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Parallel Searching in Generalized Monge Arrays

A. Aggarwal,1 D. Kravets,2 J. K. Park,3 and S. Sen4

Abstract. This paper investigates the parallel time and processor complexities of several searching problems

involving Monge, staircase-Monge, and Monge-composite arrays. We present array-searching algorithms for

concurrent-read-exclusive-write (CREW) PRAMs, hypercubes, and several hypercubic networks. All these

algorithms run in near-optimal time, and their processor-time products are all within an O(lg n) factor of

the worst-case sequential bounds. Several applications of these algorithms are also given. Two applications

improve previous results substantially, and the others provide novel parallel algorithms for problems not

previously considered.
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1. Introduction

1.1. Background. An m × n array A = {a[i, j]} containing real numbers is called

Monge if, for 1 ≤ i < k ≤ m and 1 ≤ j < l ≤ n,

a[i, j] + a[k, l] ≤ a[i, l] + a[k, j].(1.1)

We refer to (1.1) as the Monge condition. Monge arrays have many applications. In the

late eighteenth century, Monge [34] observed that if unit quantities (cannonballs, for

example) need to be transported from locations X and Y (supply depots) in the plane

to locations Z and W (artillery batteries), not necessarily respectively, in such a way

as to minimize the total distance traveled, then the paths followed in transporting these

quantities must not properly intersect. In 1961, Hoffman [24] elaborated upon this idea

and showed that a greedy algorithm correctly solves the transportation problem for m

sources and n sinks if and only if the corresponding m × n cost array is a Monge array.
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More recently, Monge arrays have found applications in a many other areas. Yao [37]

used these arrays to explain Knuth’s [28] efficient sequential algorithm for computing

optimal binary trees. Aggarwal et al. [4] showed that the all-farthest-neighbors problem

for the vertices of a convex n-gon can be solved in linear time using Monge arrays.

Aggarwal and Park [6] gave efficient sequential algorithms based on the Monge-array

abstraction for several problems in computational geometry and VLSI river routing.

Furthermore, many researchers [6], [31], [21], [22] have used Monge arrays to obtain

efficient dynamic programming algorithms for problems related to molecular biology.

More recently, Aggarwal and Park [9] have used Monge arrays to obtain efficient algo-

rithms for the economic-lot size model.

In many applications, the underlying array satisfies conditions that are similar but not

the same as in (1.1). An m × n array A is called inverse-Monge if, for 1 ≤ i < k ≤ m

and 1 ≤ j < l ≤ n,

a[i, j] + a[k, l] ≥ a[i, l] + a[k, j].5(1.2)

An m × n array S = {s[i, j]} is called staircase-Monge if

(i) every entry is either a real number or ∞,

(ii) s[i, j] = ∞ implies s[i, ℓ] = ∞ for ℓ > j and s[k, j] = ∞ for k > i , and

(iii) for 1 ≤ i < k ≤ m and 1 ≤ j < ℓ ≤ n, (1.1) holds if all four entries s[i, j], s[i, ℓ],

s[k, j], and s[k, ℓ] are finite.

The definition of a staircase-inverse-Monge array is similar:

(i) every entry is either a real number or ∞,

(ii) s[i, j] = ∞ implies s[i, ℓ] = ∞ for ℓ < j and s[k, j] = ∞ for k > i , and

(iii) for 1 ≤ i < k ≤ m and 1 ≤ j < ℓ ≤ n, (1.2) holds if all four entries s[i, j], s[i, ℓ],

s[k, j], and s[k, ℓ] are finite.

Observe that a Monge array is a special case of a staircase-Monge array. Finally, a p×q×r

array C = {c[i, j, k]} is called Monge-composite if c[i, j, k] = d[i, j] + e[ j, k] for all

i , j , and k, where D = {d[i, j]} is a p × q Monge array and E = {e[ j, k]} is a q × r

Monge array.

Like Monge arrays, staircase-Monge arrays have also found applications in many

areas. Aggarwal and Park [6], Larmore and Schieber [31], and Eppstein et al. [21],

[22] use staircase-Monge arrays to obtain algorithms for problems related to molecular

biology. Aggarwal and Suri [10] used these arrays to obtain fast sequential algorithms

for computing the following largest-area empty rectangle problem: given a rectangle

containing n points, find the largest-area rectangle that lies inside the given rectangle, that

does not contain any points in its interior, and whose sides are parallel to those of the given

rectangle. Furthermore, Aggarwal and Klawe [3] and Klawe and Kleitman [27] have

demonstrated other applications of staircase-Monge arrays in computational geometry.

Finally, both Monge and Monge-composite arrays have found applications in parallel

computation. In particular, Aggarwal and Park [5] exploit Monge arrays to obtain efficient

CRCW- and CREW-PRAM algorithms for certain geometric problems, and they exploit

Monge-composite arrays to obtain efficient CRCW- and CREW-PRAM algorithms for

5 We refer to (1.2) as the inverse-Monge condition.
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string editing and other related problems. (See also [12].) Similarly, Atallah et al. [15]

have used Monge-composite arrays to construct Huffman and other such codes on CRCW

and CREW PRAMs. Larmore and Przytycka in [30] used Monge arrays to solve the

Concave Least Weight Subsequence (CLWS) problem (defined in Section 4.2).

Unlike Monge and Monge-composite arrays, staircase-Monge arrays have not been

studied in a parallel setting (in spite of their immense utility). Furthermore, even for

Monge and Monge-composite arrays, the study of parallel array-search algorithms has

so far been restricted to CRCW and CREW PRAMs. In this paper we fill in these gaps

by providing efficient parallel algorithms for searching in Monge, staircase-Monge,

and Monge-composite arrays. We develop algorithms for the CREW-PRAM models

of parallel computation, as well as for several interconnection networks including the

hypercube, the cube-connected cycles, the butterfly, and the shuffle-exchange network.

Before we can describe our results, we need a few definitions which we give in the next

section.

1.2. Definitions. In this section we explain the specific searching problems we solve

and give the previously known results for these problems. The row-minima problem

for a two-dimensional array is that of finding the minima entry in each row of the

array. (If a row has several minima, then we take the leftmost one.) In dealing with

Monge arrays we assume that for any given i and j , a processor can compute the

(i, j)th entry of this array in O(1) time. For parallel machines without global memory

we need to use a more restrictive model. The details of this model are given in later

sections. Aggarwal et al. [4] showed that the row-minima problem for an m × n Monge

array can be solved in O(m + n) time, which is optimal. Also, Aggarwal and Park [5]

have shown that the row-minima problem for such an array can be solved in O(lg mn)

time on an (m + n)-processor CRCW PRAM, and in O(lg mn lg lg mn) time on an

((m + n)/lg lg mn)-processor CREW PRAM. Atallah and Kosaraju in [14] improved

this to O(lg mn) using m + n processors on a (weaker) EREW PRAM. Note that all the

algorithms dealing with finding row-minima in Monge and inverse-Monge arrays can

also be used to solve the analogously defined row-maxima problem for the same arrays.

In particular, if A = {a[i, j]} is an m × n Monge (resp. inverse-Monge) array, then

A′ = {a′[i, j] : a′[i, j] = −a[i, n − j + 1]} is a m × n Monge (resp. inverse-Monge)

array. Thus, solving the row-minima problem for A′ gives us row-maxima for A.

Unfortunately, the row-minima and row-maxima problems are not interchangeable

when dealing with staircase-Monge and staircase-inverse-Monge arrays. Aggarwal and

Klawe [3] showed that the row-minima problem for an m ×n staircase-Monge array can

be solved in O((m +n) lg lg(m +n)) sequential time, and Klawe and Kleitman [27] have

improved the time bound to O(m + nα(m)), where α(·) is the inverse of Ackermann’s

function. However, if we wanted to solve the row-maxima problem (instead of the row-

minima problem) for an m ×n staircase-Monge array, then we could, in fact, employ the

sequential algorithm given in [4] and solve the row-maxima problem in O(m + n) time.

No parallel algorithms were known for solving the row-minima problem for staircase-

Monge arrays.

Given a p × q × r Monge-composite array, for 1 ≤ i ≤ p and 1 ≤ k ≤ r , the (i, k)th

tube consists of all those entries of the array whose first coordinate is i and whose third

coordinate is k. The tube-minima problem for a p × q × r Monge-composite array
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is that of finding the minimum entry in each tube of the array. (If a tube has several

minima, then we take the one with the minimum second coordinate.) For sequential

computation, the result of [4] can be trivially used to solve the tube-minima problem in

O((p + r)q) time. Aggarwal and Park [5] and Apostolico et al. [12] have independently

shown that the tube-minima problem for an n × n × n Monge-composite array can

be solved in O(lg n) time using n2/lg n processors on a CREW PRAM, and, recently,

Atallah [13] has shown that this tube-minima problem can be solved in O(lg lg n) time

using n2/lg lg n processors on a CRCW PRAM. Both results are optimal with respect

to time and processor-time product. In view of the applications, we assume that the two

n × n Monge arrays D = {d[i, j]} and E = {e[ j, k]}, that together form the Monge-

composite array, are stored in the global memory of the PRAM. Again, for parallel

machines without a global memory, we need to use a more restrictive model; the details

of this model are given later. No efficient algorithms (other than the one that simulates

the CRCW-PRAM algorithm) were known for solving the tube-minima problem for a

hypercube or a shuffle-exchange network.

