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Abstract

We formulate a systematic algorithm for constructing a whole class of Hermitian
position-dependent-mass Hamiltonians which, to lowest order of perturbation theory,
allow a description in terms of PT -symmetric Hamiltonians. The method is applied
to the Hermitian analogue of the PT -symmetric cubic anharmonic oscillator. A new
example is provided by a Hamiltonian (approximately) equivalent to a PT -symmetric
extension of the one-parameter trigonometric Pöschl-Teller potential.
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Pseudo-Hermitian Hamiltonians and their subclass of PT -symmetric ones have aroused

a great deal of interest since it was observed that some of them may have a real, positive

spectrum [1]. Pseudo-Hermiticity of H with respect to a positive-definite (Hermitian and

invertible) operator η+, i.e.,

H† = η+Hη
−1
+ (1)

has been identified as one of the necessary and sufficient conditions for this situation to

occur [2]. Any Hamiltonian endowed with such a property is then equivalent to a Hermitian

one

h = ρHρ−1 (2)

where the similarity transformation is implemented by ρ =
√
η+. Further, to any observable

o and to any wavefunction ψ(x) = 〈x|ψ〉 in the Hermitian theory described by h, one can

associate an operator O = ρ−1oρ and a wavefunction Ψ(x) = 〈x|ρψ〉 in the (physical)

pseudo-Hermitian theory, respectively.

Recently Jones [3] and, independently, Mostafazadeh [4] constructed the Hermitian ana-

logue h, as well as the pseudo-Hermitian position and momentum operators X = ρ−1xρ,

P = ρ−1pρ, for the PT -symmetric cubic anharmonic oscillator H = 1
2
(p2+ x2) + iǫx3 (with

ǫ ∈ R). The latter, which has been shown both numerically [1] and mathematically [5] to

have a real, positive and discrete spectrum, can only be treated in perturbation theory [6].

A very interesting outcome of [3] and [4] is that to lowest order such a system describes

an ordinary quartic anharmonic oscillator with real and positive coupling constants but a

position-dependent mass (PDM). As revealed by a more recent study of Bender et al [7],

this Hermitian PDM theory is however difficult to work out because it leads to divergent

Feynman graphs, which must be regulated to obtain the correct answer, whereas the cor-

responding non-Hermitian PT -symmetric theory is completely free from such difficulties.

At this stage, it is worth mentioning that Hermitian PDM Hamiltonians are attracting

a lot of attention due to their relevance in describing the physics of many microstructures

of current interest, such as compositionally graded crystals (see [8] and references quoted

therein). Several classes of physically-interesting solvable non-Hermitian potentials have

also been generated [9, 10, 11] in a PDM background by employing various techniques,
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such as the point canonical transformations or Lie algebraic methods, or using ideas from

supersymmetric quantum mechanics. In particular, constructions of PT -symmetric poten-

tials have been carried out for different choices of mass functions. These include the PT -

symmetric Scarf potential [9] and the PT -symmetric oscillator model [10]. Even the PDM

version of the complex Morse potential [12], which is known to be pseudo-Hermitian [13],

has been obtained [10].

In view of all these considerations, it may prove interesting to see under which conditions

a Hermitian PDM Hamiltonian may be approximately equivalent to a non-Hermitian PT -

symmetric one, which, according to the experience gained in [7], would presumably be easier

to handle. In the spirit of [3] and [4], this is tantamount to determining those PT -symmetric

Hamiltonians,

H = H0 + εH1 H0 =
p2

2m0
+ V (r)(x) H1 = iV (i)(x) (3)

with ε ∈ R, V (r)(x) = V (r)(−x) ∈ R, V (i)(x) = −V (i)(−x) ∈ R and configuration space R

(or a subset of it), that have a Hermitian counterpart

h = H0 + ε2h(2) + ε4h(4) + · · · (4)

which to lowest order in ε reduces to some PDM Hamiltonian, i.e.,

H0 + ε2h(2) = p
1

2m(x)
p+ Veff(x) (5)

with 1/m(x) = (1/m0)[1+ ε2M (2)(x)], Veff(x) = V (r)(x) + ε2V
(2)
eff (x) and M (2)(x), V

(2)
eff (x) ∈

R. It should be noted that the right-hand side of (4) only contains even powers of ε because

the coefficients of odd powers have been shown to vanish [3, 4], while the right-hand side

of (5) is the most general expression of Hermitian PDM Hamiltonians [8]. The latter is

written in terms of an effective potential Veff(x) including some mass terms depending on

two ambiguity parameters, which take the noncommutativity of the momentum and PDM

operators into account [14].

