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Abstract

Public perceptions and sentiments play a crucial role in the success of vaccine uptake

in the community. While vaccines have proven to be the best preventive method to

combat the flu, the attitude and knowledge about vaccines are a major hindrance

to higher uptake in most of the countries. The yearly coverage, especially in the

vulnerable groups in the population, often remains below the herd immunity level

despite the Flu Awareness Campaign organized by WHO every year worldwide. This

brings immense challenges to the nation’s public health protection agency for strategic

decision-making in controlling the flu outbreak every year. To understand the impact of

public perceptions and vaccination decisions while designing optimal immunization

policy, we model the individual decision-making as a two-strategy pairwise contest

game, where pay-off is considered as a function of public health effort for the cam-

paign. We use Pontryagin’s maximum principle to identify the best possible strategy

for public health to implement vaccination and reduce infection at a minimum cost.

Our optimal analysis shows that the cost of public health initiatives is qualitatively

and quantitatively different under different public perceptions and attitudes towards

vaccinations. When individual risk perception evolves with vaccine uptake or disease

induced death, our model demonstrates a feed-forward mechanism in the dynamics of

vaccination and exhibits an increase in vaccine uptake. Using numerical simulation,

we also observe that the optimal cost can be minimized by putting the effort in the

beginning and later part of the outbreak rather than during the peak. It confers that

public health efforts towards disseminating disease severity or actual vaccination risk

might accelerate the vaccination coverage and mitigate the infection faster.

Keywords Vaccination · Herd immunity · SIR model · Free-riding behaviour ·
Evolutionary game theory · Pontryagin’s maximum principle
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1 Introduction

Public health department of every country faces several challenges—economical,

infrastructure, epidemiological, political and social—to prevent and control influenza

every year. Among these, individual or patient-level perceptions about vaccinations

are paramount. Despite the flu awareness program each year by the World Health

Organization (WHO), influenza vaccination coverage among high-risk groups has

nonetheless been declining in a number of countries, especially, in the WHO Euro-

pean Region in recent years (Jones 2012). Local beliefs, lack of trust in the health care

system, misperception about the probability of infection, indigenous health practices

to avoid or treat influenza and such other factors result in low vaccination cover-

age (Bukhsh et al. 2018; Strelitz et al. 2015). Individuals decide vaccination only

when they perceive high levels of risk from disease; otherwise, they are more likely

to evade vaccination, even if vaccines are available at the beginning of the outbreak

(Arda et al. 2011; Li et al. 2012; Shahrabani and Benzion 2010; Seale et al. 2010;

Baguelin et al. 2013; Shim 2013). A recent study by Center for Disease Control and

Prevention (CDC), USA, found out persistence of many barriers to vaccine accep-

tance in public including healthcare workers (HCW)—some of which may include

limited understanding of influenza and immunization recommendations, indications

of greater subgroup recognition of the value of flu vaccination, continued resistance

to vaccinations, and overestimation of the effectiveness of non-vaccine measures, and

many other religious misperceptions (Nowak et al. 2015). This, however, incurs a huge

economic burden on the nation. Previous experience such as (H1N1, 2009) pandemics

has demonstrated substantial health and economic loss across the world (Donaldson

et al. 2009). According to the WHO estimates, worldwide annual epidemics are esti-

mated to result in about 3 to 5 million cases of severe illness, and about 290,000 to

650,000 respiratory deaths (Danielle Iuliano et al. 2018; GBD 2018).

Classical game theory provides a framework to understand such strategic inter-

actions between epidemiology and human vaccinating behaviour under voluntary

vaccination policy. Behaviour–prevalence models based on evolutionary game the-

ory have shown how ‘herd immunity’ can lead to ‘free-riding’ behaviour in voluntary

vaccination game. Studies have considered the evolution of strategies through imitation

dynamics to show how successful strategies are adopted by members of the population

(Bauch 2005; d’Onofrio et al. 2012; Bhattacharyya and Bauch 2012, 2011; Galvani

et al. 2007; Reluga et al. 2006; Reluga 2010; Reluga and Galvani 2011; d’Onofrio

et al. 2007, 2011). On the other hand, there are ample modelling works that high-

light on the dynamic vaccination during seasonal influenza and pandemic (Bowman

et al. 2011; Baguelin et al. 2012; Mercer et al. 2011; Basta et al. 2009), considering

strategic allocation of vaccination such as the time when and how long vaccination

should be continued, identifying specific age class in population, optimal distribution

of vaccines for minimizing infection and severe outcomes from it such as deaths or

hospitalization (Bowman et al. 2011; Matrajt and Longini Jr 2010; Patel et al. 2005;

Verriest et al. 2005; Gaff and Schaefer 2009; Medlock and Meyers 2009; Lee et al.