1.3. Our Main Results. The time and processor complexities of algorithms for comput-

ing row minima in two-dimensional Monge, row minima in two-dimensional staircase-

Monge arrays, and tube minima in three-dimensional Monge-composite arrays are listed

in Tables 1.1, 1.2, and 1.3, respectively. We assume a normal model of hypercube com-

putation, in which each processor uses only one of its edges in a single time step, only

one dimension of edges is used at any given time step, and the dimension used at time

step t + 1 is within 1 module d of the dimension used at time step t , where d is the

dimension of the hypercube (see Section 3.1.3 of [32]). It is known that such algorithms

for the hypercube can be implemented on other hypercubic bounded-degree networks

like Butterfly and shuffle-exchange without asymptotic slow-down. Observe that our

results for staircase-Monge arrays match the corresponding bounds for Monge arrays.

Following are some applications of these new array-searching algorithms.

1. All Pairs Shortest Path (APSP) Problem. Consider the following problem: given a

weighted directed graph G = (V, E), |V | = n, |E | = m, we want to find the shortest

path between every pair of vertices in V . In the sequential case, Johnson [26] gave an

O(n2 lg n + mn)-time algorithm for APSP. In the parallel case, APSP can be solved by

repeated squaring in O(lg2 n) time using n3/lg n processors on a CREW PRAM. Atallah

et al. [15] show how to solve APSP in O(lg2 n) time using n3/lg n processors on a CREW

PRAM (this solution follows from their O(lg2 n)-time (n2/lg n)-processor solution to

the single source shortest paths problem on such a graph). In Section 4.1 we give the

algorithm of Aggarwal et al. [2] which runs in O(lg2 n) time using n2 CREW-PRAM

Table 1.1. Row-minima results for an n × n Monge array.

Model Time Processors Reference

CREW PRAM O(lg n) n [14]

Hypercube O(lg n lg lg n) n Theorem 3.2
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Table 1.2. Row-minima results for an n × n staircase-Monge array.

Model Time Processors Reference

CREW PRAM O(lg n) n Theorem 2.3

Hypercube O(lg n lg lg n) n Theorem 3.4

processors for the special case of the APSP problem when the graph is acyclic and the

edge weights satisfy the quadrangle inequality.6

2. Huffman Coding Problem. Consider the following problem: given an alphabet C

of n characters and the function fi indicating the frequency of character ci ∈ C in a

file, construct a prefix code which minimizes the number of bits needed to encode the

file, i.e., construct a binary tree T such that each leaf corresponds to a character in the

alphabet and the weight of the tree, W(T ), is minimized, where

W(T ) =
n

∑

i=1

fi di ,(1.3)

and di is the depth in T of the leaf corresponding to character ci . The weight of the tree

W(T ) is exactly the minimum number of bits needed to encode the file (see [18]). The

construction of such an optimal code (which is called a Huffman code) is a classical

problem in data compression. In the sequential domain, Huffman in [25] showed how to

construct Huffman codes greedily in O(n) time (once the character frequencies are in

sorted order). In [15], Atallah et al. reduced Huffman coding to O(lg n) tube minimization

problems on Monge-composite arrays, thereby obtaining parallel algorithms for Huffman

coding that run in O(lg2 n) time using n2/lg n processors on a CREW PRAM and in

O(lg n(lg lg n)2) time using n2/(lg lg n)2 processors on a CRCW PRAM. Larmore and

Przytycka in [30] reduce Huffman coding to the Concave Least Weight Subsequence

(CLWS) problem (defined in Section 4.2) and then show how to solve CLWS, and thereby

Huffman coding, in O(
√

n lg n) time using n processors on a CREW PRAM. Theirs is the

first known parallel algorithm for Huffman coding requiring o(n2) work. In Section 4.2

we present the result of Czumaj [20] for finding the Huffman code in O(lgr+1 n) time

and a total of O(n2 lg2−r n) work on a CREW PRAM, for any r ≥ 1. This is the first

NC algorithm that achieves o(n2) work.

Table 1.3. Tube-minima results for an n × n × n Monge-composite array.

Model Time Processors Reference

CREW PRAM O(lg n) n2/lg n [5], [12]

Hypercube O(lg n) n2 Theorem 3.5

6 Given an ordering of the vertices of a graph, the quadrangle inequality states that any four distinct vertices

appearing in increasing order in that ordering, i1, i2, j1, and j2, must satisfy d(i1, j1)+d(i2, j2) ≥ d(i1, j2)+
d(i2, j1). In other words, in the quadrangle formed by i1i2 j1 j2, the sum of the diagonals is greater than the

sum of the sides. Notice that this condition is the same as (1.2) and they both appear in the literature.



296 A. Aggarwal, D. Kravets, J. K. Park, and S. Sen

3. The String Editing Problem and Other Related Problems. Consider the following

problem: given two input strings x = x1x2 · · · xm and y = y1 y2 · · · yn , m = |x | and

n = |y|, find a sequence of edit operations transforming x to y, such that the sum of the

individual edit operations’ costs is minimized. Three different types of edit operations are

allowed: we can delete the symbol xi at cost D(xi ), insert the symbol yj at cost I (yj ), or

substitute the symbol xi for the symbol yj at cost S(xi , yj ). In [36], Wagner and Fischer

gave an O(mn)-time sequential algorithm for this problem. PRAM algorithms for this

problem were provided in [5] and [12]; these algorithms reduce the string editing problem

to a shortest-path problem in a special kind of directed graph called a grid-DAG and use

array-searching to solve this shortest-path problem. Using our tube-minima algorithms

for hypercubes and related networks, in Section 4.3 we solve the string editing problem in

O(lg m lg n) time on an mn-processor hypercube. Our result significantly improves the

results of Ranka and Sahni [35], who give two SIMD hypercube algorithms for the m = n

special case of the string editing problem: one algorithm runs in O(
√

(n3 lg n)/p+ lg2 n)

time using p processors, n2 ≤ p ≤ n3; the other algorithm runs in O(
√

(n3 lg n)/p)

time using p processors, n lg n ≤ p ≤ n2.

4. The Largest-Area (Not Necessarily Empty) Rectangle (LAR) Problem. Consider the

following problem: given a set of n planar points, compute the largest-area rectangle that

is formed by taking any two of the n points as the rectangle’s opposite corners and whose

sides are parallel to the x- and y-axes. For this problem, we obtain (in Section 4.4) a

CREW-PRAM algorithm that takes O(lg n) time and uses n processors. This geometric

problem is motivated by the following problem in electronic circuit simulation and

has been recently studied by Melville [33]. Imagine an integrated circuit containing n

nodes. Because of the nature of integrated circuit fabrication, there will be leakage paths

between all pairs of nodes. For which pair of nodes is a leakage path (between those

nodes) most detrimental to circuit performance? In [33], Melville argues that this pair

of nodes correspond to the pair forming the largest-area rectangle.

5. The Nearest-Visible-, Nearest-Invisible-, Farthest-Visible-, and Farthest-Invisible-

Neighbors Problems for Convex Polygons. Consider the following problem which

we call the nearest-visible-neighbor (nearest-invisible-neighbor) problem: given two

nonintersecting convex polygons P and Q, determine for each vertex x of P , the ver-

tex of Q nearest to x that is visible (resp. not visible) to x . If P and Q contain m

and n vertices, respectively, then the nearest-visible-neighbor problem can be solved

optimally in O(lg(m + n)) time using ((m + n)/lg(m + n)) processors on a CREW

PRAM. Furthermore, we can use the row-minima algorithm developed for staircase-

Monge arrays to show in Section 4.5 that the nearest-invisible-neighbor problem can be

solved in O(lg(m + n)) time on a CREW PRAM with m + n processors. The farthest-

visible-neighbor (resp. farthest-invisible-neighbor) problem for P and Q can be defined

similarly, and it can be solved in the same time and processor bounds as the nearest-

visible-neighbor (resp. nearest-invisible-neighbor) problem.

The remainder of this paper is organized as follows. In Section 2 we give the PRAM

algorithms for finding row minima in staircase-Monge arrays. In Section 3 we give the

hypercube algorithms for finding row minima in Monge and staircase-Monge arrays
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and tube minima in Monge-composite arrays. Details of the applications are given in

Section 4.

2. CREW-PRAM Algorithms to Compute Row Minima in Staircase-Monge

Arrays. In this section we give CREW-PRAM algorithms for computing row min-

ima in staircase-Monge arrays. We use the CREW-PRAM algorithms for computing

row minima in Monge arrays summarized in Table 1.1. In [3], Aggarwal and Klawe gave

an O((m + n) lg lg(m + n))-time sequential algorithm for finding the row minima of

an m × n staircase-Monge array. This was subsequently improved to O(m + nα(m))

time by Klawe and Kleitman [27]. In the discussion below we parallelize Aggarwal and

Klawe’s sequential algorithm [3] using the techniques developed in [5].

