
1

Orthogonal and Non-Orthogonal Signal

Representations Using New Transformation

Matrices Having NPM Structure
Shaik Basheeruddin Shah, Student Member, IEEE, Vijay Kumar Chakka, Senior Member, IEEE,

and Arikatla Satyanarayana Reddy

Abstract—In this paper, we introduce two types of real-valued
sums known as Complex Conjugate Pair Sums (CCPSs) denoted

as CCPS(1) and CCPS(2), and discuss a few of their properties.
Using each type of CCPSs and their circular shifts, we construct
two non-orthogonal Nested Periodic Matrices (NPMs). As NPMs
are non-singular, this introduces two non-orthogonal transforms
known as Complex Conjugate Periodic Transforms (CCPTs)

denoted as CCPT(1) and CCPT(2). We propose another NPM,
which uses both types of CCPSs such that its columns are
mutually orthogonal, this transform is known as Orthogonal
CCPT (OCCPT). After a brief study of a few OCCPT properties
like periodicity, circular shift, etc., we present two different
interpretations of it. Further, we propose a Decimation-In-Time
(DIT) based fast computation algorithm for OCCPT (termed as
FOCCPT), whenever the length of the signal is equal to 2v, v∈N.
The proposed sums and transforms are inspired by Ramanujan
sums and Ramanujan Period Transform (RPT). Finally, we show
that the period (both divisor and non-divisor) and frequency
information of a signal can be estimated using the proposed
transforms with a significant reduction in the computational
complexity over Discrete Fourier Transform (DFT).

Index Terms—Complex exponential, Ramanujan sum, CCPS,
DFT, RPT, NPM, OCCPT, FOCCPT, Frequency estimation.

I. INTRODUCTION

IN general, information of a finite length signal like pe-

riod/frequency is not manifested in a recognizable fashion

from the signal itself. Such information can be extracted by

representing the signal using certain types of bases. This makes

signal representation as one of the fundamental problems in

signal processing.

In literature, different application specific representations

are proposed like DFT, Discrete Cosine Transform, Discrete

Sine Transform, etc., [1], [2]. In 1918, mathematician Srinivasa

Ramanujan introduced an integer-valued summation known

as Ramanujan sum [3]. It has some interesting properties

like periodicity, orthogonality, etc., which attracted many re-

searchers to use it for various applications [4]–[6]. In 2014, P.

P. Vaidyanathan introduced a signal representation known as

RPT by using Ramanujan sums and their circular shifts [7],

[8]. It has certain periodicity properties, which are useful for

period estimation [8]. Moreover, the presence of an integer

basis makes it computationally efficient. Due to this, RPT has
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been used in many period estimation applications [9]–[13].

Generalizing RPT, in [14], the authors introduced a family of

full rank square matrices known as Nested Periodic Matrices

(NPMs). Members of the NPM family include Natural Basis

matrix, Hadamard matrix, DFT matrix, RPT matrix, etc.

Let p1, p2, . . . , pm be all the divisors of N (where N∈N)

and spi
be a ϕ(pi) dimensional subspace consists of pi

periodic signals, where ϕ(.) is an Euler’s totient function.

As
∑

pi|N
ϕ(pi) = N , an N th order NPM is constructed

by providing the basis for all {spi
}mi=1. The commonality

between different NPMs is that they span the same subspaces

({spi
}mi=1) by providing alternate bases. Since pi|N , spi

is

known as divisor subspace. In the NPM family, the perfor-

mance of RPT and DFT is good in period estimation [14].

Two discrete-time signals with different discrete frequen-

cies may correspond to the same period. For example, two

sinusoidal signals with discrete frequencies 2π
5 and

2π(3)
5

are periodic with period 5. Hence, extracting the frequency

information is equally important as period extraction and it

is crucial in many applications. For instance, brain signals

exhibit periodic nature in response to external visual stimuli

[10], [15]. Further, they are classified into five frequency sub-

bands (alpha, beta, theta, delta, and gamma) over a periodic

duration. Electrocardiogram (ECG) is another signal that ex-

hibits periodic nature and we can segment it in QRS complex

segment, ST segment, etc., based on the frequency range [16].

One of the limitations of RPT is that it does not provide the

frequency information [17], whereas DFT gives period as well

as frequency information with high computational complexity.

In this paper, we address this problem of signal representation

using certain new transformation matrices following NPM

structure, such that both period and frequency information can

be extracted with less computational complexity.

A. Contributions of This Paper

Ramanujan sums are generated by adding certain complex

exponential sequences satisfying some periodicity property

[3]. The RPT matrix is constructed by using Ramanujan sums

and their circular shifts [7], [8]. Inspired by this, we have

proposed two types of real-valued summations known as Com-

plex Conjugate Pair Sum of type-1 (CCPS(1)) and Complex

Conjugate Pair Sum of type-2 (CCPS(2)). A few of their

properties are also discussed. Two new NPMs are constructed

by using each type of CCPSs and their circular shifts as a basis
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for {spi
}mi=1. Further, a finite length signal is represented by

using these NPMs. The corresponding transforms are named

as Complex Conjugate Periodic Transforms. Based on the

type of summation used, it is denoted as either CCPT(1)

or CCPT(2), we have shown that both of these transforms

are non-orthogonal. One of our previous works [17] contains

the basic idea of generating CCPS(1), CCPT(1) and their

application, which are discussed in brief in this paper.

Another NPM is proposed by using both types of complex

conjugate pair sums as a basis for {spi
}mi=1, such that the

columns of the matrix are mutually orthogonal. The cor-

responding transform is named as Orthogonal CCPT (OC-

CPT). The proposed transforms may have applications in

communication, image processing, control applications [18]–

[21]. Several important properties of OCCPT like periodicity,

circular convolution, etc., are stated and proved, and its

relation with DFT is also discussed. In addition, we have

presented two different interpretations of OCCPT such that

the period and frequency information is explicitly available

in each interpretation. If N = 2v , v∈N, a DIT algorithm is

proposed to reduce the computational complexity of OCCPT

known as Fast OCCPT (FOCCPT). We have shown that this

algorithm requires Nlog2(N)−N+1 real multiplications and

2Nlog2(N)− 7
(
N
2

)
+5 real additions for a given x(n)∈RN .

We have proved that we can estimate the divisor period and

its corresponding frequency information of a signal using the

proposed transforms. DFT is a standard transform that can

serve for the same purpose, so, the computational complexity

of proposed transforms is compared with DFT. If N 6=2v ,

the complexities of OCCPT and DFT are compared using

the direct method, though there exist efficient algorithms for

DFT [22], [23]. The following list of conclusions are drawn

regarding the computational complexity between DFT and

OCCPT:

• If x(n)∈CN and N = 2v , then their complexities are

comparable with each other.

• If x(n)∈RN and N = 2v , then Fast Fourier Trans-

form (FFT) requires 2Nlog2(N) real multiplications and

3Nlog2(N) real additions. This is approximately 50%
higher than FOCCPT complexity.

• If x(n)∈CN and N 6=2v , then the number of multipli-

cations/additions required for OCCPT is approximately

50% lower than DFT.

• If x(n)∈RN and N 6=2v , then DFT and OCCPT require

the same complexity due to the complex conjugate sym-

metry of DFT coefficients.

So far we have dealt with NPMs, which are constructed

using the basis of divisor subspaces. In general, there are

scenarios where we deal with non-divisor subspaces. One such

scenario is the estimation of non-divisor periods and their

corresponding frequencies using a dictionary based approach,

where the proposed CCPT dictionaries have approximately

75% less computational complexity over the DFT dictionary.

Although, RPT dictionary has the computational advantage

over CCPT dictionaries due to its integer-valued basis, but it

does not provide the frequency information. As an example,

we have evaluated the performance of proposed transforms

on an ECG signal by considering the problem of R peak

delineation. The results are compared with DFT and RPT.

B. Outline and Notations

The structure of this paper is as follows: The NPM structure

and its properties are briefly reviewed in Section II. The

process of RPT matrix construction from the DFT matrix

is explained in Section III. Section IV discusses two types

of complex conjugate pair sums and their properties. Then,

two non-orthogonal transforms are introduced by using each

type of summation and its circular shifts in Section V. In

Section VI, we introduce an orthogonal transform known as

OCCPT and discuss a few of its properties. A fast computation

algorithm for OCCPT is proposed in Section VII. Later, in

Section VIII, the proposed transforms are compared with DFT

and RPT. Conclusions are drawn in Section IX. The following

notations are used throughout the paper:

N,Z : Set of natural numbers and integers respectively.

R,C : Set of real numbers and complex numbers respectively.