2012; Ullah et al. 2012). Such works, in a more theoretical context, characterize the

complexity of dynamic vaccination, frame as an optimal control problem and solve the

optimality system indicating its type and possible singularities. However, optimizing
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public health effort (such as publicizing vaccination and media coverage of infection)

under voluntary vaccination and incorporating human vaccination behaviour during

an influenza outbreak remain elusive. A recent work by the same authors, in simpler

framework, incorporates human decision-making in the optimal budget allocations for

controlling infectious disease (Deka and Bhattacharyya 2019).

In this paper, we consider a framework combining compartmental SIR model for

disease dynamics and evolutionary game theory to describe human decision-making

under voluntary vaccination during a flu outbreak. To understand the impact of time-

dependent public health effort on minimizing the disease burden in the population, we

also incorporate the effect of awareness campaign by public health agency in the utility

of vaccination game using different functional forms. Applying Pontryagin’s maxi-

mum principle (PMP) on the prevalence—behaviour model, we observe that under

different functional forms, model exhibits qualitatively and quantitatively different

patterns in the epidemic outbreak and optimal cost due to public health effort. The

dynamics of vaccination and disease intimately depends on individual risk perceptions

that influenced by information such as current vaccine coverage or disease induced

death. A numerical simulation of the model also highlights that optimal cost from

infection is much higher when there is a delay in initiating the control effort in the

beginning. On the contrary, policymakers may reduce the allocation of budgets dur-

ing the peak of the outbreak or when there is high death or hospitalization rate, and

yet the disease burden will not escalate. The perceived risk of vaccine and infection

evolves over time, and therefore, understanding the strategic interplay between indi-

vidual behaviour and disease dynamics informed by perceived vaccine and disease

costs during such voluntary involvement may guide policymakers to reduce the cost

and their effort in controlling a disease outbreak.

The article is framed as follows: In Sect. 2, we describe the game-theoretic model

of vaccination dynamics and integrate with compartmental disease prevalence model.

We also define public health effort and develop optimal control problem. In Sect. 3,

we analyse our optimization problem using Pontryagin’s maximum principle (PMP)

and deduce the optimal solution. In Sect. 4, we analyse our model with varying per-

ceived risk of vaccination and disease deaths using PMP. In Sect. 5, we present our

numerical results through simulations. Finally, in Sect. 6, we conclude our findings

with limitations.

2 Model and Assumptions

For disease transmission, we consider a homogenous well-mixed population. For

simplification, we assume that there is no birth and death (natural) in populations.

(Influenza outbreak lasts for half a year or so.) The immunity of the vaccine lasts even

less than a year, and there is no control measure other than vaccination. We further

assume that the vaccine is new, and hence, individuals’ perceptions about the vaccine

risks are much higher at the beginning of the outbreak.
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2.1 Disease Prevalence Model

We consider compartmental SIR model for the disease transmission, where the total

population is divided based on the disease status as susceptible (S), infected (I ) and

recovered (R) (Anderson and May 1992). We can write the combined system of equa-

tion as

dS

dt
= −βSI

dI

dt
= βSI − γ I

dR

dt
= γ I (1)

The parameter β is the mean transmission rate of the infection, and 1/γ is the mean

infectious period of the population. In this framework, we assume the population is

homogeneous, strongly mixed. It is closed population, and the duration of infections

is exponentially distributed. The initial condition is S(0) ∼ 0.99 and I (0) ∼ 0.01.

2.2 Vaccination Decision: Game-Theoretic Model

In our vaccination population game, individuals’ perception about vaccination evolves

with time depending on disease prevalence. We model the vaccination decision as two-

strategy pairwise contest game (Hofbauer and Sigmund 1998).

In this game, we define the population state as x(t) = (x1(t), x2(t)), and let Sn =
{V , NV} be the two pure strategies of the population. Suppose x1(t) is the fraction of

population using strategy V (vaccination) per unit time (day) and x2(t) = 1− x1 is the

fraction of population using strategy NV (non-vaccination) per unit time. Following

the derivation given in Hofbauer and Sigmund (1998), we have the growth equation

of the vaccinator population as:

ẋ = x(1 − x)(π(V , x) − π(NV, x)) (2)

Similarly for x2 = 1−x , i.e. individuals who switch from vaccinator to non-vaccinator

strategy, we will arrive at the same Eq. (2). This is same as the replicator equation in

the evolutionary game theory (Hofbauer and Sigmund 1998).

Under voluntary vaccination campaign during an outbreak such as influenza, it was

observed that individuals perceptions are related to the safety of the vaccine, socio-

economic and religious view and also the perceived probability of suffering significant

morbidity upon infection (Rogers et al. 2018). Thus, the fitness cost of vaccination or

non-vaccination depends on such vaccine safety, and risk of morbidity upon infection.

Individuals also tend to reap the benefits of herd immunity and therefore try to evade

vaccination when the vaccine coverage is about the social optimum and goes for

vaccination more readily when coverage is critically low (Bauch and Bhattacharyya

2012).
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We consider the perceived pay-off for adopting vaccinator strategy is

π(V , x) = −rv, (3)

where rv is the probability of suffering significant morbidity from the vaccine.