Let A = {a[i, j]} be an m ×n staircase-Monge array, m ≥ n. The basic idea is first to

compute the minimum entry in (approximately) every (m/n)th row of A. Then we use the

location of the minima just computed, together with the structure of a staircase-Monge

array, to limit those entries that need to be considered for the minima in the remaining

rows. For 1 ≤ i ≤ m, let f [i] be the smallest index such that a[i, f [i]] = ∞. Let Ri

denote the (is)th row of the array, where s = ⌊m/n⌋, and let Rt
i denote the row obtained

by changing the j th column entry of Ri to an ∞ for each j with f [(i +1)s] ≤ j < f [is].

Furthermore, let At denote the n × n array consisting of the rows Rt
i . Clearly, At is a

staircase-Monge array. To simplify the proofs, we augment A and At with row 0 where

a[0, j] = j for 1 ≤ j ≤ n. Let f [0] = n + 1. Note that this addition is consistent with

Mongeness of A and At . We prove the following lemma.

LEMMA 2.1. Given the row minima of At , we can compute the row minima of A in

O(lg m + lg n) time using m/lg m + n/lg n processors on a CREW PRAM.

PROOF. Look at the positions of the row minima of At carefully. Let µi be the minimum

in row Rt
i . Figure 2.1 shows array A with row Ri replaced by Rt

i , for 1 ≤ i ≤ n. Note

that the array as shown is not Monge. Nevertheless, we will be able to use the minima

of At within the Monge areas of this array to narrow down our search space for row

minima. From [3], the minima of At induce a partitioning of A such that certain regions

can be omitted from further searching for row minima because of the Monge condition.

The feasible regions (for row minima) can be categorized into two classes: Monge arrays

(the Fi ’s) and staircase-Monge arrays (the Pi ’s). Then the minimum in a row of A is

either the row minimum in a Pi region, or the row minimum in an Fi region, or is among

the elements of Ri\Rt
i .

We first deal with the feasible staircase-Monge arrays. Because we substituted row Rt
i

for row Ri , row minima of At tells us nothing about the regions in the Figure 2.1 which

are labeled as Pi ’s. Formally, Pi consists of a subarray of A given by rows (i − 1)s + 1

through is − 1 and columns f [is] through f [(i − 1)s − 1], for 1 ≤ i ≤ n. The total

number of elements in all the Pi ’s is (n +1)⌊m/n⌋ = O(m). We use a brute-force search

of these elements to find the row minima.

The only regions left for us to consider are the feasible Monge arrays.

PROPOSITION 2.2. There are at most 2n + 1 feasible Monge arrays.
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Fig. 2.1. Array A with row Ri replaced by Rt
i
. Each minimum µi in row Ri eliminates certain regions of

A from consideration for row minima. An infeasible region is covered by the pattern of the µi that made it

infeasible. Many of the regions are eliminated by more than one µi in this case, we show arbitrarily one such

pattern.

PROOF. If the minimum of Rt
i+1 lies to the left of the minimum of Rt

i , then there is

at most one feasible Monge region (F6 in Figure 2.1) where the minima of the rows in

A between Rt
i and Rt

i+1 can lie. However, if the minimum of Rt
i lies to the left of the

minimum of Rt
i+1, then there can be more than one feasible Monge region where the

minima can lie (e.g., F4 and F5). We claim that the number of extra feasible Monge

regions is equal to the number of minima which are “bracketed” by the minimum of

Rt
i . We define “bracketed” as follows. Minimum µ is said to bracket another minimum

µ̂ if µ is the closest northwest neighbor of µ̂, i.e., µ lies above and to the left of µ̂,

and among all the minima which have this property with respect to µ̂, the row of µ is

the maximum. Intuitively, a minimum µ of Rt
i leaves the region below and to the right

of it, which we call L , as potentially feasible for row minima. If there is a minimum

µ̂ in row Rt
i+k bracketed by µ, then µ̂ eliminates the region to the right (up to column

f [s(i + k + 1)]) and above µ̂ from being considered for row minima. Thus, in effect,
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µ̂ splits L into two regions, one to the right of µ̂ and one to the left of f [s(i + k + 1)].

In Figure 2.1, µ2 is bracketed by µ1, adding the region F5. Recall that At is augmented

with row 0 in which the minimum µ0 is in column 1 (not shown). Thus, both µ1 and µ3

are bracketed by µ0, adding regions F3 and F2, respectively. Note that µ3 adds only the

region F2 (as opposed to the entire region left and above f [3s]) since other minima have

carved the larger region into smaller feasible/infeasible blocks. Since each minimum

can be bracketed at most once, the total number of minima that are bracketed is at most

n. Thus, the total number of feasible Monge regions is 2n + 1.

Note that all the Fi ’s have nonoverlapping columns (except possibly for the columns

in which the minima of At occur) and have s rows. Therefore, the total number of

elements in all the feasible Monge arrays is n⌊m/n⌋+m = O(m). Since all the feasible

Monge regions contain O(m) elements, we again use a brute-force search to find the

row minima, provided that we can find all the Fi ’s efficiently.

We determine the Fi ’s as follows. From Proposition 2.2, we know that there is exactly

one feasible Monge region in the rows between Rt
i and Rt

i+1 if µi+1 is to the left of µi .

We find all such regions. Next, we find all the bracketed minima. To do this we form

a list L = 〈ℓ0, ℓ2, . . . , ℓs〉 such that ℓi is the column of the minimum of Rt
i . Minimum

µi brackets minimum µj if i < j and ℓi < ℓj . In [16], Berkman et al. define the All

Nearest Smallest Value (ANSV) problem as follows: given a list W = (w1, w2, . . . , wn)

of elements from a totally ordered domain, determine for each wi , 1 ≤ i ≤ n, the nearest

element to its left in the list and the nearest element to its right in the list that are less

than wi (if they exist). They show how to solve ANSV in O(lg n) time using n/lg n

processors on a CREW PRAM. Thus, an application of their ANSV algorithm gives us

all the bracketed minima. Suppose minimum µi1
brackets minimum µi2

, µi3
, . . . , µik

,

i1 < i2 < · · · < ik . Then these minima create k regions in rows i1s + 1 through

(i1 + 1)s − 1. The first region is columns column(µi1
) through column(µi2

), the last

region is columns f [s(i2 + 1)] through f [si2 − 1], and the j th region, 1 < j < k, is

columns f [s(ik− j+2 + 1)] through column(µ(ik− j+1)). This gives us all the Fi ’s.

Finally, because we have changed certain entries of the Ri ’s to ∞, we need to re-

consider the minima we have for these rows. Since there were no more than n entries

of A that were changed to ∞ in producing At , we can find the minima in these rows

by brute-force search. Combining these row minima with the row minima we get from

the Fi ’s and the Pi ’s, we can easily determine the row minima of A. For the complexity

analysis, notice that we used the algorithm of Berkman et al. [16] and the brute-force

search for a minimum among n and m elements. Both of these procedures can be done

in O(lg mn) time using m/lg m + n/lg n processors on a CREW PRAM.

Given this lemma,we can prove the following result.

THEOREM 2.3. The row minima of an n × n staircase-Monge array can be computed

in O(lg n) time using n processors on a CREW PRAM.

PROOF. We use an approach very similar to Aggarwal and Park’s [5]. Given the n × n

staircase-Monge array B, define f [i], Ri ’s, Rt
i ’s, and B t as before, except that s = ⌊√n⌋.

Let u = ⌈n/
√

n⌉. B t is a u × n staircase-Monge array with at most u “steps.” Thus,
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Fig. 2.2. Decomposition of B t into B t
1
, . . . , B t

u .

B t can be decomposed into at most u Monge arrays B t
1, . . . , B t

u , such that each B t
i is a

ui × vi array, for ui ≤ u and some vi > 0 (see Figure 2.2). Atallah and Kosaraju [14]

show how to find the row minima for an m×n Monge array in O(lg mn) time using m+n

processors. Thus, using their result, the row minima for all the B t
i ’s can be computed in

O(lg n) time using

u
∑

i=1

(

ui

lg ui

+ vi

)

≤
u

∑

i=1

( √
n

lg
√

n
+ vi

)

≤ 2n

processors.

The minima of B t induces a partition of the array B, similar to that of Figure 2.1. We

first determine the minima in all the feasible Monge arrays. From the proof of Lemma 2.1,

we know that there are at most 2u + 1 feasible Monge arrays and that these arrays have

nonoverlapping columns, except for the columns in which the minima of B t occur. Using

the algorithm of Berkman et al. [16] we can find these arrays in O(lg n) time using n

processors. Note that, unlike in the proof of Lemma 2.1, we cannot use brute force to

find the row minima in the feasible Monge arrays since the total number of elements in

all the feasible Monge arrays is ns + n = O(n
√

n). Instead, we use [14] to find the row

minima in all the feasible Monge arrays. This can be done in O(lg n) time using at most

2u+1
∑

i=1

(

s

lg s
+ wi

)

≤ 2n.