AT : The transpose of a matrix A.

AH : The conjugate transpose of a matrix A.

r(A) : The rank of a matrix A.

(a, b) : Greatest common divisor of a and b.
lcm : Least common multiple.

⌊a⌋ : The greatest integer less than or equal to a, where a ∈ R.
a|b : a divides b and a∤b denotes a does not divide b.

ϕ : Euler’s totient function, defined as ϕ(n) =
n∑

i=1

⌊
1

(i,n)

⌋

.

Since (i, n) = (n− i, n), ϕ(n) is even for n≥3.

Mm,n(C) : Set of all m × n matrices with entries from

complex numbers. If m = n, Mm,n(C) = Mn(C).
DN : The set of all positive divisors of N. We assume DN =
{p1, p2, . . . , pm}, where 1 = p1 < p2 < · · · < pm = N.
((n))N : Indicates n (mod N).
Un : {k∈N|1 ≤ k ≤ n, (k, n) = 1}. Hence the cardinality of

Un, i.e., #Un is equal to ϕ(n).
Ûn : {k∈N|1≤k≤

⌊
n
2

⌋
, (k, n) = 1, n > 2}. Hence #Ûn =

ϕ(n)
2 . Let Ũn = Un − Ûn.

〈a, b〉 : Dot product between a and b.

II. NESTED PERIODIC MATRIX STRUCTURE

Definition 1:[14] A matrix M ∈ MN (C) is said to have

NPM structure (or simply NPM) if

M = [Mp1
,Mp2

, . . . ,Mpi
, . . . ,Mpm

], (1)

satisfies the following three properties:

• Mpi
∈MN,ϕ(pi)(C) and r(Mpi

) = ϕ(pi). The size of M

is N×N by invoking
∑

pi|N

ϕ(pi) = N [7].

• M is a full rank matrix.

• Each column in Mpi
is a pi periodic sequence.

Since M is a non-singular matrix, the columns of M form

a basis for CN , known as Nested Periodic Basis (NPB). As a

consequence, any finite N -length signal can be represented as

a linear combination of columns of M. Let spi
be the subspace

spanned by the columns of Mpi
, then

1) The period of every element in spi
is exactly pi [14].
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2) Let x(n) =
M∑

i=1

xli(n), where the period of xli(n) is

equal to li. In general the period of x(n) is a divisor of

lcm(l1, . . . , lM ). But if xli(n) ∈ sli , then the period of

x(n) is exactly equal to lcm(l1, . . . , lM ) [14].

As an NPM construction involves the basis of divisor sub-

spaces ({spi
}mi=1), it is useful to extract the divisor periods

information of a signal [8].

Let A,B ∈ MN (C) denote DFT and RPT matrices re-

spectively. Both A and B are NPMs [14]. In the following

sections, we imitate the construction procedure of B from A

for constructing three more matrices C,D and E of order N.
Further, we show that C,D and E are NPMs. First, we recall

A and construction of B from A in the following section.

III. RPT MATRIX CONSTRUCTION FROM DFT MATRIX

A. DFT Matrix

Let SN,k(n) = e
j2πkn

N , 0≤n≤N − 1, then

[A]N×N = [SN,0(n), SN,1(n), . . . , SN,N−1(n)]. (2)

The period of kth column in A is equal to N
(k,N) , i.e.,

divisor of N. For each pi∈DN , the number of columns in

A having period exactly equal to pi is #Upi
= ϕ(pi) [17]. If

Upi
= {k1, k2, . . . , kϕ(pi)}, then form a sub-matrix Api

of A

as given below:

[Api
]N×ϕ(pi) = [Âpi

, Âpi
. . . , Âpi

]T, where

Âpi
= [Spi,k1

(n), Spi,k2
(n), . . . , Spi,kϕ(pi)

(n)]
pi×ϕ(pi)

.
(3)

So, Api
is obtained by repeating Âpi

periodically N
pi

times.

As
∑

pi|N
ϕ(pi) = N , by constructing Âpi

for every pi ∈
DN , we can build an N ×N transformation matrix A, whose

columns are permutations of columns of A given in (2). Using

the orthogonality and periodicity properties of SN,k, one can

check that A is an NPM [14]. In the following sections, we

provide different alternative matrices to Âpi
such as B̂pi

, Ĉpi
,

D̂pi
and Êpi

to construct Bpi
, Cpi

, Dpi
and Epi

followed by

the construction of B, C, D and E respectively. Now before

proceeding further, we prove the following:

Theorem 1. Let x(n) =
∑M

i=1 SN,ki
(n), where M≤N ,

0≤ki, n≤N − 1 and the values {ki}
M
i=1 are unique. If GM

N ∈
MN (C) is a circulant matrix, whose first column is x(n)
and the remaining columns are the circular downshift of the

previous columns, then r
(
GM

N

)
= M .

Proof. The given circulant matrix GM
N can be decomposed as

GM
N = BN×MBH

M×N , where

B =








SN,k1
(0) SN,k2

(0) . . . SN,kM
(0)

SN,k1
(1) SN,k2

(1) . . . SN,kM
(1)

.

.

.
.
.
.

. . .
.
.
.

SN,k1
(N − 1) SN,k2

(N − 1) . . . SN,kM
(N − 1)







.

Here, the columns of B are orthogonal, so r(B) = M . As

r(GM
N ) = r(B) [24], this implies r

(
GM

N

)
= M .

B. RPT Matrix

If we add all the columns of Âpi
given in (3), it generates

an integer-valued, pi periodic sequence cpi
(n), known as

Ramanujan sum [3], [25]. From Theorem 1, if we construct

a pi×pi circulant matrix Gpi
using cpi

(n), then, r(Gpi
) =

ϕ(pi). So, using cpi
(n) we can build a matrix B̂pi

as an

alternative to Âpi
as follows:

B̂pi
= [c0pi

(n), c1pi
(n), . . . , cϕ(pi)−1

pi
(n)]

pi×ϕ(pi)
, (4)

where cjpi
(n) indicates the circular downshift of the sequence

cpi
(n) by j times. Let B∈MN (C) be the matrix constructed

using B̂pi
, by following the similar way of A construction

from Âpi
. Then by invoking the orthogonality and periodicity

properties of cpi
(n), it is shown in [14] that B satisfies all the

NPM properties. Here B is known as RPT matrix [8].

Remark 1: As (kj , pi) = (pi − kj , pi), for every complex

sequence Spi,kj
(n)∈Âpi

there exists a complex conjugate

sequence Spi,pi−kj
(n)∈Âpi

. Both together form a complex

conjugate pair. So, there are
ϕ(pi)

2 complex conjugate pairs in

Âpi
, i.e., #Ûpi

[17]. In [26], the authors introduced a two

dimensional subspace spanned by {Spi,k(n), Spi,pi−k(n)} for

each k∈Ûpi
, known as Complex Conjugate Subspace (CCS),

denoted as vpi,k. So, vpi,k consists of signals having period

exactly equal to pi with discrete frequency 2πk
pi

(or)
2π(pi−k)

pi
.

Let Ûpi
= {k1, k2, . . . , kϕ(pi)

2

}, then Âpi
can be rewritten

with permutation of its columns as follows:

Âpi
= [Spi,k1

, Spi,pi−k1
︸ ︷︷ ︸

Basis of vpi,k1

, . . . , Spi,kϕ(pi)
2

, Spi,pi−kϕ(pi)
2

︸ ︷︷ ︸

Basis of vpi,k ϕ(pi)
2

]pi×ϕ(pi).

(5)

The following section introduces two types of arithmetic

sums and their properties, which are used to construct alternate

bases for CCS.

IV. COMPLEX CONJUGATE PAIR SUMS AND THEIR

PROPERTIES

In [17], we proposed a real-valued summation by adding

each complex conjugate pair known as Complex Conjugate

Pair Sum of type-1 (CCPS(1)). Given any L ∈ N, the CCPS(1)
(

c
(1)
L,k(n)

)

is defined as follows:

c
(1)
L,k(n) = 2Mcos

(
2πkn

L

)

, (6)

where

M =

{
1
2 , if L = 1 (or) 2

1, if L≥3
, (7)

and if L ≥ 3 then k ∈ ÛL, otherwise k = 1.

Similar to addition, subtraction is another arithmetical op-

eration, which can be performed on each complex conjugate

pair without changing its periodicity. This defines another real-

valued sum known as Complex Conjugate Pair Sum of type-2

(CCPS(2)), denoted as c
(2)
L,k(n) and defined as,

c
(2)
L,k(n) =







1, ∀n, if L = 1

(−1)n, if L = 2

2sin
(
2πkn
L

)
, if L≥3, k∈ÛL

. (8)
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Let c
(∗)
L,k(n) hereafter denotes either c

(1)
L,k(n) (or) c

(2)
L,k(n).