It proves convenient to introduce dimensionless quantities defined by

x = ℓ−1x p = ℓ~−1p

H = ν−1H = H0 + εH1 H0 =
1

2
p2 +V(r)(x) H1(x) = iV(i)(x)

h = ν−1h = H0 + ε2h(2) =
1

2
p[1 + ε2M(2)(x)]p + V(r)(x) + ε2V

(2)
eff (x) (6)
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in terms of some length and energy scales, ℓ and ν = ~
2/(m0ℓ

2). Note that in (3), (4) and

(5), ε is also dimensionless, as well as M (2)(x).

In [3] and [4] (see also [6]), it has been shown that for the positive-definite metric

operator η+, one may take

η+ = e−Q(x,p) Q(x, p) = εQ1(x, p) + ε3Q3(x, p) + · · · (7)

where every Qj(x, p), j = 1, 3, . . . , is such that Qj(x, p) = Q†
j(x, p) = Qj(−x, p) =

−Qj(x,−p). Then to lowest order in ε, equations (1) and (2) lead to the two conditions

[H0, Q1] = −2H1
1

4
[H1, Q1] = h(2) (8)

which in the case of (3) and (5) amount to

[

1

2
p2 +V(r)(x), Q1

]

= −2iV(i)(x) (9)

i

4
[V(i)(x), Q1] =

1

2
pM(2)(x)p + V

(2)
eff (x). (10)

For Q1, let us choose a general ansatz somewhat different from those previously consid-

ered:

Q1 =
∞
∑

k=0

{Rk(x), p
2k+1} Rk(x) = Rk(−x). (11)

By expressing p as −id/dx and using the commutation relation

[

dk

dxk
, f(x)

]

=

k−1
∑

l=0

(

k
l

)

dk−lf(x)

dxk−l

dl

dxl
(12)

Q1 can be written in normal form, i.e., with all functions of x on the left of the differential

operators, as

Q1 = −i

∞
∑

k=0

Sk(x)
dk

dxk
(13)

where

S2k =
∞
∑

l=k

(−1)l
(

2l + 1
2k

)

d2l−2k+1Rl

dx2l−2k+1

S2k+1 =
∞
∑

l=k

(1 + δl,k)(−1)l
(

2l + 1
2k + 1

)

d2l−2kRl

dx2l−2k
(14)
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for k = 0, 1, 2, . . . .

On inserting (13) in (9) and (10) and employing (12) again, we find after some straight-

forward calculations that equation (9) is equivalent to the conditions

1

2

d2S0

dx2
+

∞
∑

l=1

Sl

dlV(r)

dxl
= −2V(i) (15)

dSk−1

dx
+

1

2

d2Sk

dx2
+

∞
∑

l=k+1

(

l
k

)

Sl

dl−kV(r)

dxl−k
= 0 k = 1, 2, . . . (16)

while equation (10) leads to

∞
∑

l=1

Sl

dlV(i)

dxl
= −4V

(2)
eff (17)

∞
∑

l=2

(

l
1

)

Sl

dl−1V(i)

dxl−1
= 2

dM(2)

dx
(18)

∞
∑

l=3

(

l
2

)

Sl

dl−2V(i)

dxl−2
= 2M(2) (19)

∞
∑

l=k+1

(

l
k

)

Sl

dl−kV(i)

dxl−k
= 0 k = 3, 4, . . . . (20)

To be able to solve the general equations (15)–(20), it is appropriate to make some

simplifying assumption. Inspired by the example of the PT -symmetric cubic anharmonic

oscillator considered in [3, 4], where Q1 only contains linear and cubic powers of p, let us

assume that Rk(x) = 0, k = 2, 3, . . . , in equation (11). It then follows from (14) that

only the first four functions Sk in the expansion (13) may be nonvanishing and that they

are given in terms of R0, R1, and their derivatives by S0 = R′
0 − R′′′

1 , S1 = 2R0 − 3R′′
1,

S2 = −3R′
1 and S3 = −2R1.