For the feasible staircase-Monge regions, we call the algorithm recursively by sub-

dividing the arrays into s×s pieces. For the arrays which have less than s columns we use

the scheme of Aggarwal and Park [5] and Lemma 2.1 to bound the number of processors

to O(n) processors. To find the minimum of every row, we choose the minimum of the

minimum elements of the Monge arrays and the staircase-Monge array.

The complexity of all the nonrecursive procedures in this proof is dominated by the

use of [14] to compute the B t
i ’s. Thus, the complexities are as claimed:

Time = T(n) = T(
√

n) + O(lg n) = O(lg n),

Processors = P(n) = max{n,
√

nP(
√

n)} = n,

where T (1) = 1 and P(1) = 1.



Parallel Searching in Generalized Monge Arrays 301

COROLLARY 2.4. The row minima of an m ×n staircase-Monge array can be computed

in O(lg mn) time using m/lg m + n processors on a CREW PRAM.

PROOF. The proof follows on the lines of [14]. Let B be an m×n staircase-Monge array.

The case corresponding to m ≤ n is easy. Partition the array into ⌈n/m⌉ arrays of size

m ×m. Compute the row minima in O(lg m) time using n processors. Then compute the

minimum in each row from the ⌈n/m⌉ elements in O(lg n) time using n/lg n processors.

For the case m ≥ n, we compute the minima of an n × n array B t in O(lg n) time using

n processors (Theorem 2.3) and then use a scheme similar to Lemma 2.1 to compute

the row minima of B in O(lg mn) time using m/lg m + n/lg n processors on a CREW

PRAM.

3. Algorithms for Hypercubes and Related Networks. In this section we give three

hypercube algorithms for searching in Monge arrays. The first algorithm computes the

row minima of two-dimensional Monge arrays, the second computes the row minima

of two-dimensional staircase-Monge arrays, and the third computes the tube minima of

three-dimensional Monge arrays. These algorithms can be adapted for several hypercubic

networks.

3.1. Preliminaries. Our hypercube algorithms are based on the corresponding CREW-

PRAM algorithms of Aggarwal and Park [5], Apostolico et al. [12], and Atallah and

Kosaraju [14]. However, there are three important issues that need to be addressed in

converting from CREW-PRAM algorithms to hypercube algorithms:

(i) We can no longer use Brent’s theorem [17] which converts a P-processor algorithm

that runs in time T and performs a total of W operations on a CREW PRAM into

a (W/T )-processor algorithm that runs in time O(T ) on a CREW PRAM. (This

theorem is used in [5] to get the results given in Table 1.1.)

(ii) We must deal more carefully with the issue of processor allocation, especially in

recursing on problems of uneven sizes.

(iii) We need to consider the data movement through the hypercube.

This last issue requires a bit more explanation. Since the hypercube lacks a global

memory, our assumption that any entry of the Monge, staircase-Monge, or Monge-

composite array in question can be computed in constant time by any processor is no

longer valid, at least in the context of our applications. We instead use the following

model. In the case of two-dimensional Monge and staircase-Monge arrays A = {a[i, j]},
we assume there are two vectors g[1], . . . , g[m] and h[1], . . . , h[n] such that a processor

needs to know both g[i] and h[ j] to compute a[i, j] in constant time. Similarly, in the

case of Monge-composite arrays C = {c[i, j, k]}, where c[i, j, k] = d[i, j] + e[ j, k],

and D = {d[i, j]} and E = {e[ j, k]} are Monge arrays, we assume that a processor

needs to know both d[i, j] and e[ j, k] to compute c[i, j, k]. The manner in which the

g[i], h[ j], d[i, j], and e[ j, k] are distributed through the hypercube is then an important

consideration. We assume that initially the entries of g and h (or of D and E) are
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uniformly distributed in the obvious way among the local memories of the hypercube’s

processors.

We use the normal model of hypercube computation (defined in the Introduction).

Moreover, all the processors use the edges corresponding to each of the O(log N ) dimen-

sions in a cyclic order in consecutive time steps. This is in contrast to the the multiport

model of the hypercube in which all the edges of the hypercube may be used during a

single step of the algorithm, i.e., each processor of an N -processor hypercube can send

and receive lg N messages in a single time step. The advantage of the weaker model is in

the greater adaptability of its algorithms in other bounded-degree models like Butterfly

networks and Shuffle-exchange networks (without asymptotic slowdown with the same

number of processors). However, for some of our algorithms the multiport model can

achieve the same timebound by using an O(log N ) factor less processors. In this section

hypercube refers to the normal model unless mentioned otherwise.

Each processor of an N -processor hypercube has a unique index 1, . . . , N . In our

proofs, we use algorithms for the following problems:

(i) parallel prefix,

(ii) merging two sorted lists,

(iii) monotone routing, and

(iv) routing a fixed permutation.

We specify when we use segmented parallel prefix, a standard variation of the parallel

prefix. When unclear from the context, we give the associative operation performed by

the parallel prefix. A monotone routing problem is that of routing packets such that

the relative order of the packets is unchanged. Formally, if we want to route packets

u1, u2, . . . , u j ( j < N ), the packet ui originates at the processor indexed orig(i),

orig(1) < orig(2) < · · · < orig(j), and is destined for the processor indexed dest(i),

then the routing is monotone if and only if dest(1) < dest(2) < · · · < dest(j). If the

input consists of N elements, then all four of the above problems can be solved in a

pipelined fashion on an N -processor butterfly in O(lg N ) time. The reader åis referred

to Leighton’s book [32] for detailed descriptions of the hypercubic networks and these

algorithms.

Finally, we need an algorithm for a special case of a one-to-many routing problem.

Suppose we have an s × t array on an (N = 2⌈lg2 st⌉)-processor hypercube such that

processor indexed k, k ≤ st , is responsible for the entries in row ⌈k/t⌉ and column

k mod t . Processors 1 through t contain values u1 through ut . A row-copy problem is

that of copying the values contained in the first-row processors down the columns so that

all the processors responsible for column j get the value u j . Specifically, processor k,

k ≤ t , needs to distribute uk to processors k + t, k + 2t, . . . , k + (s − 1)t . Notice that

this operation is not monotone routing: processor k + 1 needs to distribute value uk+1 to

processors k + 1 + t, k + 1 + 2t, . . . , k + 1 + (s − 1)t and, clearly, k + 2t 6≤ k + 1 + t

in the general case. To solve the row-copy problem efficiently we exploit the fact that

a hypercube of size (number of processors) 2v contains 2w node-disjoint hypercubes of

size 2v−w each. Let z = 2⌊lg2 t⌋. First, we pack the ui values into the first z processors.

In other words, we route (monotone) value ui to processor ⌈i/2⌉ if i ≤ 2(t − z) and to

processor i − (t − z) if i > 2(t − z). Each processor k ≤ z now has at most two values.
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Next, we “break up” the N -processor hypercube into z subhypercubes of size N/z so

that each processor k ≤ z is in a different subcube. This can be accomplished if all the

nodes with the same last lg2 z digits are assigned to the same (N/z)-processor subcube.

Now, each processor k ≤ z copies its u values to all the processors in its subcube using a

parallel prefix operation. To finish up the row-copy, we need to unpack the u values using

monotone routing. If processor k ≤ N has two u values, it sends its lower-subscripted

u value to processor ⌊k/z⌋t + 2(k mod z) − 1 and its higher-subscripted u value to

processor ⌊k/z⌋t + 2(k mod z). Otherwise, if processor k has only one u value, it sends

its u value to processor ⌊k/z⌋t + (t − z) + k mod z. Since the only operations used by

the row-copy algorithm are monotone routing and parallel prefix, this algorithm takes

O(lg N ) time on an (N )-processor hypercube.

3.2. A Technical Lemma. We begin with a technical lemma that gives the flavor of our

approach to the three issues mentioned above.

LEMMA 3.1. Given an m ×n Monge array A = {a[i, j]}, m ≥ n, suppose we know the

minimum in every (⌊m/n⌋)th row of A. Then we can compute the remaining row minima

of A in O(lg m) time using an (m)-processor hypercube.

PROOF. For the sake of simplicity, we only prove this lemma for m and n being powers

of 2. In this proof, i is always in the range 1 ≤ i ≤ n. Let ji denote the index of the column

containing the minimum entry of row i(m/n). Also, let j0 = 1. Assume that processors

1, . . . , (n + 1) contain j0, . . . , jn . Note that ji−1 ≤ ji because of the Monge condition.

Consider a subarray Ai of A containing rows (i − 1)(m/n) + 1 through i(m/n) − 1

and columns ji−1 through ji . Let |Ai | denote the number of elements in Ai . Since A is

Monge, the minima in rows (i − 1)(m/n) + 1 through i(m/n) − 1 must lie in Ai . Thus,

the total number of elements under consideration for the remaining row minima of A is

n
∑

i=1

|Ai | =
n

∑

i=1

(m

n
− 1

)

( ji − ji−1 +1) =
(m

n
− 1

)

( jn − j0 +n+1) ≤
(m

n

)

2n ≤ 2m.