A. Properties

1) Periodicity: As c
(∗)
L,k(n + L) = c

(∗)
L,k(n), and

c
(∗)
L,(k+L)(n) = c

(∗)
L,k(n)

1, CCPSs are periodic with respect to

both n and k with period L. If L is even, then c
(∗)

L,(k+L
2 )
(n) =

(−1)nc
(∗)
L,k(n) and c

(∗)
L,k

(
n+ L

2

)
= (−1)kc

(∗)
L,k(n).

2) Symmetric: c
(1)
L,k(n) and c

(2)
L,k(n) (for L≥3) are even

and odd symmetric sequences respectively, with respect

to both k and n, i.e., c
(1)
L,k(L − n) = c

(1)
L,(L−k)(n) =

c
(1)
L,k(n) and c

(2)
L,k(L− n) = c

(2)
L,(L−k)(n) = −c

(2)
L,k(n).

3) DFT of CCPS: For a given L∈N and l∈ÛL,

DFT [c
(1)
L,l(n)] = C

(1)
L,l(k) =

{

L, if k = l (or) L− l

0, Otherwise
,

DFT [c
(2)
L,l(n)] = C

(2)
L,l(k) =







−jL, if k = l

jL, if k = L− l

0, Otherwise

,

where 0≤k≤L − 1. The above results are obvious from the

definition of Complex Conjugate Pair Sums (CCPSs).

4) Sum and sum-of-squares: For a given L > 1 and l∈ÛL
L−1∑

n=0
c
(∗)
L,l(n) = 0. Given L∈N, using the Parseval’s relation

between c
(∗)
L,l(n) and C

(∗)
L,l (k), we can write:

L−1∑

n=0

(

c
(∗)
L,k(n)

)2

=
1

L

L−1∑

k=0

(

|C
(∗)
L,l (k)|

)2

= 2LM, (9)

where M is defined in (7).

5) Orthogonality: Given L = lcm(L1, L2), L1∈N, L2∈N,

k1∈ÛL1
, k2∈ÛL2

, l1 ∈ Z and l2 ∈ Z, then we can prove the

following theorem:

Theorem 2. Any two L length CCPSs(1) (or) CCPSs(2) and

their circular shifts are mutually orthogonal, i.e.,

L−1∑

n=0

c
(∗)
L1,k1

(n− l1)c
(∗)
L2,k2

(n− l2)

= 2LMcos

(
2πk1(l1 − l2)

L1

)

δ(L1 − L2)δ(k1 − k2).

(10)

Proof. Given in the appendix by assuming c
(∗)
L1,k1

= c
(1)
L1,k1

.

Theorem 3. For a given L1≥3 and L2≥3, both CCPS(1) and

CCPS(2) are orthogonal to each other, i.e.,

L−1∑

n=0

c
(1)
L1,k1

(n− l1)c
(2)
L2,k2

(n− l2)

= 2Lsin

(
2πk1(l1 − l2)

L1

)

δ(L1 − L2)δ(k1 − k2).

(11)

1Use the property (k, L) = (k+L,L), to verify c
(∗)
L,(k+L)

(n) = c
(∗)
L,k

(n).

The above theorem can be proved using the same approach

used to prove Theorem 2. If L1 < 3 and L2 < 3, then

c
(1)
L1,k1

(n) = c
(2)
L2,k2

(n), so Theorem 3 satisfies Theorem 2.

Now we discuss, how these summations and their properties

are used to construct the basis of CCS, followed by the

construction of C,D, and E matrices.

V. NEW NESTED PERIODIC MATRICES

From Theorem 1, if we construct a pi×pi circulant matrix

G
(1)
pi,k

using c
(1)
pi,k

(n), then, r(G
(1)
pi,k

) = 2. Let c
(∗)j
pi,k

indicate

the circular downshift of the sequence c
(∗)
pi,k

by j times. As

c
(1)
pi,k

and c
(1)1
pi,k

are linearly independent, the first two columns

of G
(1)
pi,k

act as a basis for CCS [17]. So, the matrix Ĉpi
(an

alternative to Âpi
given in (5)) built using this new basis is

Ĉpi
= [c

(1)
pi,k1

, c
(1)1
pi,k1

︸ ︷︷ ︸

Basis of vpi,k1

, . . . , c
(1)
pi,kϕ(pi)

2

, c
(1)1
pi,kϕ(pi)

2
︸ ︷︷ ︸

Basis of vpi,k ϕ(pi)
2

]pi×ϕ(pi).

It is shown in [17] that the C built by using Ĉpi
is an NPM.

Then any N length signal x can be represented/synthesized as

x = Cβ(1) = [Cp1
, . . . ,Cpi

, . . . ,Cpm
]
N×N

β(1),

where [Cpi
]N×ϕ(pi) = [Ĉpi

, Ĉpi
. . . , Ĉpi

]T
(12)

and β(1) is the transform coefficient vector. Here C is a non-

orthogonal matrix (refer Theorem 2). So,

β(1) = C−1x. (13)

This transformation from x to β(1) is known as Complex Con-

jugate Periodic Transform (CCPT) [17], denoted as CCPT(1).

Both (12) and (13) together form a CCPT(1) pair.

In a similar way, if we construct a pi×pi circulant matrix

G
(2)
pi,k

using c
(2)
pi,k

(n), then r(G
(2)
pi,k

) = 2. Further, G
(2)
pi,k

can

be factorized as (refer Theorem 1 proof for M = 2):

G
(2)
pi,k

= −j(FF̂H), where (14)

F
H =

[
Spi,pi−k(0) Spi,pi−k(1) . . . Spi,pi−k(pi − 1)
Spi,k(0) Spi,k(1) . . . Spi,k(pi − 1)

]

2×pi

and

F̂
H =

[
Spi,pi−k(0) Spi,pi−k(1) . . . Spi,pi−k(pi − 1)
−Spi,k(0) −Spi,k(1) . . . −Spi,k(pi − 1)

]

2×pi

.

From (14), the column space of G
(2)
pi,k

is same as the column

space of F [24], which is vpi,k. Moreover, one can check that

the first two columns of G
(2)
pi,k

i.e., c
(2)
pi,k

and c
(2)1
pi,k

are linearly

independent. So, they act as a basis for CCS. This provides

another alternative for Âpi
as given below:

D̂pi
= [c

(2)
pi,k1

, c
(2)1
pi,k1

︸ ︷︷ ︸

Basis of vpi,k1

, . . . , c
(2)
pi,kϕ(pi)

2

, c
(2)1
pi,kϕ(pi)

2
︸ ︷︷ ︸

Basis of vpi,k ϕ(pi)
2

]pi×ϕ(pi).

(15)

From Theorem 2 and (15), there are a few points worth noting:

• As
〈

c
(2)l1
pi,ki

, c
(2)l2
pi,kj

〉

= 0, ∀ ki 6=kj , the columns of D̂pi

are CCS wise orthogonal, this implies r(D̂pi
) = ϕ(pi).
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• Since c
(2)
pi,ki

is a periodic sequence with period pi, each

column in D̂pi
is a pi periodic sequence.

• As
〈

c
(2)l1
pi,ki

, c
(2)l2
pj ,kj

〉

= 0, ∀pi 6=pj , pi|N , and pj |N , the

rank of D∈MN (C) built using D̂pi
is equal to N .

From the above three points D results in an NPM. Hence, any

finite N length signal x is represented/synthesized as:

x = Dβ(2) = [Dp1
, . . . ,Dpi

, . . . ,Dpm
]
N×N

β(2), (16)

where β(2) is the transform coefficient vector. Along with

this, the product [Dpi
]T[Dpj

] = [0]ϕ(pi)×ϕ(pj), ∀ pi 6=pj , i.e.,

spi
is orthogonal to spj

. If the subspaces are orthogonal, they

can be uniquely determined as Ramanujan Subspaces [14].

From Theorem 2,
〈
c
(2)
pi,k

(n), c
(2)1
pi,k

(n)
〉
6=0, hence D is a non-

orthogonal matrix. So,

β(2) = D−1x. (17)

The above transform is known as CCPT and denoted as

CCPT(2). Both (16) and (17) together form a CCPT(2) pair.

The non-orthogonality of the transformation matrices C and

D results in both CCPT(1) and CCPT(2) as non-orthogonal

transforms. One can say that C and D are partially orthogonal

as their columns are CCS wise orthogonal. In the following

section, we propose an orthogonal basis for CCS, this leads

to the construction of another NPM E.