The perceived pay-off for adopting non-vaccinator strategy is

π(NV, x) = −rim × disease status (4)

where ri is the probability of suffering significant morbidity upon infection, and param-

eter m quantifies the sensitivity of vaccinating behaviour that tends to change with the

disease status. Individual may depend on current disease prevalence I (t) or daily

new infections βS(t)I (t) for perceiving the disease status. We discuss both cases in

this paper, and the results of the model with daily new infections βS(t)I (t) are in

Supplementary Information (Sect. S2).

However, the pay-off matrix, when individual would interact with other members

in the population and calculate the pay-off for other strategy, is as follows:

Player Y

V NV

Player X

V (−rv,−rv) (−rv, −rim I )

NV (−rim I ,−rv) (−rim I ,−rim I )

Thus, the evolutionary equation of frequency of vaccination strategy is given by

ẋ = x(1 − x)(−rv + rim I (t)). (5)

We can define the expression ∆E := −rv + rim I as the pay-off gain to switch one

strategy to the other. Note that individuals would tend to switch their strategy, provided

other members of the population who have adopted a different strategy get a higher

pay-off. If ∆E > 0, a non-vaccinator changes its strategy to a vaccinator strategy,

and when ∆E < 0, a vaccinator chooses not to vaccinate, and thus, frequency of

vaccinators decreases (Fig. 1).

This equation may be interpreted as imitation dynamics in vaccination decision. It

may be assumed that individuals randomly sample other members of the population

during the decision and imitate their strategies provided it gives them a higher pay-off,

where the parameter k is the sampling rate (Bauch 2005; Reluga et al. 2006).

However, Eq. (5) is the same as replicator equation in evolutionary game theory

(Hofbauer and Sigmund 1998).
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Fig. 1 Schematic of switching

between strategies where ∆E is

the pay-off gain for adopting

strategies vaccination and

non-vaccination

E < 0

Vaccination

E > 0

 Non-Vaccination

2.3 Public Health Effort andVaccinating Decision

Public health ministries initiate vaccine campaign, media awareness on vaccine safety

and availability, forecasting disease prevalence, etc., for controlling the outbreak. They

have a limited budget which they disburse over the period of the entire outbreak. This

public health effort works as an incentive for individual vaccinations. In our model,

we consider u(t) ∈ [0, umax] is the public health initiative during the course of the

outbreak, and f (u(t)) denotes the change in public perceptions considering this as

an incentive for vaccination. This, however, impacts the pay-off gain of individual

decision in vaccination. As we have no empirical support how such public health

initiative impacts public perceptions, we analyse the model system assuming f has

different functional forms like linear, exponential, quadratic, hyperbolic, and square

root. Coupling this incentive from the policymakers, the new pay-off for individuals

would be

− rv + rim I + f (u(t)) (6)

We integrate the disease model and vaccination decision model including the effect

of public health effort to get the final model:

dS

dt
= −βSI − x S

dI

dt
= βSI − γ I

dR

dt
= γ I

dx

dt
= kx(1 − x)(−rv + rim I + f (u)) (7)

with similar assumptions and initial conditions like the basic model (1), with x(0) =
x0 > 0, as there is always some advance vaccinators in any real population. This

type of behaviour–prevalence model had also been introduced as special case earlier

(Bauch 2005; Bauch and Bhattacharyya 2012; Deka and Bhattacharyya 2019).
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3 Formulation of Our Objective Function

Our objective is to reduce the number of new infections through vaccination and also

the cost due to public health effort. New incidence is always a better measure than

disease prevalence from public health perspective. The formulation of our objective

function which is to be maximized over a set of control parameters is defined as

follows:

J (u) =
∫ T

0

[−cIβS(t)I (t) − ηu(t)]dt, (8)

where η is the cost of per unit public health initiative u(t) and cI is the cost of infection

per new infective. (S, I , R, x)(0) = (S0, I0, R0, x0) and T = inf{t |I (t) is near zero

or infection dies out}. As discussed above, we have also the constraint
∫ T

0 u(t)dt ≤
T umax.

It may be worthwhile to discuss here how we choose T , the terminal time in the opti-

mal control. Theoretically, the end of the epidemic in such models system (7) is not well

defined, because the number of infected individuals approaches zero asymptotically

as time approaches infinity. So, it is not immediately clear how best to choose T , espe-

cially for practical purpose. Hence, the three usual options are available: (i) T = ∞, (ii)

T = Tmax, where Tmax is sufficiently large constant, and (iii) T = inf{t |I (t) = Imin},
where Imin is such a minimum values of infection that can be assumed to indicate the

end of epidemic.

In case of (i), there may have potential problem to occur at the very large values

of t by the model system, which may further impact the optimal control problem. For

example, suppose u(t) is nonzero, and then, at some large values of t = t1, I (t1) << 1.

