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Abstract

We exploit the hidden symmetry structure of a recently proposed non-Hermitian

Hamiltonian and of its Hermitian equivalent one. This sheds new light on the pseudo-

Hermitian character of the former and allows access to a generalized quantum condi-

tion. Special cases lead to hyperbolic and Morse-like potentials in the framework of

a coordinate-dependent mass model.
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Non-Hermitian Hamiltonians are currently an active field of research [1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12, 13, 14, 15], motivated by the necessity to understand the mathemati-

cal properties of their subclass, namely the pseudo-Hermitian or the PT -symmetric ones.

Also, to investigate the existence of a suitable similarity transformation that maps such

Hamiltonians to an equivalent Hermitian form is important from a physical point of view.

A consistent theory of quantum mechanics demands a certain inner product that ensures

the associated norm to be positive definite. In this direction there have been efforts to look

for non-Hermitian Hamiltonians which have a real spectrum such that the accompanying

dynamics is unitary [13].

It must be said that the interest in non-Hermitian Hamiltonians was stepped up by a

conjecture of Bender and Boettcher [1] that PT -symmetric Hamiltonians could possess real

bound-state eigenvalues. Subsequently, Mostafazadeh [10] showed that the concept of PT

symmetry has its roots in the theory of pseudo-Hermitian operators. He pointed out that

the reality of the spectrum is ensured [16] if the Hamiltonian H is Hermitian with respect

to a positive-definite inner product 〈·, ·〉+ on the Hilbert space H in which H is acting. This

inner product may be expressed in terms of the defining inner product 〈·, ·〉 as

〈·, ·〉+ = 〈·, ζ+·〉 (1)

where the metric operator ζ+ : H → H belongs to the set of all Hermitian invertible

operators and, in itself, is positive definite. The pseudo-Hermiticity of the Hamiltonian H

given by

H† = ζ+Hζ
−1
+ (2)

serves as one of the plausible necessary and sufficient conditions for the reality of the

spectrum.

The Hilbert space equipped with the inner product (1) is identified as the physical

Hilbert space Hphys. Any observable O ∈ Hphys is related to the Hermitian operator o ∈ H
by means of a similarity transformation

O = ρ−1oρ (3)
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where ρ =
√
ζ+ is unitary and maps Hphys → H. For the Hermitian Hamiltonian h we can

write

h = ρHρ−1 (4)

which speaks of the quasi-Hermiticity of H [17, 18] and h may be looked upon as the

equivalent Hermitian analogue of H .

Some studies have been done [16, 19, 20, 21, 22] to arrive at a specific form for the

mapping function ρ for various non-Hermitian quantum systems. Very recently, in an en-

lightening paper, Jones [19] considered different possibilities for ρ = ρ(x) and demonstrated,

in particular, that a non-Hermitian Hamiltonian, which was earlier proposed and solved by

Swanson [23] using operator techniques, admits of an equivalent Hermitian representation

by applying a similarity transformation. Swanson’s Hamiltonian reads

H(α,β) =
(

H(β,α)
)†

= ωη†η + αη2 + βη†2 +
1

2
ω ω, α, β ∈ R (5)

with η and η† obeying the standard commutation relation [η, η†] = 1. It is obviously

Hermitian only if α = β, but PT -symmetric (or, equivalently, P -pseudo-Hermitian) for all

values of α and β. Jones’ transformation of H(α,β) to its equivalent Hermitian analogue is

reminiscent of partial algebraization method to tackle quasi-solvable systems through an

imaginary gauge transformation (for a review see [24]). Indeed, H(α,β) can be presented as

a linear combination of sl(2) generators K0 =
1
2
(η†η + 1

2
), K+ = 1

2
η†2, K− = 1

2
η2.

An important point we wish to observe here is that the Hermitian Hamiltonian h(α,β)

corresponding to Swanson’s Hamiltonian whenever ω > α+ β, namely [19]

h(α,β) = −1

2
(ω − α− β)

d2

dx2
+

1

2

ω2 − 4αβ

ω − α− β
x2

= ρ(α,β)H
(α,β)ρ−1

(α,β) (6)

where

ρ(α,β) = exp

(

−1

2

α− β

ω − α− β
x2
)

(7)

is clearly symmetric in the parameters α and β, i.e., h(α,β) = h(β,α), a feature not present

in (5). A consequence of this is that

h(α,β) = ρ(β,α)H
(β,α)ρ−1

(β,α) = ρ(β,α)H
(α,β)†ρ−1

(β,α) (8)
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whence it follows from (6) that

[

ρ−1
(β,α)ρ(α,β)

]

H(α,β)
[

ρ−1
(α,β)ρ(β,α)

]

= H(α,β)†. (9)

The above equation clearly shows H(α,β) to be ζ-pseudo-Hermitian if we define ζ =

ρ−1
(β,α)ρ(α,β). A sufficient condition for the positivity of ζ may be provided by the restriction

ρ(α,β) = ρ−1
(β,α), which is obeyed by (7).