Since there are m processors and at most 2m candidates for row minima, the row

minima can be determined by a segmented parallel prefix operation, provided that the

data is distributed so that the processors dealing with the entries in the same row of A

are “neighbors” in the parallel prefix, i.e., have consecutive indices. The procedure to

satisfy these conditions is broken up into three steps:

(i) Subdivide the m processors into n groups of sizes |A1|, |A2|, . . . , |An|.
(ii) Assign the processors in the group associated with Ai to the different entries of Ai .

(iii) Distribute the appropriate values from the distance vectors g and h to each processor

so that it can compute its assigned entries in Ai .

To simplify this proof, we first show how to satisfy these conditions on 2m processors.

The first step is accomplished as follows. Processor i sends value ji−1 to processor i −1.

This is simply monotone routing. Processor i computes

|Ai | =
(m

n
− 1

)

( ji − ji−1 + 1).
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Processors 1 through n perform a parallel prefix on the |Ai |’s, so that processor i com-

putes the value ui =
∑i

k=1 |Ak |. Merge list 1, 2, . . . , 2m of processor indices with list

u1, u2, . . . , un , where each ui value carries with it a record containing 〈i, ji , ji−1〉. Note

that since there are only 2m processors, any dual occurrences of a value (one occur-

rence from list 1, 2, . . . , 2m and the other from list u1, u2, . . . , un) are stored in the

same processor. In the resulting sorted list, there are exactly |Ai | processors between

processors containing ui−1 and ui . Any processor containing a ui value determines a seg-

ment boundary (or barrier). Using a segmented parallel prefix distribute the the record

〈i, ji , ji−1〉 associated with ui to all the processors between segment boundaries ui−1

and ui . As a result, the 2m processors are subdivided as desired and each processor in

the group associated with Ai knows the values ui , i , ji , and ji−1.

For the second step, each processor first computes its rank within its segment using

segmented parallel prefix operation. More formally,

rank(k) = k − max
k′<k

{processor k′ contains a v value}.

A processor k containing the value ui and the record 〈i, ji , ji−1〉 computes the row and

the column of its entry in Ai :

row (i − 1)
m

n
+

⌈

rank(k) + 1

ji − ji−1 + 1

⌉

column ji−1 + rank(k) mod(ji − ji−1 + 1)

For the third step, assume that the distance vectors g[1], . . . , g[m] are stored in proces-

sors 1 · · · m, and vectors h[1], . . . , h[n] in processors 1 · · · n. Route values h[ ji−1], . . . ,

h[ ji ] to the appropriate processors responsible for the first row of Ai . Similarly, route

values g[(i − 1)(m/n) + 1], . . . , g[min{i(m/n) − 1, m}] to the appropriate processors

responsible for the first column of Ai . Notice that in both cases the routing is monotone.

Now, each processor in the first row of Ai distributes its h value down its column of Ai

(i.e., to other processors responsible for that column of Ai ) and each processor in the first

column of Ai distributes its g value down its row of Ai . All the processors responsible

for a row of Ai have consecutive indices; thus, the g values can be distributed using a

segmented parallel prefix operation. We use the row-copy algorithm described in Sec-

tion 3.1 to distribute the h values. Having spread all the data so that the aforementioned

conditions are satisfied, run a segmented parallel prefix with each row of Ai forming a

segment. This finds all the row minima of A.

All the procedures we have done in this proof took O(lg m) time on a (2m)-processor

hypercube and hence can be done in the same asymptotic time-bound in an m-processor

hypercube.

3.3. An Algorithm to Compute Row Minima in Two-Dimensional Monge Arrays

THEOREM 3.2. The row minima of an n×n Monge array A = {a[i, j]} can be computed

in O(lg n lg lg n) time on an (n)-processor hypercube.

PROOF. We use divide-and-conquer techniques similar to those used by Aggarwal and

Park [5]. For the sake of simplicity, we only prove this theorem for the case of n = 22c

,
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where c is some positive integer. Assume that processor p contains entries g[p] and

h[p].

In this proof, i is always in the range 1 ≤ i ≤ √
n, and, in this paragraph, ℓ is in

the range 1 ≤ ℓ ≤ √
n. Consider the

√
n × n array R formed by taking every

√
nth

row of A. Partition R into
√

n subarrays where the ℓth subarray Rℓ contains columns

(ℓ − 1)
√

n + 1 through ℓ
√

n of R. We assign processors (i − 1)
√

n + 1 through i
√

n

to Rℓ and recursively compute the row minima of Rℓ. Notice that, for the recursion,

the processors already have the appropriate h values. So, only the g values need to be

distributed. First, processor i
√

n routes (monotone) its g value to processor i . Using

fixed permutation routing, processor i then distributes its g value to processors i + ℓ
√

n,

1 ≤ ℓ ≤ √
n. After the recursion, processor (ℓ − 1)

√
n + i contains the minimum of

row i in Rℓ. Assign processors (i − 1)
√

n + 1 through i
√

n to row i of R and route (a

fixed permutation) the values of the minima so that processors (i − 1)
√

n + 1 through

i
√

n get the minimum entries in row i of all the Rℓ’s. The row minima of R is simply the

minimum over the row minima of all the Rℓ’s. Route the row minima of R to processors

(i − 1)
√

n + 1 through i
√

n.

Let ji denote the index of the column containing the minimum entry in row i
√

n of

A (equivalently, row i of R), and let j0 = 1. Since A is Monge, the minimum entries in

rows (i − 1)
√

n + 1 through i
√

n − 1 of A must lie in columns ji−1 through ji . Let

vi =
⌈

ji − ji−1√
n

⌉

.

For 1 ≤ ℓ ≤ vi , let Si,ℓ be the subarray of A that contains rows (i − 1)
√

n + 1 through

i
√

n and columns ji−1 + (ℓ − 1)
√

n + 1 through min{ ji , ji−1 + ℓ
√

n}. The minimum

entries in rows (i −1)
√

n +1 through i
√

n are either in one of Si,1, . . . , Si,vi
or in column

ji−1. Arrays Si,1, . . . , Si,vi −1 are all
√

n × √
n. Let wi = ( ji − ji−1) mod

√
n and let Ti

be a wi × wi subarray of Si,vi
formed by taking every ⌊√n/wi⌋th row of Si,vi

. Note that

Ti may be empty.

For 1 ≤ ℓ ≤ vi − 1, assign
√

n processors to Si,ℓ and wi processors to Ti . The total

number of processors assigned is

√
n

∑

i=1

(vi − 1)
√

n + wi =
√

n
∑

i=1

ji − ji−1 ≤ n.

The processor assignment uses a similar technique to that of Lemma 3.1. Processor i

copies ji−1 from processor i − 1 and then computes vi and wi . Using parallel prefix,

processor i computes

ui =
∑

ℓ=1

i − 1(vℓ − 1)
√

n + wℓ.

Now processor i routes (monotone) record 〈i, vi , wi , ji 〉 to processor ui . Using segmented

parallel prefix with processors ui forming the segment boundaries, compute the rank of

each processor within its segment. Also, copy 〈i, vi , wi , ui , ji 〉 to all the processors

between ui and ui+1. Within the segment bounded by ui and ui+1, processors with ranks

(ℓ − 1)
√

n + 1, . . . , ℓ
√

n are assigned to Si,ℓ, for 1 ≤ ℓ ≤ vi − 1, and processors with
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ranks (vi − 1)
√

n + 1, . . . , (vi − 1)
√

n + wi are assigned to Ti . Recursively find the

row minima in these subarrays. Before the recursion, distribute the data so that the pth

processor of Si,p gets g[i + p] and h[ ji − 1 + (p − 1)
√

n + p] and the pth processor of

Ti gets g[i + p⌊√n/wi⌋] and h[ ji − 1 + (vi − 1)
√

n + p]. This can be accomplished

in the manner of Lemma 3.1.

Next, assign
√

n processors to each Ti and using Lemma 3.1 and the row minima of Ti

compute the row minima of Si,vi
. Finally, the minimum entry in row ℓ, (i − 1)

√
n + 1 ≤

ℓ ≤ i
√

n, is the minimum of a[p, ji−1] and the vi values obtained for row ℓ in solving

the row-minima problems for Si,1, . . . , Si,vi
. This computation is done using segmented

parallel prefix.

The time complexity of this algorithm has two components: the O(1) nonrecursive

hypercube operations taking O(lg n) time on n processors, and the two recursive calls.

For the recursions, the processor complexity is dominated by the first recursive call.

Thus, the complexities are

T (n) ≤ 2T (
√

n) + O(lg n) = k lg n + 2k T (n1/2k

),

P(n) ≤ max{n,
√

n P(
√

n )} = max{n, n1−1/2k

P(n1/2k

)}

after k levels. Using k = log log n gives us the claimed bounds.

3.4. An Algorithm to Compute Row Minima in Two-Dimensional

Staircase-Monge Arrays

LEMMA 3.3. Given an m × n staircase-Monge array A = {a[i, j]}, m ≥ n, suppose

we know the minimum in every (⌊m/n⌋)th row of A. Then we can compute the remaining

row minima of A in O(lg n) time using an (n)-processor hypercube.