As it satisfies the extra constraint on u(t):
∫ T

0 u(t)dt ≤ T umax, u(t) may be 0 for all

t > t1. In such case, if İ (t) > 0 ∀ t > t1, however, then there will be another

peak of infective before the epidemic dies out completely. We can avoid such unusual

behaviour by considering T is finite. Also for practical purpose, it is more acceptable

in optimal control that T is finite. In case of (ii), it is not clear how large we should

take T in order to coincide with a reasonable interpretation of the end of the epidemic.

Option (iii) I (t) = Imin avoids both of these difficulties, because manually chosen

Imin indicates the termination of the epidemic in a finite time. In our simulation, we

have chosen Imin a very low value, which reflects one flu outbreak in a year.

3.1 The Optimal Control Problem

We analyse the behaviour of our model in Eq. (7) by using the optimal control theory

for different choices of f (u). We seek the optimal control u∗ for our objective function

given in Eq. (8) such that

J (u∗) = max{J (u) : u ∈ Ω}
where Ω is the control set defined by

Ω = {u : 0 ≤ u(t) ≤ umax , t ∈ [0, T ]}

123



139 Page 8 of 23 A. Deka et al.

3.2 Solution of the General Problem

Theorem 1 (a) There exist optimal control u∗ ∈ Ω and solutions of S∗, I ∗, x∗ such

that J (u∗) = max J (u) over [0,T]. Further there exist adjoint variables λS , λI ,

λx satisfying the adjoint equation

dλi

dt
= −

∂ H(t, x∗, u∗, λ)

∂i
, i = S, I , x

with transversality condition λ∗
S(T )= λ∗

I (T )= λ∗
x (T )=1.

(b) The optimal control u∗ which maximizes J over the region Ω is given by u∗(t) =
min(u∗

k , umax) where u∗
k is obtained from equation

f ′(u∗
k) =

η

λx kx∗(1 − x∗)
. (9)

Proof We use the help of Lenhart et al. (2007) to prove the existence of the theorem.

(a) The integrand J (u) =−cIβS(t)I (t) − ηu(t) is convex with respect to u(t) on the

control set Ω .

(b) The state system is Lipschitz with respect to the state variables, and also, the

control variable u ∈ Ω is also closed and bounded by the definition.

Therefore, there exists an optimal control for minimizing the objective functional

subject to the constraint. We apply Pontryagin’s maximum principle to derive the

necessary conditions to find the optimal solutions as follows:

We construct the Hamiltonian from the disease dynamics and the objective function

H((S, I , x)(t), u(t), λ(t), t) = −cIβSI − ηu(t) + λS A + λI B + λx C (10)

where

A = −βSI − x S

B = βSI − γ I

C = kx(1 − x)(−rv + rim I + f (u)) (11)

λS , λI , λx are the associated adjoint variables for the states S, I, x, respectively.

The adjoint equations evaluated at the optimum are given by

λ′
S(t) = −

∂ H

∂S
= cIβ I ∗ + λS(β I ∗ + x∗) − λI β I ∗

λ′
I (t) = −

∂ H

∂ I
= cIβS∗ + λSβS∗ − λI (t)(βS∗ − γ ) − λx kx∗(1 − x∗)rim

λ′
x (t) = −

∂ H

∂x
= λS S∗ − λx [k(1 − 2x∗)(−rv + rim I ∗ + f (u∗))] (12)

(b) We use the Pontryagin maximum principle to differentiate the Hamiltonian H with

respect to u on the set Ω:
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∂ H

∂u
= 0

upon simplifying which gives

f ′(u∗
k) =

η

λx kx∗(1 − x∗)
.

⊓⊔

Remark 1 This, however, gives different forms of u∗
k , when different forms of function

f are chosen:

(i) Square root: f (u) = ξ
√

u(t) then
√

u∗
k = ξλx kx∗(1−x∗)

2η

(ii) Hyperbolic: f (u) = ξu(t)
b+cu(t)

, then u∗
k = ξ

√
λx kx∗(1−x∗)bξ

c
√

η
− b

(iii) Quadratic: f (u) = ξu2(t), then u∗
k = η

2ξλx kx∗(1−x∗)

(iv) Exponential: f (u) = eξu(t), then u∗
k = 1

ξ
log(

η
ξλx kx∗(1−x∗) )

When f (u) is linear in u, the control is Bang–Bang, and we separately present this

case in Supplementary Information.

4 Optimal Public Health Effort in Varying Perceived Risk of
Vaccination and Disease Deaths

Individuals risk perception about vaccines is much higher in the beginning, as in most

cases, the vaccines are new (Gerdil 2003; Carrat and Flahault 2007). However, the per-

ception declines among the population as more individuals vaccinate, and the vaccine

safety information spreads in the population. More and more people become aware of

the misperception of the adverse effects of vaccine risks through the word of mouth,

more they choose to vaccinate. On the other hand, increased deaths and hospitaliza-

tions due to severity from infection also motivate individuals for vaccination (Louie

et al. 2009; Viboud et al. 2006). This is due to the fact that the pay-off of vaccinator

strategy becomes higher than the non-vaccinator strategy and herd immunity level has

not been attained in the community.