VI. ORTHOGONAL CCPT (OCCPT) AND ITS PROPERTIES

Here, both c
(1)
pi,k

and c
(2)
pi,k

together act as a basis for vpi,k.

Theorem 4. Given vpi,k is the subspace spanned by

{Spi,k(n), Spi,pi−k(n)} and upi,k is the subspace spanned by

{c
(1)
pi,k

(n), c
(2)
pi,k

(n)}. Then vpi,k is equal to upi,k.

Proof. Let xpi,k∈vpi,k, then there exist α1, α2∈C s.t.

xpi,k(n) = α1Spi,k(n) + α2Spi,pi−k(n). Using Euler’s iden-

tity, we can rewrite xpi,k(n) = γ1c
(1)
pi,k

(n) + γ2c
(2)
pi,k

(n),
γ1, γ2∈C, hence xpi,k∈upi,k. Similarly, any ypi,k∈upi,k also

belongs to vpi,k. Hence vpi,k is equal to upi,k.

So, another alternative to Âpi
can be written as given below:

Êpi
= [c

(1)
pi,k1

, c
(2)
pi,k1

︸ ︷︷ ︸

Basis of vpi,k1

, . . . , c
(1)
pi,kϕ(pi)

2

, c
(2)
pi,kϕ(pi)

2
︸ ︷︷ ︸

Basis of vpi,k ϕ(pi)
2

]pi×ϕ(pi).

If pi = 1 (or) 2, then Êpi
∈Mpi,1 and c

(1)
pi,k

= c
(2)
pi,k

. So, we

can consider either c
(1)
pi,k

or c
(2)
pi,k

. From Theorem 3, we can

summarize two points:

• As
〈

c
(1)
pi,ki

, c
(2)
pi,kj

〉

= 0, ∀ pi|N, ki and kj∈Ûpi
, the

columns of Êpi
are orthogonal to each other.

• As
〈

c
(1)
pi,ki

, c
(2)
pj ,kj

〉

= 0, ∀ pi|N , pj |N , ki∈Ûpi
and

kj∈Ûpj
, the columns of the matrix E constructed using

Êpi
are mutually orthogonal.

Furthermore, E is an NPM as both CCPSs are periodic. So,

an N length signal x(n) is represented/synthesized as

x = Eβ = [Ep1
, . . . ,Epi

, . . . ,Epm
]
N×N

β, (18)

where β is the transform coefficient vector. This transform

is known as Orthogonal CCPT. Though the columns of E

are mutually orthogonal, the product ETE = 2NMI, where

M =

{
1
2 , if pi = 1 (or) 2

1, if pi≥3
, and I∈MN (C) is an identity

matrix. So the resultant analysis equation is

β =
1

2NM
ETx. (19)

The representation in (18) can be written algebraically as

x(n) =
∑

pi|N

xpi
(n) =

∑

pi|N

⌊ pi
2 ⌋∑

k=1
(k,pi)=1

β0kic
(1)
pi,k

(n) + β1kic
(2)
pi,k

(n)
︸ ︷︷ ︸

xpi,k
∈vpi,k

,

(20)

where 0≤n≤N − 1 and xpi
∈spi

. Manipulating (20) alge-

braically with c
(1)
pj ,k1

(n) leads to (where pj |N and k1∈Ûpj
),

N−1∑

n=0

x(n)c
(1)
pj ,k1

(n) =
∑

pi|N

⌊ pi
2 ⌋∑

k=1
(k,pi)=1

(

Q+R

)

, here (21)

Q =

N−1∑

n=0

β0kic
(1)
pi,k

(n)c
(1)
pj ,k1

(n) =

{
2NMβ0k1j , if pi = pj

and k = k1

0, Otherwise

,

and R =
N−1∑

n=0
β1kic

(2)
pi,k

(n)c
(1)
pj ,k1

(n) = 0. Similarly, by manip-

ulating with c
(2)
pj ,k1

(n), we can obtain the following

β0ki =
1

2NM

N−1∑

n=0

x(n)c
(1)
pi,k

(n), pi|N & k∈Ûpi
,

β1ki =
1

2NM

N−1∑

n=0

x(n)c
(2)
pi,k

(n), pi|N & k∈Ûpi
.

(22)

Here (22) is an analysis equation and (20) is a synthesis

equation, both together form an N -point OCCPT pair.

A. Properties

Let x(n), x1(n) and x2(n) be the signals, whose OCCPT

coefficients are
(

β0ki, β1ki

)

,
(

β̂0ki, β̂1ki

)

and
(

β̃0ki, β̃1ki

)

respectively. These relationships are denoted as

x(n)
N - OCCPT
←−−−−−→

(

β0ki, β1ki

)

, x1(n)
N - OCCPT
←−−−−−→

(

β̂0ki, β̂1ki

)

and x2(n)
N - OCCPT
←−−−−−→

(

β̃0ki, β̃1ki

)

.

Then we can derive the following properties:

1) Circular Shift of a Sequence: The N -point OCCPT of

x
(
((n−m))N

)
, for an arbitrary m∈Z, is defined as

x1(n) = x
(

((n−m))N

)
N - OCCPT
←−−−−−→

(

β̂0ki, β̂1ki

)

. (23)

If pi = 1 (or) 2 : β̂0ki = β0kicos (θ) . (24)

If pi≥3 :





β̂0ki

β̂1ki



 =





cos (θ) sin (θ)

−sin (θ) cos (θ)









β0ki

β1ki



 , (25)

where θ = 2πk((−m))N
pi

. So, the circular delay in time results

in proportionate rotation of transform coefficients.
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2) Circular Convolution: The N -point OCCPT of x(n) =
x1(n)⊛x2(n) is defined as

x(n) =

N−1∑

l=0

x1(l)x2

(

((n− l))N

)
N - OCCPT
←−−−−−→

(

β0ki, β1ki

)

.

If pi = 1 (or) 2 : β0ki = N β̂0ki β̃0ki. (26)

If pi≥3 :





β0ki

β1ki



 = N





β̂0ki −β̂1ki

β̂1ki β̂0ki









β̃0ki

β̃1ki



 . (27)

From above, the transform coefficients of circular convolution

are satisfying the commutative property.

3) Parseval’s Relation: The OCCPT conserves the energy

of a given signal. In specific,

N−1∑

n=0

|x(n)|2 = N
(

|β011|
2 + |β012|

2
)

+ 2N
∑

pi|N
pi≥3

⌊ pi
2 ⌋∑

k=1
(k,pi)=1

|β0ki|
2 + |β1ki|

2.

(28)

Here the term β012 = 0, if 2 is not a divisor of N . Proofs for

the above three properties are given in the appendix.

4) Periodicity: Using the periodicity property (with respect

to k) of CCPSs, it can be proved that (β0ki, β1ki) are periodic

with period N , i.e.,

β0(k+N)i = β0ki and β1(k+N)i = β1ki. (29)

B. Relation Between Orthogonal CCPT and DFT Coefficients

Let x(n)∈CN , then the DFT coefficients X(k), 0 ≤ k ≤
N − 1 are obtained by performing the dot product between

x(n) and e
−j2πkn

N = cos
(

2πkn
N

)

− jsin
(

2πkn
N

)

. For a given

k, let ki = k
di

and pi = N
di

where di = (k,N). Then the

basis (cosine and sine terms) of vpi,ki
establish relationship

between X(k) and
(

β0kii, β1kii

)

. Let

x(n)
N - DFT
←−−−→ X(k) & x(n)

N - OCCPT
←−−−−−→

(

β0kii, β1kii

)

, (30)

where β0kii = β̂0kii + jβ̃0kii and β1kii = β̂1kii + jβ̃1kii.

Then, by exploiting the analysis equation of DFT, OCCPT

and symmetry properties of CCPSs, we can establish the

following relation for every pi∈DN and ki∈Ûpi
:

If pi = 1 (or) 2 : X(k) = X

(
Nki
pi

)

= Nβ0kii. (31)

If pi≥3 : X(k) = X

(
Nki
pi

)

=







N
[(

β̂0kii + β̃1kii

)

+ j
(

β̃0kii − β̂1kii

)]

, if ki∈Ûpi

N
[(

β̂0kii − β̃1kii

)

+ j
(

β̃0kii + β̂1kii

)]

, if ki∈Ũpi

.

(32)

If x(n)∈RN , then β̃0kii = β̃1kii = 0 in the above equation.