PROOF. This proof is very similar to the proof of Lemma 3.1. Instead of the Ai ’s, A

get partitioned into the Fi ’s and the Pi ’s discussed in detail in the proof of Lemma 2.1.

All the steps given in the proof of Lemma 2.1 for finding the Fi ’s and the Pi ’s are easily

adaptable for the hypercube, except for the algorithm of [16] for the ANSV problem.

On the hypercube, the ANSV problem can be solved in O(lg n) time using n processors

[29].

THEOREM 3.4. The row minima of an n × n staircase-Monge array A = {a[i, j]} can

be computed in O(lg n lg lg n) time on an (n)-processor hypercube.

PROOF. This proof follows closely the proof of Theorem 3.2. Whenever we used some

algorithm for Monge arrays, we now use the corresponding algorithm for staircase-

Monge arrays. Upon finding the row minima in every
√

nth row of A, instead of Si,ℓ’s

and Ti ’s we get a partition into the Fi ’s and the Pi ’s discussed in detail in the proof of

Lemma 2.1. Finding the Fi ’s and the Pi ’s and distributing the processors appropriately

is discussed in the proof of Lemma 3.3.
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3.5. An Algorithm to Compute Tube Minima in Three-Dimensional

Monge-Composite Arrays

THEOREM 3.5. The tube-minima of an n×n×n Monge-composite array C = {c[i, j, k]}
can be computed in O(lg n) time on an

(

n2
)

-processor hypercube.

PROOF. We use divide-and-conquer techniques similar to those used by Aggarwal and

Park [5]. Assume that entry d[i, j] of array D is stored in processor (i −1)n+ j and entry

e[ j, k] of array E in processor (k − 1)n + j . When convenient, we refer to processor

p = (i − 1)n + j by the index of its D value, i.e., by [i, j]. In this proof, i and k are

always in the range 1 ≤ i, k ≤ √
n, and j is always in the range 1 ≤ j ≤ n.

Let R denote the
√

n×n×√
n subarray of C given by entries {c[i

√
n, j, k

√
n ]}. Assign

processors [1, 1], . . . , [1, n] to the n entries of tube (
√

n,
√

n), processors [2, 1], . . . ,

[2, n] for tube (2
√

n,
√

n), and so forth. This assignment can be accomplished using

segmented parallel prefix. Note that we can devote one processor per each element of

R because |R| = n2. Next, distribute the data so that a processor can compute the

entry of R to which it is assigned. Processor [i
√

n, j] sends its D value to processors

[(i − 1)
√

n + 1, j], . . . , [i
√

n − 1, j]. This can be done by routing (monotone) from

processor [i
√

n, j] to processor [(i − 1)
√

n + 1, j], and copying (parallel prefix) from

processor [(i−1)
√

n+1, j] to processors [(i−1)
√

n+2, j], . . . , [i
√

n−1, j]. Similarly,

processor [ j, k
√

n ] sends its E value to processors [ j, (k−1)
√

n+1], . . . , [ j, k
√

n−1].

With this processor and data assignment we can compute the tube minima of R by brute

force using parallel prefix.

Since C is Monge-composite, tube minima of R limits the search space for the minima

in the remaining tubes of C . Let ji,k denote the second coordinate of the minimum entry

in tube (i
√

n, k
√

n). Also, let j0,k = 1, ji,0 = 1. The Monge condition gives us the

following inequalities:

ji−1,k−1 ≤ ji,k−1 ≤ ji,k,

ji−1,k−1 ≤ ji−1,k ≤ ji,k .

Let Cik denote the subarray of C containing {c[x, y, z]} for

(i − 1)
√

n + 1 ≤ x ≤ i
√

n,

ji−1,k−1 ≤ y ≤ ji,k,

(k − 1)
√

n + 1 ≤ z ≤ k
√

n.

Because C is Monge-composite, all the remaining tube minima of C are contained within

the Cik’s. To find the tube minima of the Cik’s we break the Cik’s into smaller pieces,

recurse on those pieces, and finally combine the tube minima of the pieces to get the

tube minima of C . We now give the details of these steps.

Let

vik =
⌈

ji,k − ji−1,k−1 + 1√
n

⌉

and wik = ( ji,k − ji−1,k−1) mod
√

n.
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We break up Cik into vik subarrays S1
ik through S

vik

ik . For 1 ≤ ℓ ≤ vik , let subarray Sℓ
ik

contains elements {c[x, y, z]} for

(i − 1)
√

n + 1 ≤ x ≤ i
√

n,

ji−1,k−1 + (ℓ − 1)
√

n + 1 ≤ y ≤ min{ ji,k, ji−1,k−1 + ℓ
√

n},
(k − 1)

√
n + 1 ≤ z ≤ k

√
n.

Let Tik be the wik ×wik ×wik subarray of S
vik

ik formed by taking every ⌊√n/wik⌋th tube

of S
vik

ik . In other words,

Tik =
{

c

[

(i − 1)
√

n + x

⌊√
n

wik

⌋

, y, (k − 1)
√

n + z

⌊√
n

wik

⌋]}

for

1 ≤ x ≤ wik,

ji−1,k−1 + (vik − 1)
√

n + 1 ≤ y ≤ ji,k,

1 ≤ z ≤ wik .

Note that Tik may be empty.

We assign n processors to each
√

n × √
n × √

n array Sℓ
ik and w2

ik processors to the

wik × wik × wik array Tik . The total number of processors assigned to Cik is (vik −
1)n + w2

ik < ( ji,k − ji−1,k−1)
√

n + n. Since C is Monge-composite, the total number of

processors assigned to compute tube minima in all Cik’s is (see [5] for details)

√
n

∑

i=1

√
n

∑

k=1

[( ji,k − ji−1,k−1)
√

n + n] ≤ n2 +
√

n

√
n

∑

i=1

√
n

∑

k=1

ji,k − ji−1,k−1

≤ n2 +
√

n(2n
√

n) ≤ 3n2.

Assigning the correct number of processors to each Cik and distributing the data that is

needed by these processors is accomplished by a procedure analogous to that used in

Theorem 3.2 to assign the processors to the Si,ℓ’s and the Ti ’s. Now we recurse on the

Sℓ
ik’s and the Tik .

Once we know the tube minima of Tik , using Lemma 3.1 we can get the remaining

tube minima of S
vik

ik . We accomplish this by running the algorithm given in Lemma 3.1

in parallel on the
√

n i j-planes of S
vik

ik , each of which is a
√

n × wik Monge array.

To find the minima in an individual i j-plane of S
vik

ik takes O(lg n) time on an (
√

n)-

processor hypercube. The total effort for all the S
vik

ik ’s is O(lg n) time on a (2n2)-processor

hypercube.

Finally, to get the tube minima of Cik we take the minimum of the tube minima of all

the Sℓ
ik’s. In other words, by decomposing Cik into Sℓ

ik’s, we broke each tube of Cik into

vik pieces. We then recursively found the min for each piece of each tube in Cik . Thus,

to get a minima for some tube in Cik , we take the min of all the minima of the pieces

into which that tube was broken. We accomplish this by a parallel prefix operation. As
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already mentioned, the tube minima of the Cik’s gives us the tube minima of C and,

therefore, we are done with the algorithm.

The complexity of this algorithm has three components: the O(1) nonrecursive hy-

percube operations (including the brute-force computation of tube minima in R) taking

O(lg n) time on n2 processors; the recursive call to compute the tube minima in Sℓ
ik’s

(for 1 ≤ ℓ ≤ vik − 1) and Tik’s; and the call to Lemma 3.1 to compute the S
vik

ik ’s. Thus,

T (n) ≤ T (
√

n) + O(lg n) = O(lg n),

P(n) ≤ max{n2, n P(
√

n )} = n2.

Note that for the tube-minima problem, we do not achieve the same processor bound

obtained by Aggarwal and Park [5] for CREW PRAMs. Aggarwal and Park give an

O(lg n)-time, (n2)-processor CREW-PRAM algorithm and then reduce the processor

bound to n2/lg n without affecting the asymptotics of the time bound. Unfortunately,

the trick they use in reducing the number of processors is not readily applied to our

hypercube algorithm, because of problems with the movement of data.

3.6. Remarks on the Network Algorithms. A normal hypercube algorithm achieves

the same processor/time bounds on any of the bounded-degree variants of the hy-

percube [32], which we call the normal hypercubic networks (e.g., the butterfly, the

cube-connected cycle, the shuffle-exchange, and the de Bruijn graph). Then we have the

following results.

THEOREM 3.6. The row minima of an n × n Monge or staircase-Monge array can be

computed in O(lg n lg lg n) time using any (n)-processor normal hypercubic network.

THEOREM 3.7. The tube minima of an n × n × n Monge-composite array can be com-

puted in O(lg n) time using any n2-processor normal hypercubic network.