Here, we assume that the perception of the vaccine risks declines exponentially with

increasing vaccine coverage Vd , and the pay-off for vaccination increases linearly with

increasing deaths. Incorporating this pay-off in our model of Eq. (7) with f (u) = ξu,

we arrive at

dS

dt
= −βSI − x S

dI

dt
= βSI − γ I − dI

dx

dt
= kx(1 − x)(−rve−δVd + ad I + rim I + ξu)

dVd

dt
= x S, (13)
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Vd is the compartment of vaccine uptake. The parameters δ and a are sensitivity

parameters in response to vaccination and death, respectively. We also consider the

objective function J (u) is quadratic in u, i.e.

J (u) =
∫ T

0

[−cIβS(t)I (t) − ηu2(t)]dt,

Theorem 2 For optimal public health effort with varying perceived risk of vaccination,

there exist optimal control u∗ ∈ Ω and solutions of S∗, I ∗, x∗ and V ∗
d from model

(13) such that J (u∗) = max J (u) over [0,T]. Further there exist adjoint variables λS ,

λI , λx and λVd
satisfying the adjoint equation

dλi

dt
= −

∂ H(t, x∗, u∗, λ)

∂i
, i = S, I , x and Vd

with transversality condition λ∗
S(T ) = λ∗

I (T ) = λ∗
x (T ) = λ∗

Vd
(T ) = 1.

(b) The optimal control u∗ which maximizes J over the region Ω is given by u∗ =
min{u∗

k , umax} where u∗
k is defined by

u∗
k =

ξλx kx∗(1 − x∗)

2η
.

Proof (a) The proof is similar to Theorem (1). The Hamiltonian with model (13) is as

follows,

H((S, I , x)(t), u(t), λ(t), t) = −cIβSI − ηu(t)2 + λS A + λI B + λx C + λVd
D,

(14)

where

A = −βSI − x S

B = βSI − γ I − d I

C = kx(1 − x)(−rve−δVd + ad I + rim I + f u(t))

D = x S

λS , λI , λx , λVd
are the associated adjoint variables for the states S, I, x, Vd , respec-

tively. The adjoint equations evaluated at the optimum are given by

λ′
S(t) = −

∂ H

∂S
= cIβ I ∗ + λS(β I ∗ + x∗) − λI β I ∗ − λVd

x∗

λ′
I (t) = −

∂ H

∂ I
= cIβS∗ + λSβS∗ − λI (t)(βS∗ − γ − d)

−λx kx∗(1 − x∗)(rim + ad)

λ′
x (t) = −

∂ H

∂x
= λS S∗ − λx [k(1 − 2x∗)(−rve−δVd
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+ad I ∗ + rim I ∗ + f (u∗))] − λV S∗

λ′
Vd

(t) = −
∂ H

∂Vd

= −λx kx∗(1 − x∗)rvδe−δVd (15)

(b) The proof is similar to Theorem (1).

⊓⊔

Remark 2 Note that there is no empirical support that how individual perceptions

change with available vaccine safety information or death due to severity from infec-

tion. Here, we explored cases with exponential functions for vaccination risk and

linear with disease death. However, we also analyse the situation when both are linear

functions and details are given in Supplementary Information (Fig. S5).

5 Numerical Results

We numerically simulate the model Eq. (7) and adjoint Eq. (12) using forward–

backward sweep iterative method with a fourth-order Runge–Kutta scheme to obtain

the optimal solution (S∗, I ∗, x∗) and u∗ in different situations discussed in earlier

sections. Starting with initial guesses for the controls, the state equations are solved

forward in time. Then, those state values are used to solve the adjoint equations back-

ward in time. The controls are updated, and the process is repeated until convergence

is reached (Lenhart et al. 2007). We have calibrated the parameters to replicate flu-like

diseases and scaled umax to 1 for all simulations in this study. The parameter range is

provided in Table 1.

5.1 HumanVaccinating Behaviour Conserves the Timing and Size of Peak of the

Outbreak

It is observed in a compartmental epidemic model that the peak of the outbreak changes

with an increase in transmissibility of infection. For example, the peak size increases

and peak timing shifts towards left with the increase in basic reproduction ratio (R0).

Figure 2a depicts an increase in basic reproduction ratio R0 from 2 to 4, the peak of

the outbreak moves towards the left (200 to 100 days). In contrast, if we incorporate

behavioural aspect of individuals in the model, it is observed that the peak of the

outbreak is conserved even for different values of basic reproduction ratio R0 from