The purpose of this Letter is to study the Hamiltonian (5) from the point of view of a

generalized quantum condition for which [η, η†] 6= 1. Although PT symmetry is generally

lost in this way, we will show that the transformed Hamiltonian still remains pseudo-

Hermitian with respect to a positive-definite ζ+ and a corresponding Hermitian counterpart

can be easily set up. On the other hand, a generalized quantum condition allows access to

those physical systems that are underlined by a coordinate dependence in mass by suitably

choosing η.

Let us adopt the most general first-order differential form for η, namely

η = a(x)
d

dx
+ b(x) a(x), b(x) ∈ R. (10)

It yields for the commutator

[η, η†] = 2ab′ − aa′′ (11)

where a prime denotes derivative with respect to x. Then the corresponding eigenvalue

equation for (5) reads

H̃(α,β)φ(x) ≡
[

−ω̃ d

dx
a2

d

dx
+ (ω̃aa′ + c1)

d

dx
+ c2

]

φ(x) = Eφ(x) (12)

where the functions c1(x) and c2(x) are given by

c1(x) = −ω̃aa′ + (α− β)a(2b− a′) (13)

c2(x) = ω̃(b2 − ab′ − a′b) + αb(2b− a′) + β[(b− a′)(2b− a′)− a(2b′ − a′′)]

+
1

2
(ω̃ + α + β) (14)

along with ω̃ = ω − α − β. To be able to bring equation (12) to a Schrödinger form, it is

appropriate to assume ω̃ > 0 or, equivalently, ω > α + β. Without loss of generality, we
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may set ω̃ = 1. Notice that with the form (10), H̃(α,β) is not PT -symmetric unless a(x) is

an odd function and b(x) is an even function of x.

It is straightforward to obtain the Hermitian analogue of (12) by removing the first-

derivative term with the help of a similarity transformation. This necessitates defining

φ(x) = w(x)χ(x), w(x) ≡ ρ̃−1
(α,β), and imposing the constraint

ρ̃(α,β) = a−1/2 exp
(

−1

2

∫ x c1
a2
dx′
)

(15)

provided this function is well defined on R. We then obtain a Hermitian equivalent form

for H̃(α,β) in a manner similar to (4):

h̃(α,β) = ρ̃(α,β)H̃
(α,β)ρ̃−1

(α,β) (16)

where h̃(α,β) reads explicitly

h̃(α,β) = − d

dx
a2

d

dx
+ Veff(x) (17)

Veff(x) = −a2w
′′

w
− (aa′ − c1)

w′

w
+ c2. (18)

Substituting for c1 and c2 by their expressions in (13) and (14), ρ̃(α,β) and Veff can be

expressed as

ρ̃(α,β) = a
1

2
(α−β) exp

(

−(α − β)
∫ x b

a
dx′
)

(19)

Veff =
1

2
(α + β)aa′′ +

[

1

2
(α + β) +

1

4
(α− β)2

]

a′2 −
[

1 + 2(α+ β) + (α− β)2
]

a′b

+
[

1 + 2(α+ β) + (α− β)2
]

b2 − (α + β + 1)ab′ +
1

2
(α + β + 1). (20)

Note that ρ̃(α,β) = 1 for α = β, which is as it should be. Specifically, for α = β = 0, Veff

reduces to the form

Veff = b2 − (ab)′ +
1

2
(21)

which has been considered before in the context of a coordinate-dependent mass Schrödinger

equation [25].