Let us first solve equations (15) and (16). In the latter, k is now restricted to k ≤ 4.

For k = 4, we obtain that S3 must be a constant, this implying that

R1(x) = c1. (21)

Hence the remaining nonvanishing Sk’s are

S0 = R′
0 S1 = 2R0 S3 = −2c1. (22)
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From equation (16) with k = 2, we get

R0(x) = 3c1V
(r)(x) + c0 (23)

where c0 is another integration constant, while the equations with k = 1 or k = 3 are

automatically satisfied. Equation (15) then provides us with a condition on V(i),

V(i)(x) =
1

4
c1V

(r)′′′(x)− [3c1V
(r)(x) + c0]V

(r)′(x). (24)

Let us next turn ourselves to equations (17)–(20). It is easy to see that only equations

(17) and (19) impose some new conditions, namely

M(2)(x) = −3c1V
(i)′(x) V

(2)
eff (x) =

1

2
{−[3c1V

(r)(x) + c0]V
(i)′(x) + c1V

(i)′′′(x)} (25)

where V(i)(x) must be expressed in terms of V(r)(x) through equation (24). This completes

the solution of equations (9) and (10).

It is then straightforward to go back to x, p and unscaled operators. This leads to the

conclusion that there exists a whole class of Hermitian PDM Hamiltonians, which to lowest

order of perturbation theory allow an equivalent PT -symmetric description and might

therefore be easier to deal with than generic ones. The various members of the class are

distinguished by the choice of the zeroth-order part V (r)(x) of the effective potential V
(2)
eff (x)

and that of two integration constants c0, c1. The lowest-order corrections to the mass term

M (2)(x) and to the effective potential in the PDM equation, as well as the imaginary part

V (i)(x) of the corresponding PT -symmetric potential, are indeed entirely fixed by such a

choice.

The classical Hamiltonians Hc(xc, pc) corresponding to the members of this class can

be obtained by replacing x and p in h by the classical variables xc and pc and evaluating

the resulting expressions in the limit ~ → 0 (assuming this limit exists), i.e., Hc(xc, pc) =

lim~→0 h(xc, pc).

The η+-pseudo-Hermitian position and momentum operators X and P , as well as the

physical wavefunctions Ψ(x), can be calculated in the same way as h. To second order in

ε, the pseudo-Hermitian operators are given by

O = o− 1

2
ε[o,Q1] +

1

8
ε2[[o,Q1], Q1] o = x or p. (26)
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For the dimensionless operators, we find

[x, Q1] = i

∞
∑

k=0

(k + 1)Sk+1
dk

dxk
[[x, Q1], Q1] =

∞
∑

k=0

Tk
dk

dxk

[p, Q1] = −
∞
∑

k=0

dSk

dx

dk

dxk
[[p, Q1], Q1] = i

∞
∑

k=0

Uk

dk

dxk
(27)

where Tk and Uk are defined by

Tk =
k

∑

l=0

∞
∑

m=k−l+1

T
(l,m)
k Uk =

k
∑

l=0

∞
∑

m=k−l+1

U
(l,m)
k (28)

with

T
(l,m)
k =

(

m
k − l

)[

(m+ 1)Sm+1
dl+m−kSl

dxl+m−k
− (l + 1)Sm

dl+m−kSl+1

dxl+m−k

]

U
(l,m)
k =

(

m
k − l

)[

dSm

dx

dl+m−kSl

dxl+m−k
− Sm

dl+m−k+1Sl

dxl+m−k+1

]

. (29)

Similarly, the physical wavefunctions can be expressed as

Ψ(x) = ψ(x)− ε

2
〈x|Q1|ψ〉+

ε2

8
〈x|Q2

1|ψ〉 (30)

where Q1 is given by (13) and

Q2
1 = −

∞
∑

k=0

Wk(x)
dk

dxk
(31)

with

Wk =

k
∑

l=0

∞
∑

m=k−l

W
(l,m)
k W

(l,m)
k =

(

m
k − l

)