Since the DFT coefficients are periodic with N , consider k =

N whenever k = 0, as it is an invalid case for vN,k. From the

relations given in (31) and (32), we can get both magnitude and

phase information of a discrete frequency
(
2πk
N

)
from OCCPT

coefficients. The presence of circular downshift terms (in both

C and D) allows us to extract magnitude, and ut not the phase

information from β(1) and β(2).

The notion of the period is explicitly available from the N -

point OCCPT pair given in (20) and (22), whereas the notion

of frequency is represented in a succinct way. To get explicit

frequency information, a reinterpretation of OCCPT followed

by a DIT based fast computation algorithm for it are discussed

in the following section.

VII. FAST OCCPT (FOCCPT)

A. Reinterpretation of OCCPT

Consider the following sets of irreducible rational numbers

H1 =

{
k

pi
| 0≤k≤

⌊pi
2

⌋

, (k, pi) = 1, pi|N

}

,

H2 =

{

k̂

pi
|
⌊pi
2

⌋

+ 1≤k̂≤pi − 1, (k̂, pi) = 1, pi|N, pi > 2

}

.

(33)

Both H1 and H2 can be rewritten as sets of all rational

elements as given below:

H1 =

{
K

N
| 0≤K≤

⌊
N

2

⌋}

and

H2 =

{
K

N
|

⌊
N

2

⌋

+ 1≤K≤N − 1

}

.

(34)

In an N -point OCCPT, the total columns of E can be divided

into two sets as

H3 =

{

2Mcos

(
2πkn

pi

)

| k∈ûpi
, pi|N

}

,

H4 =

{

−2sin

(

2πk̂n

pi

)

| k̂ = (pi − k)∈ũpi
, pi|N, pi > 2

}

.

Using (33) and (34), we can reinterpret H3 and H4 as follows:

H3 =

{

2M̂cos

(
2πKn

N

)

| 0≤K≤

⌊
N

2

⌋}

,

H4 =

{

−2sin

(
2πKn

N

)

|

⌊
N

2

⌋

+ 1≤K≤N − 1

}

,

(35)

where, if N is even then M̂ =

{
1
2 , if K = 0 (or) N

2

1, otherwise
and

if N is odd then M̂ =

{
1
2 , if K = 0

1, otherwise
. That is, E can

be rewritten with some permutations of its columns as given

below:

Ê =

[

2M̂cos

(
2π(0)

N
n

)

, . . . , 2M̂cos

(

2π
(⌊

N
2

⌋)

N
n

)

,

− 2sin

(

2π
(⌊

N
2

⌋
+ 1
)

N
n

)

, . . . ,−2sin

(
2π(N − 1)

N
n

)]

.

(36)
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Now, we can rewrite the N -point OCCPT pair as

β(K) =







1
N

N−1∑

n=0
x(n)cos

(
2πKn
N

)
, 0≤K≤

⌊
N
2

⌋

− 1
N

N−1∑

n=0
x(n)sin

(
2πKn
N

)
,
⌊
N
2

⌋
+ 1≤K≤N − 1.

(37)

x(n) = 2

⌊N
2 ⌋
∑

K=0

M̂β(K)cos

(
2πKn

N

)

−2

N−1∑

K=⌊N
2 ⌋+1

β(K)sin

(
2πKn

N

)

.

(38)

The relation between the coefficients given in (22) and (37) is

β0ki = β

(
Nk

pi

)

and β1ki = β

(

Nk̂

pi

)

. (39)

B. Decimation-In-Time FOCCPT (DIT-FOCCPT) Algorithm

Here, an N length sequence x(n) is decomposed into

successively smaller sub-sequences. The N -point OCCPT of

x(n) is computed by combining the OCCPT of these sub-

sequences. The symmetry properties of CCPSs are exploited

in the combining process. As an initial step, we consider

N = 2v , v∈N (similar to radix-2 DIT-FFT [1]), this allows

us to decompose x(n) into two N
2 length sequences h(n) and

g(n), where h(n) = x(2n) and g(n) = x(2n + 1). By using

the odd symmetry of sin(.) function, the analysis equation of

OCCPT given in (37) is modified as

Nβ(K) = Xx(K) =

N−1∑

n=0

x(n)cos

(
2πKn

N

)

, 0≤K≤
N

2

Nβ(N −K) = Yx(K) =

N−1∑

n=0

x(n)sin

(
2πKn

N

)

, 1≤K≤
N

2
− 1

.

(40)

Here Xx(K + N) = Xx(K) and Yx(K + N) = Yx(K).
Moreover, Xx(N−K) = Xx(K) and Yx(N−K) = −Yx(K)
over the range of 0 to N . Now by decomposing x(n) into h(n)
and g(n), we obtain

Xx(K) = Xh(K) + cos

(
2πK

N

)

Xg(K)

− sin

(
2πK

N

)

Yg(K) = Nβ(K), 0≤K≤
N

4
and

(41)

Yx(K) = Yh(K) + cos

(
2πK

N

)

Yg(K)

+ sin

(
2πK

N

)

Xg(K) = Nβ(N −K), 1≤K≤
N

4
.

(42)

Where, Xf (K) =

N
2 −1
∑

n=0

f(n)cos

(

2πKn
N
2

)

, 0≤K≤
N

4

and Yf (K) =

N
2 −1
∑

n=0

f(n)sin

(

2πKn
N
2

)

, 1≤K≤
N

4
− 1

(43)

represents the N
2 -point OCCPT of f(n), here f(n) can be

either h(n) or g(n). Here, Xx(K) is computed for 0≤K≤N
4 ,

since the range of Xh(K) and Xg(K) is 0≤K≤N
4 . The

remaining N
4 coefficients of Xx(K) are computed using the

symmetry property of Xh(K), Xg(K) and Yg(K), i.e.,

Xx

(
N

2
−K

)

= Xh(K)− cos

(
2πK

N

)

Xg(K)

+ sin

(
2πK

N

)

Yg(K) = Nβ

(
N

2
−K

)

, 0≤K≤
N

4
− 1

.

(44)

Similarly, the remaining coefficients of Yx(K) are computed

using the symmetry property of Yh(K), Yg(K) and Xg(K),
i.e.,

Yx

(
N

2
−K

)

= −Yh(K) + cos

(
2πK

N

)

Yg(K)

+ sin

(
2πK

N

)

Xg(K) = Nβ

(
N

2
+K

)

, 1≤K≤
N

4
− 1

.

(45)

Note that in (41), (42) and (44) we have the terms Yh(K)
and Yg(K), with possible K values to be 0 (or) N

4 , but the

actual range of Yh(K) and Yg(K) is 1≤K≤N
4 −1. Moreover,

Yh(K) = Yg(K) = 0 whenever K = 0 (or) N
4 . So, the

equations (41), (42) and (44) can be further reduced as follows:

Xx(K) =







Xh(K) + cos

(
2πK

N

)

Xg(K), if K = 0 (or)
N

4

Xh(K) + cos

(
2πK

N

)

Xg(K)

− sin

(
2πK

N

)

Yg(K), if 1≤K≤
N

4
− 1

(46)

Xx

(
N

2
−K

)

=







Xh(K)− cos

(
2πK

N

)

Xg(K), if K = 0

Xh(K)− cos

(
2πK

N

)

Xg(K)

+ sin

(
2πK

N

)

Yg(K), if 1≤K≤
N

4
− 1

(47)

and

Yx(K) =







Yh(K) + cos

(
2πK

N

)

Yg(K)

+ sin

(
2πK

N

)

Xg(K), if 1≤K≤
N

4
− 1

sin

(
2πK

N

)

Xg(K), if K =
N

4
(48)

The equations (45)-(48) correspond to the decomposition of

original N -point OCCPT into two N
2 -point OCCPT compu-

tations. As N = 2v , we can further decompose each N
2 -point

OCCPT into two N
4 -point OCCPTs. This process is repeated

for v = log2(N) times. Fig. 1 depicts the complete DIT

decomposition flow graph of an 8-point OCCPT computation.

C. Computational Complexity of N-Point DIT-FOCCPT

Initially, we count the number of multiplications and addi-

tions required for vth stage (final stage), i.e., computing the N -
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(
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(
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(
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(
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(
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(
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(
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(
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(
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Fig. 1: Flow graph of complete DIT decomposition of an 8-

point OCCPT computation.

point OCCPT from two N
2 -point OCCPTs using (45)-(48). No-

tice that in both (46) and (47), we have the same multiplication

terms with a difference in addition/subtraction operations. So,

to find the number of multiplications, it is sufficient to consider

one equation with a maximum variation range of K. Hence

we consider (46) and it requires 2
(
N
4 − 1

)
+2 = N

2 multipli-

cations. Whereas for additions we have to consider both the

equations. They require 4
(
N
4 − 1

)
+ 3 = N − 1 additions.