We now proceed to show that for a positive function a(x), H̃(α,β) is pseudo-Hermitian

with respect to some positive-definite ζ+ and has therefore a real spectrum. For this we
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need to notice that h̃(α,β) in (17) is symmetric with respect to the parameters α and β,

given the form for Veff in (20). As such, equation (8) holds in this case too with H(α,β)

and ρ(α,β) replaced by H̃(α,β) and ρ̃(α,β), respectively. Moreover, from (19), the condition

ρ̃(α,β) = ρ̃−1
(β,α) also holds, so that H̃(α,β) is pseudo-Hermitian,

H̃(α,β)† = ζ+H̃
(α,β)ζ−1

+ (22)

with ζ+ = aα−β exp [−2(α − β)
∫ x(b/a) dx′] > 0 if a(x) > 0. For example, for coordinate-

dependent mass systems, a(x) could be identified with the inverse square root of a certain

mass function that is strictly positive definite. Indeed, a time-independent Schrödinger

equation in the presence of a coordinate-dependent mass can always be brought [25] to the

Hermitian form
(

− d

dx

1

M(x)

d

dx
+ Veff(x)

)

ψ(x) = Eψ(x) (23)

where we have set m(x) = m0M(x) to make M(x) dimensionless. We also used units such

that ~ = 2m0 = 1. A comparison with (17) at once reveals that a(x) = [M(x)]−1/2 as we

just noted.

Let us assume, for instance, a(x) = cosh qx (corresponding to the solitonic profile

M(x) = sech2 qx) and b(x) = κq sinh qx with q > 0 and κ > 1
2
. Then the generalized

quantum condition reads [η, η†] = (2κ− 1)q2 cosh2 qx and we get from (19) and (20)

ρ̃(α,β) = (cosh qx)−(α−β)(κ− 1

2
) Veff =

1

4
q2(2λ+ 1)(2λ− 3) cosh2 qx+ V0 (24)

where V0 is some constant, λ ≡ 1
2
+
√
∆ and ∆ ≡ (κ− 1)2 + (κ− 1)(2κ− 1)(α+ β) + (κ−

1
2
)2(α−β)2. For those values of κ, α, β for which ∆ > 0, and therefore λ is real and positive,

the resulting Hermitian Hamiltonian h̃(α,β) of equation (17) has an infinite number of bound

states, corresponding to the energy eigenvalues En = q2(n + λ − 1
2
)(n + λ + 1

2
) + V0 and

the wavefunctions χn(x) ∝ (sech qx)λ+
1

2C(λ)
n (tanh qx) (with C(λ)

n denoting a Gegenbauer

polynomial) [26]. We conclude that the associated non-Hermitian Hamiltonian H̃(α,β) has

the same real spectrum with wavefunctions φn(x) = ρ̃−1
(α,β)χn(x).

Furthermore, it is interesting to consider the canonical condition [η, η†] = 1 for the

general choice (10). From (11), we get for b the solution

b = − g′′

2g′2
+

1

2
g + µ (25)
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where we have defined g(x) =
∫ x dx′/a(x′) and µ is an integration constant. For example,

for the same preceding choice of M(x), the function b turns out to be

b =
1

2
q sinh qx+

1

q
tan−1[exp(qx)] (26)

up to an additive integration constant.

In the context of the effective potential (20), we obtain on using (25)

Veff =
1

2

g′′′

g′3
− 5

4

g′′2

g′4
+ [1 + 2(α+ β) + (α− β)2]

(

1

2
g + µ

)2

. (27)

On choosing g we can get explicit forms for ρ̃(α,β) and Veff . For instance, if g = −1
p
e−px,

p ∈ R, then ρ̃(α,β) is given by

ρ̃(α,β) = exp



−(α− β)

(

− 1

2p
e−px + µ

)2


 (28)

and Veff describes a Morse-like potential

Veff = −3

4
p2e2px + [1 + 2(α + β) + (α− β)2]

(

− 1

2p
e−px + µ

)2

. (29)

This is another example of a Hermitian equivalence derived by means of a similarity trans-

formation. Note that the mapping function ρ̃(α,β) is consistent with an exponential mass

background: M = e−2px.

Finally, we can try to recast the general Veff in the form

Veff = b21 − (ab1)
′ + ξ (30)

where b1 = d1b+ d2a
′ and ξ, d1, d2 are some real constants. Comparing with (20) and d1,

d2 in favour of α, β, we have two solutions, either

b1 = (1 + α)b− 1

2
αa′ ξ =

1

2
(1 + α) β = 0 (31)

or

b1 = (1 + β)b− 1

2
βa′ ξ =

1

2
(1 + β) α = 0. (32)

Note that the symmetric nature of Veff with respect to α, β interchange makes it evident

to derive (32) from (31) and vice versa. We can also infer from (17) and (30) that in these

special cases there exists [25] an intertwining operator for h̃(α,β) induced by η1 = a d
dx

+ b1.
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