2 to 4. Figure 2b illustrates that the peak of the outbreak is within the same time

interval, i.e. first 30 days. This can be attributed to individuals risk perceptions and

vaccination decision. Advance and early vaccination becomes more common as R0

increases. Individuals experience a higher force of infection with increased R0 and

hence will seek vaccination early during the onset of the outbreak. This works as a

feedback mechanism to keep the peak timing unchanged: higher R0 stimulates more

individuals to adopt advance or early vaccination to fend off infection, which, in turn,

counteracts the effect of higher R0 by delaying the epidemic peak.
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Fig. 2 Timing of outbreak for an influenza model with respect to varying disease transmissibility a without

vaccination behaviour, b with individual vaccinating decision included. Here, we have consider u = 0, and

the parameter values are defined in Table 1. The results highlight that the peak of the outbreak is conserved

when we consider the human vaccinating behaviour

5.2 Optimal Public Health Effort andVaccination

Public perceptions and sentiments towards awareness program, vaccination campaign

or healthcare service, especially, during an epidemic play a major role behind the suc-

cess story of disease management strategies. Here, we have used different functional

forms to simulate the model that how public health effort during an epidemic may act

as an incentive for individual decision-making in vaccination. Among four different

incentive functions—exponential, quadratic, hyperbolic and square root—we see that

exponential and quadratic are more effective, as the peak size is lowest, vaccine uptake

is higher, and the underlined optimal cost is minimum (Fig. 3). In contrast, hyperbolic

and square root functional forms exhibit less impact on reducing the infection, and

optimal cost is also very high compared to the other two functional forms. The linear

function defines Bang–Bang control, which we discuss in Supplementary Information

(Sect. S1). Thus, different forms of public perceptions and attitudes towards health-

care service may bring interesting qualitative difference in the dynamics of disease

outbreak and may incur different optimal public health costs in disease management.

To experiment more on these qualitative and quantitative differences and their depen-

dence on the sensitivity parameter ξ and disease transmission parameter R0, we

simulate the model Eq. (7) and plot the cumulative incidence, optimal control, total

cost and daily proportion of vaccinators under different values of ξ , and R0. Higher ξ

defines that the individuals are more sensitive towards public health measures.

Figure 4 shows the effect of variations in R0 and the sensitivity parameter ξ . Higher

R0 increases the cumulative infection, which increases the optimal public health effort

and cumulative cost for controlling the disease. The interesting observation is that the

daily proportion of vaccinators (x) increases only when there is enough sensitivity

from the public health officials. As the parameter ξ increases, the daily proportion

of vaccinators also increases. The results highlight that policymakers should be very

sensitive and give optimum effort to inform the public about the severity of the disease,

when the actual risk is very high. Here, we demonstrate the plot (Fig. 4) with the
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Fig. 3 Disease dynamics under different control functions (exponential, hyperbolic, quadratic and square

root): a Infectives, b daily proportion of vaccinators, c cumulative public health effort, d cumulative cost

(absolute value) due to infection and control. Parameter regimes are k = 9, C I = 1, η = 0.95, and other

parameter values are defined in Table 1

Fig. 4 Dynamics of disease and vaccination of the optimal control model (7) under different values of R0

and ξ (sensitivity of public health towards disease prevalence). The control function is taken as hyperbolic:

f (u) = ξu(t)/(b + cu(t)). a Cumulative infective, b daily proportion of vaccinators, c cumulative effort

from public health and d cumulative cost (absolute value). Here, the parameter regimes are η = 0.95,

rv = 0.00001, rI = 0.01, k = 4. Other parameter values are defined in Table 1

hyperbolic functional form of public perceptions, and analysis for other forms is given

in Supplementary Information (Figs. S2–S4).

5.3 Optimal Effort with Delay and Gap During Outbreak

The serotype of influenza strain changes every year through antigenic drift, and hence,

in most of cases, the vaccine does not work for the next year (Liu et al. 2012). Individ-

uals have almost no immunity from current year’s vaccine against the new strain that

may emerge in the next year. This, however, increases the transmission of pathogen

in the beginning, which makes a serious challenge to public health officials for the
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Fig. 5 Schematic diagram of public health effort with number of days in delay and gap. The parameter τ

is the period of no effort from public health

timely delivery of vaccines. In the past, even developed nations are unable to provide

sufficient vaccine to tackle the outbreak such as 2004–2005 influenza vaccine shortage

in the USA (Engler et al. 2008; Ferguson et al. 2006).

We assume that every year a new influenza vaccine is developed and individuals

have no idea about the side effects of the vaccine which makes their perception about

the vaccine risk much higher in the beginning, and so, they avoid getting vaccinated

(Brewer and Hallman 2006). From the game-theoretic perspective, in such cases,

delaying vaccination can be the best strategy as individuals can reap the benefit of

herd immunity provided by the early vaccinators. But, if everyone tends to delay

vaccination at the beginning, ultimately the herd immunity level is never achieved.

When no individual goes for vaccination, the disease prevalence rapidly increases

and an outbreak emerges. On the other hand, when the infection reaches its peak,

individuals may tend to go for vaccination, because it gives a higher pay-off as opposed

to the non-vaccinator strategy. At the high infection rate, there will have minimal

impact of vaccination campaign, economic and social issues on increasing the vaccine

coverage.

Here, we explore how rapid or late deployment of public health interventions during

an outbreak may impact the voluntary vaccination dynamics and disease prevalence.