The availability of several techniques for emulation of PRAM algorithms on hy-

percube and related hypercubic networks imply alternate network algorithms for the

previous problems directly from the PRAM algorithms. The most general purpose de-

terministic emulation of PRAM requires O(log2 N ) per step [11]. However, owing to

the special nature of data-movement in our PRAM algorithms, we can obtain a faster

emulation by using sorting. This takes O(log N log log N ) steps on the N -processor

hypercube [19].

Comparing the time bounds obtained from emulation with our direct implementation

shows that we are better off by at least a factor of O(log N ) in the time bound for all the

problems in the present section. For example, the time bound for row minima obtained

from emulation of our PRAM algorithm would yield an O(log2 N log log N ) algorithm

instead of the present O(log N log log N ) algorithm. It may be also worth mentioning

that the O(log N log log N ) hypercube sorting algorithm is considered too complex for

implemetation. Even by using a faster randomized emulation scheme that takes O(log N )

expected time per step, our direct algorithms are more efficient.
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4. Applications

4.1. The All Pairs Shortest Path Problem. In this section we present the result of

Aggarwal et al. [2] that apply algorithms for searching in Monge arrays to the special

case of the APSP problem when the graph is acyclic and the edge weights satisfy the

Monge condition.

Define the All Pairs Shortest Path (APSP) problem as follows: given a weighted

directed graph G = (V, E), |V | = n, we want to find the shortest path between every

pair of vertices in V . The following theorem is due to Aggarwal et al. [2].

THEOREM 4.1 [2]. Given a directed acyclic graph whose edge weights satisfy the

Monge condition (or the inverse-Monge condition), the APSP problem can be solved

in O(lg2 n) time using n2 processors on a CREW PRAM.

PROOF. Let G = (V, E) be a graph on n vertices whose edge weights satisfy the Monge

condition. We assume that the vertices of G, v1, v2, . . . , vn , are given in topological order

so that if (vi , vj ) ∈ E , then i < j . Let D = {d[i, j]} be the n × n cost array for G, i.e.,

d[i, j] =







cost of edge (vi , vj ) if (vi , vj ) ∈ E and i 6= j,

0 if i = j,

∞ otherwise.

Notice that the entries of D above the diagonal obey the Monge condition. Were it not for

the 0 entries along the diagonal, D would be a Monge array. Thus, we call D a diagonal-

Monge array. To solve the APSP problem, it suffices to compute Dn over the closed

semiring {min, +} (in the notation of [18], this is (ℜ∪ {∞}, min, +, ∞, 0)). Henceforth

in this proof, all operations are performed over {min, +}.
Let n × n array A = {a[i, j]} be defined as follows:

a[i, j] =
{

d[i, j] if i 6= j,

∞ otherwise.

Furthermore, let I be the identity array for {min, +}, i.e., the array with 0’s on its diagonal

and ∞’s everywhere else. Note that A is a Monge array and I is the identity array for

{min, +} We can write D as D = min{A, I } = A + I . Then D2 = (A + I )2 =
A2 + AI + I . In general, Di = Ai + Ai−1 + · · · + A2 + A + I . Thus, we can write

D2i = Ai Di + Di . This decomposition of D reduces the computation of Dn to lg n array

multiplications and additions. We can easily do the array addition in O(1) time using n2

processors. The following lemma makes this decomposition useful by showing that the

array multiplications can be computed efficiently.

LEMMA 4.2. We can compute a product of an n × n Monge array with any n × n array

in O(lg n) time using n2 processors on a CREW PRAM.

PROOF. Let A be an n ×n Monge array and let X be any n ×n array. The j th column of

the product AX is simply the row minima of an n×n Monge array Aj = {aj [i, k]}, where
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aj [i, k] = a[i, k] + x[k, j]. Since the row minima of a Monge array can be computed

in O(lg n) time using n processors on an EREW PRAM (see [14]), we can compute the

product AX in O(lg n) time using n2 processors on an CREW PRAM. We cannot do

this on an EREW PRAM since n processors need to read the same value of A in one

time step.

Lemma 4.2 can be used to find the product of the form Ai Di in O(lg n) time using

n2 processors. Performing lg n iterations of array multiplications and additions gives

us Dn .

4.2. Huffman Coding. In this section we present the first NC algorithm for the Huffman

coding problem that does o(n2) work. This algorithm is due to Czumaj [20]. Larmore

and Przytycka in [30] reduced the Huffman coding problem to the Concave Least Weight

Subsequence (CLWS) problem. Define CLWS as follows: given a weight function w(i, j),

1 ≤ i < j ≤ n, which satisfies the Monge condition (concavity in [30] corresponds to

the Monge condition), find a sequence 1 = s1 < s2 < · · · < sk = n such that

n
∑

i=1

w(si , si+1)

is minimized. We can formulate the CLWS problem as a graph problem. Let G = (V, E)

be a weighted directed acyclic graph such that, for vi , vj ∈ V , (vi , vj ) ∈ E iff i < j . The

Monge weight function w(i, j) is then the weight of edge (vi , vj ). The shortest path from

vertex v1 to vertex vn corresponds to a solution to the CLWS problem. The following

theorem is due to Czumaj [20] and closely follows the ideas of Galil and Park [23].

THEOREM 4.3 [20]. Given a directed acyclic graph whose edge weights satisfy the

Monge condition (or the inverse-Monge condition), we can find the shortest paths

from a source vertex to all the other vertices in V in O (lg n lgr n) time and a total

of O((n2 lg2 n)/lgr n) work on a CREW PRAM, r ≥ 1.

PROOF. Define G and the n × n array D as in the proof of Theorem 4.1. Assume that

vertex 1 is the source vertex. In this proof, k is always in the range 1 ≤ k ≤ x for some

x to be specified later and ℓ is always in the range 1 ≤ ℓ ≤ ⌊n/x⌋. Let Dℓ = {dℓ[i, j]}
be the x × x subarray of D where dℓ[i, j] = d[i, j] for ℓx + 1 ≤ i, j ≤ (ℓ + 1)x .

We compute all the Dn
ℓ ’s using Theorem 4.1 in O(lg2 x) time using x2⌊n/x⌋ = nx

processors.

Define s[i] to be the length of the shortest path from 1 to i . To prove the theorem,

we must determine S = {s[i]}. Note that S is equal to row 1 of Dn . Let Sℓ = {s[ℓx +
1], s[ℓx + 2], . . . , s[(ℓ + 1)x]}. We find S iteratively: during iteration ℓ we compute Sℓ.

Notice that we have already computed S1 since s[k] = d1[1, k]. We need the following

formulation of S to do the iteration:

s[ℓx + k] = min
1≤i≤ℓx

ℓx< j≤ℓx+k

{s[i] + d[i, j] + dℓ[ j, ℓx + k]}.
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In other words, the shortest path from 1 to ℓx + k can be divided into a part containing

a path of vertices numbered no higher than ℓx , a path of vertices numbered higher than

ℓx , and an edge joining these two subpaths. Computation of s[ℓx + k] is broken into two

parts:

E[ j] = min
1≤i≤ℓx

{s[i] + d[i, j]},

s[ℓx + k] = min
ℓx< j≤ℓx+k

{E[ j] + dℓ[ j, ℓx + k]}.

We use [14] and the decomposition of D given in the proof of Theorem 4.1 to compute

E in O(lg(ℓx)) time using ℓx processors. Using brute-force search, we can compute Sℓ

from E and Dℓ in O(lg x) time using x2/lg x processors. Thus, the total complexity is

Time = O(lg2 x) +
⌊

n

x

⌋

O(lg(ℓx)) +
⌊

n

x

⌋

O(lg x) = O

(

lg2 x + n

x
lg n + n

x
lg x

)

,

Work = O(nx lg2 x) + O

(⌊

n

x

⌋

ℓx lg(ℓx)

)

+ O

(⌊

n

x

⌋

x2

lg x
lg x

)

= O

(

nx lg2 x + n2

x
lg n

)

.

If we take x = n/lgr n, we get

Time = O(lg2 n + lgr n lg n),

Work = O

(

n2 lg2 n

lgr n

)

.

Using Theorem 4.3 and the reduction of Larmore and Przytycka [30], Huffman codes

can be computed in O(lgr n lg n) time and a total of O((n2 lg2 n)/lgr n) work on a CREW

PRAM.

4.3. String Editing. In this section we give an O(lg m lg n)-time mn-processor hyper-

cube algorithm for the string editing problem. Recall that the string editing problem is

to find a sequence of edit operations transforming a given string x = x1x2 · · · xm to a

given string y = y1 y2 · · · yn , m = |x | and n = |y|, such that the sum of the individual

edit operations’ costs is minimized. We consider three different types of edit operations

that are allowed: we can delete the symbol xi at cost D(xi ), insert the symbol yj at cost

I (yj ), or substitute the symbol xi for the symbol yj at cost S(xi , yj ). PRAM algorithms

for this problem (see [5] and [12]) reduce it to a shortest-path problem in a special kind

of directed graph called a grid-DAG and use array-searching to solve this shortest-path

problem. We give a brief overview of this reduction. Details of this reduction and other

problems related to grid-DAGs are given in [5]. An m × n grid DAG G = (V, A) is
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defined as follows: V = {vi, j : 0 ≤ i ≤ m and 0 ≤ j ≤ n} and

A = {(vi, j , vi, j+1) : 0 ≤ i ≤ m, 0 ≤ j ≤ n}
∪ {(vi, j , vi+1, j ) : 0 ≤ i ≤ m, 0 ≤ j ≤ n}
∪ {(vi, j , vi+1, j+1) : 0 ≤ i ≤ m, 0 ≤ j ≤ n}.

