)
corresponding to the eigenvalues F; and E, respectively, Eq. (23) reduces to

(Ei — EI) /_ Z di nus(—a)u () = 0. (25)



Equation (25) represents the n-orthogonality condition [5]. Obviously it transforms to the
PT-orthogonality [9, 16]

(Ey — E3) /_ o; dzuy(—z)uy (z) = 0 (26)

for v(z) = 0. Indeed Eq. (25) can be derived from (26) by effecting a gauge transforma-
tion on the wave functions u of H in a manner u — exp[— [* fv(y)dy|u, V(x) being PT-
symmetric. Assuch Hz may be looked upon as a gauge-transformed version of H. However,
it needs to be emphasized that care should be taken to correctly implement the normaliza-
tion conditions deriving from (25) and (26) and which are appropriate to the Hamiltonians
Hpg and H, respectively. Thus although PT-symmetric, the form of the n-pseudo-Hermitian
Hamiltonian Hg at once suggests that the normalization condition related to (25) is to be
used rather than that connected with (26), a point overlooked in Ref. [8].

In summary, we have shown that n-pseudo-Hermiticity and weak pseudo-Hermiticity
are essentially complementary concepts. We have provided an explicit example of PT-
symmetric Scarf II model to demonstrate that 1 does not necessarily have a unique rep-
resentation to determine the character of the associated non-Hermitian Hamiltonian. We
have also pointed out the correct use of the n-orthogonality condition when dealing with a

pseudo-Hermitian gauge-transformed Hamiltonian.
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