Sm

dl+m−kSl

dxl+m−k
. (32)

With the simplifying assumption (22) and taking equations (23) and (26)–(32) into

account, we obtain

X = x− iε(3c1V
(r) + c0 + 3c1p

2) +
3

4
ε2c1[−c1(6V(r)V(r)′ +V(r)′′′)− 2c0V

(r)′

− 6ic1V
(r)′′p + 6c1V

(r)′p2] (33)

P = p +
3

2
εc1(V

(r)′′ + 2iV(r)′p) +
3

4
iε2c1{c1(3V(r)′V(r)′′ − 3V(r)V(r)′′′ +V(r)′′′′′)

− c0V
(r)′′′ + i[c1(6V

(r)′2 − 6V(r)V(r)′′ + 5V(r)′′′′)− 2c0V
(r)′′]p− 9c1V

(r)′′′p2

− 6ic1V
(r)′′p3} (34)
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and

Ψ(x) = ψ(x) +
1

2
iε

[

3c1V
(r)′ + 2(3c1V

(r) + c0)
d

dx
− 2c1

d3

dx3

]

− ε2

8

{

3c1[c1(3V
(r)′2 + 6V(r)V(r)′′ − 2V(r)′′′′) + 2c0V

(r)′′]

+ 6c1[c1(12V
(r)V(r)′ − 5V(r)′′′) + 4c0V

(r)′]
d

dx
+ 2[9c21(2V

(r)2 − 3V(r)′′)

+ 12c0c1V
(r) + 2c20]

d2

dx2
− 48c21V

(r)′ d
3

dx3
− 8c1(3c1V

(r) + c0)
d4

dx4

+ 4c21
d6

dx6

}

. (35)

It is easy to check that, as expected, the Hermitian PDM quartic anharmonic oscillator

of [3, 4] belongs to the class of Hermitian PDM Hamiltonians with an approximate PT -

symmetric counterpart. On setting V(r)(x) = 1
2
M2x2, c0 = 0 and c1 = −2/(3M4) in equa-

tion (24), where the dimensionless quantitites are defined as in equations (17)–(20) of [4],

we indeed obtain V(i)(x) = x3, so that V (i)(x) = x3. Furthermore, from equations (25), (33)

and (34), we obtain m(x) = m0[1 + 6(ǫ2/µ4)x2]−1, V
(2)
eff (x) = (3m0µ

2x4 − 4~2)/(2m0µ
4),

X = x + i(ǫ/µ4)(µ2x2 + 2p2/m0) + (ǫ2/µ6)(−µ2x3 − 2i~p/m0 + 2xp2/m0) and P =

p− i(ǫ/µ2)(2xp− i~)+ (ǫ2/µ6)(2p3/m0−µ2x2p+ i~µ2x), which after some reordering agree

with [3, 4], as does the classical Hamiltonian. Similarly, equation (35) gives rise to equation

(65) of [4].

A new example is provided by selecting for V (r)(x) a one-parameter trigonometric

Pöschl-Teller potential [15]

V (r)(x) = V0 sec
2 kx V0 =

~
2k2

2m2
λ(λ− 1) λ > 2 (36)

on the interval −π
2
≤ x ≤ π

2
. On setting ℓ = k−1 and ν = ~

2k2/m0 for the length and

energy scales, respectively, we obtain the dimensionless quantities x = kx, p = p/(~k) and

V(r)(x) = 1
2
λ(λ− 1) sec2 x with λ(λ− 1) = 2V0/ν.

The choice c0 = −c1 = 1
3
in (24) leads to

V(i)(x) =
1

2
(λ+ 1)λ(λ− 1)(λ− 2) sec4 x tan x =

2

ν2
V0(V0 − ν) sec4 x tan x. (37)
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This means that the corresponding PT -symmetric Hamiltonian may be written as

H =
p2

2m0
+ V0 sec

2 kx+ iǫ sec4 kx tan kx (38)

where ǫ has the dimension of an energy and is given in terms of the dimensionless ε by

ǫ = 2εV0(V0 − ν)/ν.