Policymakers may have limited resources at its disposal to control infections. They

may employ two policies—they will wait and employ control only when the outbreak

reaches a certain level or they might provide control only at the beginning or late

of the outbreak when individual initiative for vaccination is less due to low disease

prevalence.

To test the hypothesis, we implement this both on behavioural model (7) and a non-

behavioural model of vaccination and disease transmission. In the non-behavioural

model, we assume that vaccine uptake rate proportionately increases with the public

health effort u(t) irrespective of disease prevalence. We consider two scenarios in each

case: (1) Fig. 6, where the policymakers delay from 1 to 20 days in providing the effort

in the beginning, whereas (2) Fig. 7, where the policymakers do not initiate any effort

for even number of days ranging from 2–20 days during the peak of outbreak, (1–10

days on either side of the peak of the outbreak). Our analysis shows that under a game-

theoretic approach, policymakers should be proactive at the beginning of an outbreak.
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Fig. 6 Analysis of our model with initial delay in release of effort from public health. Delay from the public

health could be due to unavailability of vaccine at the onset of the outbreak or due to insensitivity owing

to low disease prevalence (see Fig. 5 for reference). The control function for behaviour model is taken as

square root. a Cumulative control, b cumulative cost (absolute value), c cumulative infection. Here, the

parameter regimes are R0 = 4, rv = 0.00001, rI = 0.01, k = 7, ξ = 0.9, η = 0.95. Other parameter

values are defined in Table 1
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Fig. 7 Analysis of our model with gap in release of effort from public health. There is no public health

effort implemented during the gap (see Fig. 5 for reference). The control function for behaviour model is

taken as square root. a Cumulative control, b cumulative cost (absolute value), c cumulative infection. Here,

the parameter regimes are R0 = 4, rv = 0.00001, rI = 0.01, k = 7, ξ = 0.9, η = 0.95. Other parameter

values are defined in Table 1

From Fig. 6c with initial delay, the cumulative incidence increases rapidly (from 0.37

to 0.57), whereas from Fig. 7c with a gap during the peak of the outbreak, there is

almost no increase in the disease prevalence. The interesting observation is that the

optimal effort and cumulative cost for disease management increase as the initial delay

increases from the public health (Fig. 6a and b). However, the scenario is opposite in

case of public health effort with gap—both optimal effort and total cumulative cost
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Fig. 8 Analysis of the model (13) where the perceived risk of vaccine declines with increased uptake. Here,

δ (0–15) is the sensitivity to decline perceived risk of vaccine and ξ is the sensitivity parameter for control

of public health. Higher δ indicates that the perception of the vaccine risk is declining exponentially. Higher

ξ (0–0.6) implies that public health effort is more proactive. The control function for behaviour model is

taken as square root. a Cumulative infective, b daily proportion of vaccinators, c cumulative public health

effort, d cumulative cost. Here, the parameter regimes are R0 = 3, rv = 0.02, rI = 0.05, k = 4, η = 0.95.

Other parameter values are defined in Table 1

decreases significantly (Fig. 7a and b). This difference in the dynamics observed as

the initiation of public health effort, in the beginning, increases the daily vaccination

level in such a high level. The high vaccination uptake, in the beginning, feeds back on

the disease prevalence and reduces the incidence level for future, which all together

keeps the incidence level similar even if the number of days without control increases

during the peak.

In contrast, it is observed that the optimal cost and the disease prevalence both are

increasing in the non-behavioural model, in either of the delay or gap in the public

health initiatives during the outbreak period. This indicates that initiation of public

health effort during beginning and late of the outbreak is much more cost-effective

than delaying in the beginning, when behavioural interaction is taken as a component

of the vaccination dynamics. Hence, our results illustrate that understanding individual

vaccinating behaviour is an important component that should be included in public

health policy decision-making to control and manage a outbreak.

5.4 Impact of Declined Risk Perceptions onVaccination Decision

We assumed that a new vaccine has been launched for the influenza outbreak. The

vaccine has not been used earlier, and nothing much has been known regarding its

safety and impact. Under these circumstances, individuals perceived vaccine risk is

much higher initially. We have assumed that initially, the perceived risk of the vaccine

is (rv = 0.01) which is much higher than the perceived risk of infection (rI = 0.001).
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Fig. 9 Dynamics of disease and vaccination under disease death (13). Here, we investigate how with varying

disease deaths or hospitalization rates, the disease dynamic changes. The lines in the figure signify varying

disease death rate (d) in the population. The control function for behaviour model is taken as square root. a

Cumulative infective b daily proportion of vaccinators, c cumulative public health effort and d cumulative

cost (absolute value). Here, the parameter regimes are R0 = 4, rv = 0.01, rI = 0.001, k = 4, ξ = 0.95,

η = 0.95. Other parameter values are defined in Table 1

With increasing daily vaccinators, the perception of the vaccine risks declines as it

spreads the information in the population about vaccine safety. The parameter δ defines

the sensitivity of reduction due to increase in the vaccination coverage. Figure 8

shows that when the parameter δ increases from 0 to 15, i.e. the perceived risk of

vaccine declines, so vaccination coverage increases (8b). As a result, the cumulative

number of infective also declines (8a). A similar trend in the dynamics of cumulative

effort (8c) and in the total cost of managing the disease (8d) is also observed. This

demonstrates a feed-forward mechanism in the model—more people vaccinate, more

news of vaccine safety spreads in the population, and this increases the incentives of

vaccinations for others and so cumulative vaccine uptake increases. A similar trend

in the qualitative dynamics is observed when decline of risk is assumed as linear

function of the cumulative vaccine uptake (Fig. S5 in Supplementary information).