The first set of edges is referred to as the horizontal edges, the second set as the vertical

edges, and the last set as the diagonal edges. The reduction from the string editing problem

on strings of size m and n is as follows. We create an m×n grid-DAG G with the following

weight functions: the weight of a horizontal edge (vi, j , vi, j+1) is I (yj+1), the weight of a

vertical edge (vi, j , vi+1, j ) is D(xi+1), and the weight of a diagonal edge (vi, j , vi+1, j+1)

is S(xi+1, yj+1). There is a one-to-one correspondence between paths from vertex v0,0 to

vertex vm,n and sequences of edit operations transforming x into y. Moreover, the shortest

v0,0 ❀ vm,n path corresponds to the minimum-cost sequence of edit operations. The par-

allel approach to finding the shortest path in this graph is divide-and-conquer. Since in the

recursive steps, the subproblems actually require a many-to-many shortest-paths solution,

we generalize the problem as follows. Let s0, . . . , sm+n+1 denote the sources given by

the vertices vm,0, vm−1,0, . . . , v1,0, v0,0, v0,1, . . . , v0,n−1, v0,n and let t0, . . . , tm+n+1 de-

note the sinks given by the vertices vm,0, vm,1, . . . , vm,n−1, vm,n, vm−1,n, . . . , v1,n, v0,n .

The problem is to find all source-to-sink shortest paths. This new problem is equiv-

alent to computing all the entries of the distance array DISTG, where DISTG[i, j] =
{length of shortest path from si to tj}. The divide-and-conquer approach is to cut G hor-

izontally and vertically in the middle of each dimension, producing four grid-DAGs A,

B, C , and D corresponding to the four quadrants created by the cuts. Thus, A contains

vertices {vi, j : 0 ≤ i ≤ m/2 and 0 ≤ j ≤ n/2}, B contains vertices {vi, j : 0 ≤ i ≤
m/2 and n/2 ≤ j ≤ n}, C contains vertices {vi, j : m/2 ≤ i ≤ m and 0 ≤ j ≤ n/2},
and D contains vertices {vi, j : m/2 ≤ i ≤ m and n/2 ≤ j ≤ n}. After recursively

computing all the source-to-sink shortest paths in A, B, C , and D, we compute DISTA∪B

from DISTA and DISTB, DISTC∪D from DISTC and DISTD, and, finally, DISTG from

DISTA∪B and DISTC∪D. It has been shown that in any grid-DAG G, DISTG satisfies the

Monge condition. Then the computation of DISTA∪B involves finding the tube minima

of a Monge-composite array DISTA + DISTB. Using our tube-minima algorithms for

hypercubes, we can compute DISTG from DISTA, DISTB, DISTC, and DISTD in solving

the string editing problem in O(lg m lg n) time on an mn-processor hypercube.

4.4. The Largest-Area Rectangle Problem. In this section we show how to solve the

Largest-Area Rectangle (LAR) problem. We reduce the LAR problem to finding row

maxima in a Monge array. Recall the LAR problem definition: given a set P of n planar

points, compute the largest-area rectangle that is formed by taking any two of the n points

as the rectangle’s opposite corners and whose sides are parallel to the x- and y-axes.

Call a rectangle positive-sloped (resp. negative-sloped) if the two points that form

the rectangle are at the top-right and the bottom-left corners (resp. at the top-left and

bottom-right). The solution to the LAR problem must be either a positive-sloped rectangle

or a negative-sloped rectangle. We show how to find the largest-area positive-sloped

rectangle. The other possibility is handled analogously. Let x[p] denote the x-coordinate
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of point p and let x[p] denote the y-coordinate of p. Call a point p ∈ P maximal if,

for all q ∈ P , either x[p] ≥ x[q] or y[p] ≥ y[q]; and call p minimal if, for all q ∈ P ,

either x[p] ≤ x[q] or y[p] ≤ y[q].

OBSERVATION 4.4. The largest-area positive-sloped rectangle is formed by one maxi-

mal point and one minimal point.

Aggarwal et al. [1] showed how to find the set of maximal points in a set of n

points in O(lg n) time using n processors on a CREW PRAM. Minimal points can be

found analogously. Let Q = {q1, q2, . . . , qs} be the set of minimal points such that

x[q1] ≤ x[q2] ≤ · · · ≤ x[qs] and let R = {r1, r2, . . . , rt } be the set of maximal points

such that x[r1] ≤ x[r2] ≤ · · · ≤ x[rs]. We form an s × t array B = {b[i, j]} as follows:

b[i, j] =
{

(x[rj ] − x[qi ])(y[rj ] − y[qi ]) if x[rj ] ≥ x[qi ] and y[rj ] ≥ y[qi ],

−∞ otherwise.

OBSERVATION 4.5. B is inverse-Monge.

We use our CREW algorithm for row minima in a Monge array to find row maxima in

B and thus obtain an optimal CREW-PRAM algorithm for the LAR problem that takes

O(lg n) time using n processors.

4.5. Proximity Problems for Convex Polygons. In this section we apply our algorithms

for searching in staircase-Monge arrays to the following proximity problem: given two

nonintersecting convex polygons P and Q with m and n vertices, respectively, determine,

for each vertex x of P ,

1. the vertex of Q nearest to x that is not visible to x ,

2. the vertex of Q farthest from x that is not visible to x ,

3. the vertex of Q nearest to x that is visible to x , and

4. the vertex of Q farthest from x that is visible to x .

We reduce the first two problems to row-maxima (or row-minima) problems for

a constant number of staircase-Monge arrays. The other two problems can be solved

directly in O(lg(m + n)) time using (m + n)/lg(m + n) processors on a CREW PRAM.

In the discussion that follows, we give a simple O(lg(m+n))-time reduction using m+n

CREW-PRAM processors. The reduction is based heavily on the paper by Aggarwal and

Klawe [3], and the reader is referred to this work for details of the proofs. We present the

relevant algorithmic details for the parallelization. We note that while their reduction was

linear time, the processor-time product of our method is O(n lg n). However, since the

array-searching algorithms have similar resource bounds, the reduction is not a bottleneck

for the overall running time.

We begin with three previous sequential results involving convex polygons:

LEMMA 4.6. The intersection of an infinite line with a convex p-gon can be computed

in O(lg p) sequential time.
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LEMMA 4.7. The two supporting lines from an external point to a convex polygon with

p vertices can be computed in O(lg p) sequential time.

LEMMA 4.8. The distance between two disjoint convex polygons with m and n vertices

respectively can be computed in O(lg mn) sequential time. Moreover, we can also find

two points on the respective boundaries of these polygons achieving this minimum.

This last result can be used to find a separating line between two disjoint convex

polygons. Given the separating line, we can orient the coordinate axes so that P lies

strictly to the left of Q. Let the leftmost and rightmost vertices of each polygon be denoted

by lP , lQ , rP , and rQ . We consider only the problem of finding the farthest-invisible vertex

of Q for each vertex x of P lying on P’s upper chain; the farthest-invisible vertex of Q

for each vertex on P’s lower chain and the nearest-invisible vertex of Q for each vertex

on P’s lower and upper chains can be found analogously.

The following algorithm is used for the reduction. Given a convex upper chain P with

vertices labeled p1, . . . , pm in clockwise order and a convex polygon Q with vertices

q1, . . . , qn in clockwise order, we compute the two staircase-Monge arrays A1 and A2:

1. For each vertex pi in P , compute the two supporting vertices ti and bi of Q such that

pi ti and pi bi are tangents to Q. The portion of Q between bi and ti that is closer to

pi is referred to as Q’s nearside with respect to pi and the remaining portion as Q’s

farside with respect to pi .

2. Define L i to be the line containing vertices pi and pi+1. Define ci to be the intersection

of L i and the farside of Q with respect to pi , if it exists. Otherwise, set ci to be the

vertex ti . Note that ci is not necessarily a vertex of Q.

3. Let A1 and A2 be two (m − 1) × n arrays defined as following. The (i, j)th entry of

A1 is the distance from pn−i to qj if tn−i , qj , and cn−i are in clockwise order and ∞
otherwise. The (i, j)th entry in A2 is the distance between pi and qj if ci , qj , and bi

are in clockwise order and ∞ otherwise.

From Lemmas 4.6 and 4.7, it easily follows that the first two steps given above can

be implemented in O(lg(m + n)) time using a linear number of processors. Computing

the row maxima of A1 and A2 yields the farthest farside vertex of pi . To compute the

farthest nearside vertex of pi , we define a point ni analogous to ci . It can be shown that

the contenders for the farthest invisible nearside vertex of pi is bi or the neighbor of ni

(which is invisible). The problem of finding nearest invisible vertices can be reduced in

an analogous fashion.
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