To second order in ǫ, such a non-Hermitian Hamiltonian is equivalent to a Hermitian

PDM one, given by equation (5), where

m(x) = m0

(

1 +
ǫ2

2V0(V0 − ν)
sec4 kx(5 sec2 kx− 4)

)−1

(39)

and

Veff(x) = V0 sec
2 kx+

ǫ2

4V0(V0 − ν)
sec4 kx[5(V0 − 14ν) sec4 kx− (4V0 − 85ν) sec2 kx− 20ν].

(40)

The corresponding η+-pseudo-Hermitian position and momentum operators can be ex-

pressed as

X = x− i
ǫ

2kV0(V0 − ν)

(

−V0 sec2 kx+
ν

3
− p2

m0

)

− ǫ2

4kV0(V0 − ν)2
sec2 kx

×
{

[(V0 + 2ν) sec2 kx− ν] tan kx+ i

√

ν

m0
(3 sec2 kx− 2)p− tan kx

p2

m0

}

(41)

P = p− ǫ

2(V0 − ν)
sec2 kx[

√
m0ν(3 sec

2 kx− 2) + 2i tan kx p]− i
ǫ2

4V0(V0 − ν)2
sec2 kx

×
{√

m0ν[3V0 sec
4 kx− 2ν(30 sec4 kx− 19 sec2 kx+ 1)] + i[V0 sec

4 kx

− ν(50 sec4 kx− 49 sec2 kx+ 6)]p+ 6

√

ν

m0

(3 sec2 kx− 1) tan kx p2

+
i

m0
(3 sec2 kx− 2)p3

}

. (42)

Similar results can be found for physical wavefunctions. For lack of space, let us only

mention the result in dimensionless variable obtained for the function ψ(x) = cosλ(x)

(corresponding to the ground state of the real potential (36)):

Ψ(x) = cosλ(x)

{

1 +
i

6
ε(λ+ 1)λ(λ− 1)(sec2 x + 2) tan x− ε2

72
(λ+ 1)λ(λ− 1)

× [(λ− 4)(λ− 2)(λ+ 15) sec6 x + 3(λ− 2)(λ2 − 4λ+ 15) sec4 x

− 4(λ+ 1)λ(λ− 1)

}

. (43)
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In the classical limit, ν goes to zero. To get a nonvanishing limit for V0, we must

therefore assume that λ goes to infinity as ~−1 (this implying, in particular, that λ becomes

negligeably small compared with λ2). To second order in ǫ, the classical Hamiltonian

corresponding to (38) is obtained as

Hc =
p2c

2m(xc)
+ V0 sec

2 kxc +
ǫ2

4V0
sec6 kxc(5 sec

2 kxc − 4) (44)

where

mc(xc) = m0

(

1− ǫ2

2V 2
0

sec4 kxc(5 sec
2 kxc − 4)

)

(45)

while the classical η+-pseudo-Hermitian variables Xc, Pc are

Xc = xc + i
ǫ

2kV 2
0

(

V0 sec
2 kxc +

p2c
m0

)

− ǫ2

4kV 3
0

sec2 kxc

×
(

V0 sec
2 kxc −

p2c
m0

)

tan kxc (46)

Pc = pc − i
ǫ

V0
sec2 kxc tan kxc pc +

ǫ2

4V 3
0

sec2 kxc

×
[

V0 sec
4 kxc + (3 sec2 kxc − 2)

p2c
m0

]

pc. (47)

It is worth noting that in contrast with what happens for the PT -symmetric cubic anhar-

monic oscillator, the operators X and P involve ~ even after rewritting them in a sym-

metrized form. As a consequence, the η+-pseudo-Hermitian quantization of the classical

Hamiltonian (44) is far from trivial. This illustrates the importance of the factor-ordering

problem in pseudo-Hermitian quantum mechanics.

In conclusion, the generalization of the works in [3] and [4] that we have proposed here

contributes to exploring further the relationships between PT -symmetric and Hermitian

PDM Hamiltonians started there and continued in [7, 16]. Moreover, it suggests the interest

of performing detailed calculations for some new PT -symmetric systems, such as the one

defined in (38).
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