This, however, signifies the role of public health during the outbreak—they need to

act at the beginning of the outbreak, and disseminate information about vaccine safety

through more media coverage—rather than putting their effort during the peak.

5.5 Disease Death from Infection Impacts the Vaccination Behaviour

Here, we explore how the dynamics of the decision evolves when there is death due to

disease severity. Increased death from infection works as an incentive for an individual

for vaccination. Figure 9 shows the influence of increased death rates (0.0001–0.01). As

shown in Fig. 9b, there is a significant increase in the daily proportion of vaccinators,

and lowest new incidence when there is highest death rate (d = 0.01) from the
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disease. The interesting observation lies in the optimal dynamics of public health effort

(Fig. 9c). It shows that public health program can even delay in the start, while there is

death from disease included in the pay-off gain of individual interest (Fig. 9c and d).

However, the optimal effort is substantially high in the case of the lowest death rate

and so is the total cost from infection and public health effort. So, this result essentially

echoes the same what we have described in the last section that dissemination about

disease severity at the beginning of the outbreak is way more effective to increase the

vaccine uptake, rather than in the middle of the outbreak.

6 Summary and Conclusions

Vaccination is one of the most efficient and economic measures to control infections

and has been responsible for controlling a large number of diseases (Nichol et al.

1994; Simonsen et al. 2005; Wang et al. 2016; Bauch et al. 2003). But the safety of

the vaccine and its associated perceived risks, particularly, in case of a new vaccine,

have led to the failure of vaccine uptake (Reluga et al. 2006; Bauch et al. 2010).

Under voluntary vaccination, there is always a strategic interaction between individuals

whether they decide vaccination or not. Hence, the vaccination coverage depends upon

the magnitude of disease prevalence, attainment of herd immunity and the safety of the

vaccine (Tchuenche et al. 2011; Bauch et al. 2010; Bhattacharyya and Bauch 2011).

Our research highlights that incorporating vaccinating behaviour in disease control

models may help policymakers to predict, understand and even reduce the public

health cost to manage influenza every year.

Analysis of our game-theoretic model illustrates the optimal allocation of public

health effort under different public perceptions. It shows that optimal solutions of

vaccination model are significantly different under different public perceptions. Not

only this, but also model analysis suggests that policymakers should optimally allocate

budget for advertisement and promotion of the vaccine, at the beginning of an outbreak

which will validate the safety of the vaccine. Individuals who delayed and refused vac-

cination were more likely to have concerns on vaccine safety and perceive minimal

benefits associated with vaccines. Policymakers may assist providers in responding

to individuals who may delay or refuse vaccines. Vaccinating a considerable fraction

of the population before a pandemic or seasonal outbreak could significantly bring

down the transmission rate. This, however, could be an uphill task for the policymak-

ers due to continuous evolution in virus strain, and particularly relevant to seasonal

influenza. More media coverage about vaccine safety, disease severity, even through

a social network may increase the visibility of benefits and accelerate the mitigation

of epidemics.

Our paper provides an understanding of how public health policymakers can strate-

gize their budget allocation during an influenza outbreak under human vaccination

choice. There are certain assumptions we have made in developing our model. We

have assumed a deterministic model in the spread of the disease dynamics, but the

demographic structure is heterogeneous, and therefore, the behavioural structure may

also vary within the population. So, developing an age-specific model may be more

realistic in such cases. In this work, we do not identify any vulnerable group in the pop-
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ulation who are at high risk from the infection. In order to make the optimal allocation

of limited vaccine supply, policymakers have to target a specific group of population

such as children, old people, sick and pregnant women. Targeting populations in the

seasonal vaccination would affect the infection rate and also the mortality.

Our model also assumes that the vaccine is perfectly effective, but generally flu

vaccines do not have 100% efficacy (Magpantay et al. 2014). In such case with low

efficacy, even vaccinated individuals may get infected, and therefore, the overall burden

of disease may not be reduced. Under this circumstance, it remains a challenge to model

and find the impact of vaccination behaviour and find the social optimum coverage to

mitigate the infection. Lastly, we have assumed the perceived risk of vaccine declines

exponentially with increasing uptake of the vaccine. Similarly, we have also considered

a linear function for the death rate to characterize its influence on individual perceived

risk. However, there are no such data available in the literature in our knowledge. So,

a scenario analysis with a different type of functions might worth to understand the

influence of behaviour and its impact on vaccine uptake in the population.
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