Similarly, both (45) and (48) require 2
(
N
4 − 1

)
+ 1 = N

2 − 1
multiplications and 4

(
N
4 − 1

)
= N −4 additions. As a result,

we have the following for vth stage:

Mv = N − 1, Av = 2N − 5,
where Mi and Ai denote the number of multiplications and

additions required in ith stage respectively. Likewise, there

are two N
2 -point OCCPTs computation from four N

4 -point

OCCPTs in (v − 1)th stage. Hence

Mv−1 = 2
(
N
2 − 1

)
, Av−1 = 2

(
2
(
N
2

)
− 5
)
.

Proceeding further, the first stage requires computation of 2-

point OCCPT for N
2 times. Here each 2-point OCCPT requires

one multiplication and two additions. Therefore

M2 = N
2 (2− 1) = N

2 , A2 = N
2 (2) = N.

Now, by combining each stage complexity we can count the

total number of multiplications (Mtotal) and additions (Atotal)

required for N -point OCCPT, i.e.,

Mtotal = 1(N − 1) + 2

(
N

2
− 1

)

+ · · ·+
N

4
(4− 1) +

N

2
(2− 1)

= vN − (N − 1) = Nlog2(N)−N + 1,

Atotal = 1(2N − 5) + 2

(

2

(
N

2

)

− 5

)

+ · · ·+
N

4
(2(4)− 5) +N

= 2vN − 5

(
N

2

)

+ 5−N = 2Nlog2(N)− 7

(
N

2

)

+ 5.

Therefore, a given x(n)∈RN requires Nlog2(N) − N + 1
real multiplications and 2Nlog2(N) − 7

(
N
2

)
+ 5 real addi-

tions for computing N -point OCCPT using DIT-FOCCPT.

If x(n)∈CN , then it requires 2Nlog2(N) − 2N + 2 real

multiplications and 4Nlog2(N)− 7N + 10 real additions, as

OCCPT is a linear transform.

D. Comparison of Computational Complexity Between Differ-

ent Transforms

For a given x(n)∈CN , the N -point OCCPT and DFT

are computed using FOCCPT and FFT respectively, when

N = 2v, v∈N. If N 6=2v , both are computed using the direct

method, even though there exist fast computation algorithms

for DFT [22], [23]. Whereas CCPT(1) and CCPT(2) are com-

puted using direct method for both N = 2v and N 6=2v cases

due to the non-orthogonality of transformation matrices C and

D. Even for RPT, we use the direct method for both cases.

But if N = 2v , the RPT matrix is a sparse orthogonal matrix.

To the best of our knowledge, there is no fast computation

algorithm for computing RPT in the literature.

If x∈CN and y∈CN , then the number of real multiplications

and additions required for computing 〈x, y〉 is 4N and 4N−2
respectively. Similarly, if x∈CN and y∈RN , then it requires

2N and 2(N − 1) real multiplications and additions respec-

tively. Using this, the computational complexity (in terms of

the number of real multiplications and additions) required for

different transforms for a given x(n)∈CN is tabulated in Table

I. There are a few points we can summarize from Table I:

• If N = 2v , then FOCCPT results in a reduction of 2N−2
real multiplications with an increase of Nlog2(N)−7N+
10 real additions over FFT. Here the addition complexity

becomes significant for a large value of N (N > 28).

• If N = 2v and x(n)∈RN , then FFT requires 2Nlog2(N)
real multiplications and 3Nlog2(N) real additions. This

implies FOCCPT has approximately 50% reduction in

computational complexity over FFT.

• The number of multiplications/additions required for the

proposed transforms and RPT is approximately 50% less

when compared with DFT using the direct method.

Note that, both CCPT(1) and CCPT(2) require some addi-

tional complexity to find C−1 and D−1 respectively, along

with the complexity given in Table I. This additional com-

plexity is required even for RPT when N 6=2v . In this paper,

both CCPT(1) and CCPT(2) are studied in brief. A complete

study of these transforms, especially the importance of circular

shift operation in the matrices is one of our future works. The

proposed orthogonal and non-orthogonal transforms (CCPTs)

may find applications in communication, image processing,

control applications, etc., [18]–[21], [27].

TABLE I: COMPARISON OF COMPUTATIONAL COMPLEXITY BETWEEN

DIFFERENT TRANSFORMATION TECHNIQUES

If N 6=2v If N = 2v

Number of Real

Multiplications

Number of

Real Additions

Number of Real

Multiplications

Number of

Real Additions

CCPT(1) 2N2 2N2 − 2N 2N2 2N2 − 2N

CCPT(2) 2N2 2N2 − 2N 2N2 2N2 − 2N

Orthogonal
CCPT

2N2 2N2 − 2N
2Nlog2(N)−

2N + 2
4Nlog2(N)−

7N + 10

DFT 4N2 4N2 − 2N 2Nlog2(N) 3Nlog2(N)

RPT 2N2 2N2 − 2N 2N2 2N2 − 2N
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If x(n)∈RN , then DFT coefficients follow the symmetry

property, i.e., for each discrete frequency, we have four real

coefficients, whereas CCPT has only two coefficients. This

results in a non-redundant representation.

Remark 2: In literature, there exist methods based on a DIT

algorithm for fast N -point DFT computation, whenever N 6=2v

[1], [22], [23]. In a similar way, extending the proposed DIT-

FOCCPT for N 6=2v is one of our future works.

Remark 3: There exists a rich literature [28]–[31] for fast

computation of DFT, with complexity less than DIT-FFT

complexity. So, further reducing the complexity of OCCPT

to less than the DIT-FOCCPT complexity is another open

problem, which needs to be addressed.

Notation: Now onwards, a general CCPT can be either

CCPT(1) (or) CCPT(2) (or) OCCPT.

VIII. PERIOD AND FREQUENCY ESTIMATION

For a given N length signal, the possible period can be a

divisor (or) non-divisor of N . In the following subsections,

we explore how CCPTs are used to estimate these periods.

A. Divisor Period and Frequency Estimation

As the CCPT matrix is an NPM, it estimates the period and

hidden periods of a signal which are divisors of the signal

length. We illustrate the same by considering two 54 length

periodic sequences x̂1(n) and x̂2(n). The period of x̂1(n) is

18 and the period of x̂2(n) is 40. In this example, both x̂1(n)
and x̂2(n) can be periodically decomposed as follows:

x̂1(n) = x11(n)+x12(n) and x̂2(n) = x21(n)+x22(n), (49)

where x11(n), x12(n), x21(n) and x22(n) are periodic signals

with periods 9, 18, 5 and 8 respectively. These periods are

known as hidden periods [32]. Here x11(n), x21(n) are the two

periodic random signals, whose one period data is generated

by following N (0, 1), x12(n) = 0.6cos
(
2π100

(
n

360

)
+ π

3

)

and x22(n) = 0.3cos
(
2π45

(
n

360

)
+ π

4

)
. Moreover a zero

mean Gaussian noise with SNR = 6 dB is added to both

x̂1(n) and x̂2(n) to generate x1(n) and x2(n) respectively.

The three CCPT coefficients are computed for both x1(n)
and x2(n). Fig. 2(a)-(c) and Fig. 2(d)-(f) depict the strength of

each divisor period present in x1(n) and x2(n) respectively.

The strength of a period pi is computed by taking the square

sum of ϕ(pi) transform coefficients that belong to spi
. From

Fig. 2(a)-(c), the significant periods present in x1(n) are 3, 9
and 18. Hence, the period of x1(n) is equal to lcm(3, 9, 18).
While from Fig. 2(d)-(f), the period of x2(n) is equal to 54, as

s54 has significant period strength. So, the proposed transforms

failed to estimate the period of x2(n), as 40∤54.

Moreover, CCPT estimates the frequency information of a

signal. Fig. 2(g)-(i) depicts the absolute values of transform

coefficients that belong to s18, computed for x1(n). Note

that there are only two significant non-zero coefficients in

s18. Because, in CCPT each ϕ(pi) dimensional spi
is further

decomposed as
ϕ(pi)

2 orthogonal CCSs, where each CCS vpi,ki

consists of signals with frequency 2πki

pi
. Now, in this example

s18 is decomposed as s18 = v18,1⊕v18,5⊕v18,7. Since the

sampling frequency is 360Hz, the CCSs v18,1, v18,5 and

v18,7 consist of signals with frequencies 20Hz, 100Hz and

140Hz accordingly. As the given x12(n) is a 100Hz signal,

the coefficients 15 and 16, which belong to v18,5 are having

significant strength. Along with this, we can find out the phase

information using OCCPT coefficients as given in (32). From

Fig. 2(i), the two significant coefficient values are 0.149 and

−0.261, then −tan−1
(
−0.261
0.149

)
= 1.05 ≈ π

3 = 1.04 rad.
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Fig. 2: (a)-(c) Strength vs Period plots obtained from the three
CCPT coefficients of x1(n). (d)-(f) Strength vs Period plots obtained
from the three CCPT coefficients of x2(n). (g)-(i) Absolute values

of CCPT(1), CCPT(2) and OCCPT coefficients that belong to s18,
computed for x1(n).

Therefore, using the proposed transforms we can estimate

the divisor period, frequency and phase information of a signal.

Even DFT works for the same purpose, while RPT gives only

the divisor period information [17].

Now, we evaluate the period estimation performance of

different transforms (DFT, RPT, and CCPTs) in the presence

of noise. By varying SNRs of x1(n), we compute the strength

of each divisor period using different transforms. Consider the

periods with significant strength, by keeping 20% of maximum

strength as a threshold. The obtained results are tabulated

in Table II. From the table, we claim that the performance

of OCCPT is quite good in the presence of noise and it is

comparable with DFT and RPT, whereas both CCPT(1) and

CCPT(2) are sensitive to noise.

TABLE II: EVALUATING THE PERIOD ESTIMATION PERFORMANCE OF

DIFFERENT TRANSFORMATION TECHNIQUES IN THE PRESENCE OF NOISE

SNR
(dB)

6 3 0 -3 -6 -9 -12

DFT 3,9,18 3,9,18 3,9,18 3,9,18 3,9,18 3,9,18,27,54 3,9,18,27,54

RPT 3,9,18 3,9,18 3,9,18 3,9,18 3,9,18 1,3,9,18 3,6,9,18,27

OCCPT 3,9,18 3,9,18 3,9,18 3,9,18 3,9,18 3,9,18,27,54 3,9,18,27,54

CCPT(1) 3,9,18 9,18 9,18,27,54 3,9,18,54 3,9,18,27,54 9,27,54 9,18,27,54

CCPT(2) 9,18 9,18 9,18 3,9,18,54 9,18,27,54 9,18,54 9,27,54
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In general, the required period may not be a divisor of

the signal length. In the following subsection, this issue is

addressed by considering a dictionary based approach.

B. Non-divisor Period and Frequency Estimation

In this scenario, the signal is projected onto each and every

subspace s1 to sPmax
, instead of projecting only onto the

divisor subspaces (as in NPM). Here Pmax is the maximum

possible period that exists in the signal. This generates a fat

matrix F known as the CCPT dictionary. Since, F is fat,

there exist multiple solutions (b) for the given signal (x)

representation:

[x]N×1 = [F]N×N̂ [b]N̂×1, where N̂ =

Pmax∑

i=1

ϕ(i). (50)

In [14] and [32], the authors proposed a similar kind of ap-

proach for DFT (Farey dictionary) and RPT (RPT dictionary).

Here the non-divisor period estimation is treated as a data

fitting problem to reduce the computational complexity. To get

the best fit of the given signal with the signals having smaller

periods an optimization problem is formulated as follows:

min ||Tb||2 s.t. x = Fb. (51)

Here T is a diagonal matrix consisting of f(pi) as elements

and pi is the period of ith column in F. This has a closed-form

expression for the optimal solution (b̂) as given below:

b̂ = T−2FH(FT−2FH)−1x. (52)

Fig. 3(a)-(c) show the strength of each period present in x2(n)
using CCPT dictionaries with f(pi) = pi

2 and Pmax = 50.

For a detailed dictionary approach and for the results of Farey

and RPT dictionaries refer [14] and [32]. From Fig. 3(a)-(c),

the period of x2(n) is equal to lcm(5, 8).
In addition to this, we can estimate the frequency and phase

information from CCPT dictionary coefficients by following

the same procedure used for CCPT coefficients earlier. Fig.

3(d) shows the absolute values of b̂ obtained using OCCPT

dictionary. Here only 70 coefficients are displayed in the

figure, as the rest of the coefficient values are almost equal

to zero. From Fig. 3(d), the significant non-zero coefficient

indices 19 and 20 are belong to v8,1. It indicates the presence

of 45Hz/315Hz frequency component in the signal. These

values are 0.0927 and −0.0905, then −tan−1
(
−0.0905
0.0927

)
=

0.773 ≈ π
4 = 0.785 rad. So, the proposed transforms can be

generalized to estimate the non-divisor period, frequency and

phase information as well.

1) Analysis of Computational Complexity: In Farey dic-

tionary F∈MN,N̂ , the columns of F follow subspace wise

complex conjugate symmetry. As a consequence, the computa-

tion of (FT−2FH) results in a real matrix involving complex

multiplications. While for CCPT and RPT dictionaries this

computation involves real multiplications. Table III tabulates

the number of real multiplications and additions required for

computing (FT−2FH).
If x(n)∈RN , then b̂ exhibits subspace wise complex conju-

gate symmetry for Farey dictionary. Due to this, the remaining

complexity (apart from (FT−2FH) complexity) in computing
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Fig. 3: (a), (b) and (c)- The strength vs period plots of x2(n) obtained

from the optimal solution (b̂) using CCPT(1), CCPT(2) and OCCPT

dictionaries respectively. (d) Absolute values of optimal solution b̂

computed for x2(n) using OCCPT dictionary.

TABLE III: COMPARISON OF COMPUTATIONAL COMPLEXITY BETWEEN

DIFFERENT DICTIONARIES

CCPT

Dictionary

Farey

Dictionary

RPT

Dictionary

Number of
Multiplications

N2N̂ +NN̂ 4N2N̂ + 2NN̂ N2N̂ +NN̂

Number of
Additions

N2N̂ +NN̂ −
N2 −N

4N2N̂ + 2NN̂ −
2N2 − 2N

N2N̂ +NN̂ −
N2 −N

b̂ is same for both CCPT and Farey dictionaries. If x(n)∈CN ,

this symmetry fails, then CCPT and RPT dictionaries have

a computational advantage over the Farey dictionary. From

Table III, the complexity of CCPT and RPT dictionaries

is approximately 75% less in comparison with the Farey

dictionary. This computational benefit is also evident from

the table given in [14], where the complexity of the Farey

dictionary is compared with different other dictionaries, which

involves real multiplications in computing (FT−2FH) and b̂.

The overall comparison of the proposed transforms with RPT

and DFT is tabulated in TABLE IV.

TABLE IV: COMPARISON OF DIFFERENT TRANSFORMS

Basis

Type

Orthogonality b/w
Transformation

Matrix columns

Period

Information

Frequency
Information

Magnitude Phase

DFT Complex X X X X

CCPT(1) Real × X X ×

CCPT(2) Real × X X ×

OCCPT Real X X X X

RPT Integer
X(If matrix size
is in power of 2)

X × ×

C. Usage of The Proposed Basis in Non-Divisor Subspaces

The usage of non-divisor subspaces in a signal repre-

sentation do not hold the orthogonality between the basis

elements. The proposed bases have computational benefit in

such scenarios. Dictionary based approach discussed above is

one such example. Now we mention another example: Given

a periodic signal x(n), the minimum data length (Nmin)

required to estimate its integer period from a list of candidate

integer periods P = {P1, P2, . . . , PK} is Nmin = max
Pi,Pj∈PPi+
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Pj − (Pi, Pj) [33], [34]. Construct a matrix H∈MNmin
(C)

such that x = Hz, where H includes non-divisor subspaces of

Nmin. For example, let P = {6, 8}, this implies Nmin = 12.

Then H is constructed by using the basis of s1, s2, s3, s4, s6
and s8. Notice that s8 is not a divisor subspace of 12. So H

is a non-orthogonal matrix, then z = H−1x. One can verify

that the H constructed using complex exponential sequences

(or) Ramanujan sums (or) CCPSs is a full rank matrix.

In such scenarios using the real-valued CCPSs as basis is

computationally efficient for the period and its corresponding

frequency estimation over complex exponential sequences.

D. Real-World Example: ECG Signal Analysis

Here the problem of R peak (QRS complex) delineation in

an ECG signal is considered, which is important in many ECG

based applications [35], [36]. We discuss, how to address this

problem using DFT, RPT, and CCPTs. A 10sec ECG data with

a sampling frequency of 500Hz is considered for the analysis

(record number 19 of person 1 from ECG-ID database [37]).

For easy computation, we further down-sampled this data by

a factor of 8, the resultant 625 length signal is depicted in Fig

4(a). Here the period of ECG, i.e., the average RR interval
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Fig. 4: (a) Raw ECG signal. (b) Filtered ECG signal using

DFT and CCPTs (CCPT(1), CCPT(2) and OCCPT).

is 0.7733sec (≈ 48 samples), and 48∤625. As RPT gives only

the divisor period information [17], it fails to estimate the

R peak locations, whereas CCPTs and DFT give frequency

information as well. Moreover, the frequency range of the QRS

complex is 8− 20Hz [16]. So we have reconstructed a signal

(filtered) as shown in Fig. 4(b), by selecting the transform

coefficients (of DFT and CCPTs) corresponding to 8− 20Hz
band. The reconstructed signal from both DFT and CCPTs is

the same, since the basis of DFT is orthogonal and in CCPTs

the basis is CCS wise orthogonal. Now, a better estimation

of R peak locations can be achieved from this filtered signal,

using a standard adaptive threshold algorithm [35].

Addressing the given problem using the dictionary based

approach gives the results as shown in Fig. 5. Here we

considered Pmax = 250 and f(pi) = ϕ(pi). Hence, the period

of the ECG signal is lcm(12, 16, 48) = 48, lcm(12, 16) =
48, lcm(8, 12, 16, 48) = 48, lcm(4, 8, 12, 16) = 48 and

lcm(8, 12, 16, 48) = 48 using CCPT(1), CCPT(2), OCCPT,

RPT and DFT dictionaries respectively. Notice that CCPT(1)

and CCPT(2) are giving some spurious periods, as they are

more sensitive to noise. Now, it is easy to estimate the R peak

location from the period of the ECG signal.
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Fig. 5: (a)-(e) The strength vs period plots of ECG signal obtained

from the optimal solution (b̂) using CCPT(1), CCPT(2), OCCPT, RPT
and DFT dictionaries respectively.

By considering the problem of R peak delineation we

proved that the period and frequency of an ECG signal

can be extracted using the proposed nested periodic matri-

ces/dictionaries. The DFT matrix/dictionary also gives the

same result, but with high computational complexity, whereas

the RPT matrix/dictionary gives only the period information

of an ECG signal.

IX. CONCLUSION

In this paper, we addressed the problem of finite length

signal representation by introducing three NPMs. These NPMs

are constructed by providing alternate bases for CCS using

CCPSs. Out of three NPMs, one has mutually orthogonal

columns, this results in an orthogonal transform named OC-

CPT and the remaining two are non-orthogonal transforms. We

proposed two different interpretations for OCCPT such that

the information about the period and frequency is explicitly

available in each interpretation. In addition, a DIT based fast

computational algorithm is proposed for OCCPT, whenever

the length of the signal is equal to 2v , v∈N. Further, we eval-

uated the performance and computational complexity of the

proposed transforms in period and frequency estimation. The

results are compared with DFT and RPT. The proposed theory

is justified with some simulated and real-world examples.

APPENDIX

Proof of Theorem 2: Let L1≥3, L2≥3,

E =

L−1∑

n=0

c
(1)
L1,k1

(n− l1)c
(1)
L2,k2

(n− l2), (53)
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x1 = 2πk1

L1
and x2 = 2πk2

L2
. Using Euler’s identity and

definition of CCPSs, E can be decomposed as

E =
[

e−j(x1l1+x2l2)
L−1∑

n=0

ej(x1+x2)n

+ e−j(x1l1−x2l2)
L−1∑

n=0

ej(x1−x2)n + ej(x1l1−x2l2)

L−1∑

n=0

e−j(x1−x2)n + ej(x1l1+x2l2)
L−1∑

n=0

e−j(x1+x2)n
]

.

(54)

Since L = lcm(L1, L2) ∃ d1, d2 ∈ Z s.t. L = L1d1 and L =
L2d2. From this

L−1∑

n=0

e±j(x1±x2)n =
1− e±j2π(k1d1±k2d2)

1− e
±j2π(k1d1±k2d2)

L

= 0. (55)

By substituting (55) in (54), we get, E = 0. The above

condition is valid even if L1 = L2 = L and k1 6=k2. If

L1 = L2 = L, k1 = k2 = k and l1 6=l2, then

L−1∑

n=0

e±j(x1+x2)n = 0 and

L−1∑

n=0

e±j(x1−x2)n = L. (56)

In this case E = 2Lcos
(

2πk1(l1−l2)
L1

)

. Combining the above

cases with E =











L, if L1 = L2 = 1 (or) 2

0, if L1 = 1 & L2 = 2

(or) L1 = 2 & L2 = 1

leads to

E = 2LMcos

(

2πk1(l1 − l2)

L1

)

δ(L1 − L2)δ(k1 − k2). (57)

Proof of Circular Shift of a Sequence Property: Using

c
(1)
pi,k

(

((n − m))N

)

=
[

1
2M c

(1)
pi,k

(n)c
(1)
pi,k

(

((−m))N

)

−

M
2 c

(2)
pi,k

(n)c
(2)
pi,k

(

((−m))N

)]

, c
(2)
pi,k

(

((n − m))N

)

=

1
2M

[

c
(2)
pi,k

(n)c
(1)
pi,k

(

((−m))N

)

+ c
(1)
pi,k

(n)c
(2)
pi,k

(

(−m)
)

N

]

and

the synthesis equation given in (20), we can write

x
(

((n−m))N

)

=
∑

pi|N

⌊ pi
2 ⌋∑

k=1
(k,pi)=1

β̂0kic
(1)
pi,k

(n) + β̂1kic
(2)
pi,k

(n),

where m∈Z and

β̂0ki =
1

2M

[

β0kic
(1)
pi,k

(

((−m))N

)

+ β1kic
(2)
pi,k

(

((−m))N

)]

,

β̂1ki =

[
1

2M
β1kic

(1)
pi,k

(

((−m))N

)

−
M

2
β0kic

(2)
pi,k

(

((−m))N

)]

.

(58)

Now using M =

{
1
2
, if pi = 1 (or) 2

1, if pi≥3
, and the definitions of

CCPSs, we can simplify (58) as given in (25).

Proof of Circular Convolution Property: Given x(n) =
x1(n)⊛x2(n), then using (22) we can write

β0ki =
1

2NM

N−1∑

n=0

[
N−1∑

l=0

x1(l)x2

(

((n− l))N

)
]

c
(1)
pi,k

(n).

Let n − l = r, then β0ki = β̂0ki

2M P − Mβ̂1ki

2 Q, where

P =
N−1−l∑

r=−l

x2

(

((r))N

)

c
(1)
pi,k

(r) = 2NMβ̃0ki and Q =

N−1−l∑

r=−l

x2

(

((r))N

)

c
(2)
pi,k

(r) = 2NMβ̃1ki. Hence

β0ki = N
[

β̂0kiβ̃0ki −M2β̂1kiβ̃1ki

]

. (59)

Similarly, we can derive

β1ki = N
[

β̂0kiβ̃1ki + β̂1kiβ̃0ki

]

. (60)

Equation (27) is an immediate consequence of these equa-

tions (obtained by substituting M value).

Proof of Parseval’s Relation: Using the orthogonal CCPT

synthesis equation, we can write

N−1∑

n=0

|x(n)|2 =

N−1∑

n=0

x(n)x∗(n) =
∑

pi|N

⌊
pi
2 ⌋
∑

k=1
(k,pi)=1

∑

pj |N

⌊ pj
2

⌋

∑

k1=1
(k1,pj)=1

N−1∑

n=0

(

β0ki

(

β0k1j

)∗
c
(1)
pi,k

(n)c
(1)
pj ,k1

(n)
︸ ︷︷ ︸

T1

+β0ki

(

β1k1j

)∗
c
(1)
pi,k

(n)c
(2)
pj ,k1

(n)
︸ ︷︷ ︸

T2

+ β1ki

(

β0k1j

)∗
c
(2)
pi,k

(n)c
(1)
pj ,k1

(n)
︸ ︷︷ ︸

T3

+β1ki

(

β1k1j

)∗
c
(2)
pi,k

(n)c
(2)
pj ,k1

(n)
︸ ︷︷ ︸

T4

)

.

Now using Theorem 3, the terms T2 = T3 = 0 over

0≤n≤N − 1. Similarly, using Theorem 2, the terms T1 =
T4 = 2NM , whenever pi = pj and k = k1. This implies

N−1∑

n=0

|x(n)|2 =
∑

pi|N

⌊ pi
2 ⌋∑

k=1
(k,pi)=1

2NM
[
|β0ki|

2 + |β1ki|
2
]
. (61)
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