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Abstract. The Parallel Disks Model (PDM) has been proposed to alleviate the I/O bottle-
neck that arises in the processing of massive data sets. Sorting has been extensively studied
on the PDM model due to the fundamental nature of the problem - several asymptotically
optimal algorithms are known for sorting. Although randomization has been frequently ex-
ploited, most of the prior algorithms suffer from complications in memory layouts, imple-
mentation, restrictions in range of parameters and laborious analysis. In this paper, we
present a randomized mergesort algorithm based on a simple idea that sorts using an asymp-
totically optimal number of I/O operations with high probability and has all the desirable
features for practical implementation.

In the second part of the paper, we also present several novel algorithms for sorting on
the PDM that take only a small number of passes through the data. Recently, a considerable
interest has been shown by researchers in developing algorithms for problem sizes of practical
interest and we are able to obtain several improvements and simplification, in particular for
random input.

1 Introduction

When the amount of data an application has to deal with is enormous, out-of-core computing techniques
have to be invoked. In this case, the I/O bottleneck has to be dealt with. The PDM has been proposed
to alleviate this I/O bottleneck [2]. In a PDM, there is a (sequential or parallel) computer that has
access to D(≥ 1) disks. In one I/O operation, it is assumed that a block of size B can be fetched into
the main memory. One typically assumes that the main memory has size M where M is a (small)
constant multiple of DB3.

Efficient algorithms have been devised for the PDM for numerous fundamental problems. In the
analysis of these algorithms, typically, the number of I/O operations needed are optimized. Since local
computations take much less time than the time needed for the I/O operations, these analyzes are
reasonable. Since sorting is a fundamental and highly ubiquitous problem, a lot of effort has been
spent on developing sorting algorithms for the PDM. It has been shown by Aggarwal and Vitter [2]

that Ω
(

N
DB

log(N/B)
log(M/B)

)
4 I/O operations are needed to sort N keys (residing in D disks) where each block

contains B keys. The internal memory has a capacity of M keys. (Each key is Ω(log N) bits). This lower
bound has been proved from the well-known lower bound of Ω(N log N) comparisons for any sequential

1This research has been supported in part by the NSF Grants CCR-9912395 and ITR-0326155. Preliminary versions
of the results in this paper have been presented in either [21] or [22].

2This research was conducted when this author was visiting the University of Connecticut.
3This is the hardest case as we will show later
4In this paper we use log to denote logarithms to the base 2 and ln to denote logarithms to the base e.
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Figure 1: A Machine with Parallel Disks

comparison-based sorting algorithm for N keys (see e.g., [12]). Many asymptotically optimal algorithms
have been devised as well (see e.g., Arge [3], Nodine and Vitter [18], and Vitter and Hutchinson [28]).
The LMM sort of Rajasekaran [20] is optimal when N,B, and M are polynomially related and is a
generalization of Batcher’s odd-even merge sort [7], Thompson and Kung’s s2-way merge sort [26], and
Leighton’s columnsort [14].

Notation. We say the amount of resource (like time, space, etc.) used by a randomized algorithm is
Õ(f(N)) if the amount of resource used is no more than cαf(N) with probability ≥ (1−N−α) for any
N ≥ n0, where c and n0 are constants and α is a constant ≥ 1. We could also define the asymptotic
functions Θ̃(.), õ(.), etc. in a similar manner.

One of the main results of this paper is a simple randomized algorithm for sorting on the PDM

that takes only Õ
(

N
DB

log(N/B)
log(M/B)

)
I/O operations. We also present sorting algorithms that take a small

number of passes for problem sizes of practical interest.

2 Prior Algorithms and our results

Most of the previous PDM sorting algorithms can be categorized under two families - ones based on
bucketsort and the others on mergesort. The first kind is based on distribution sort [29, 28, 17] where
keys are classified into buckets depending on their values and this is repeated recursively within each
bucket till each bucket reaches a manageable size (corresponding to the base case). The randomized
versions of distribution sort (like quicksort) are often simpler than their deterministic counterparts.
The basic idea is sampling and due to Frazer and McKellar. Given a sequence X of n keys to sort:
1) a random sample of s keys are picked from X; 2) these sample keys are sorted to get the sequence
l1, l2, . . . , ls; 3) X is partitioned into s + 1 parts X0,X1, . . . ,Xs using the sample keys as splitters.
In particular, X0 = {q ∈ X : q ≤ l1}, Xi = {q ∈ X : li < q ≤ li+1} for 1 ≤ i ≤ (s − 1), and
Xs = {q ∈ X : q > ls}; and 4) the parts X0,X1, . . . ,Xs are sorted recursively and independently.

The second kind of sorting algorithms on the PDM are based on R-way merging for some suitable
value of R that minimizes the number of passes through the data for the given size of internal memory
[1, 6, 11, 18, 20].
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The primary difficulty in the case of distribution sort is in ensuring full parallelism in the case of
writing. Likewise, the primary challenge in merge-based sorts is in obtaining optimal read parallelism.
By striping across disks, and using internal buffers of size Ω(D2), full parallelism can be achieved by a
straightforward greedy approach. For D = Θ(M/B), we cannot afford so much space. More precisely,
how do we come up with balanced read/write schedules across the D disks when the data is arbitrarily
distributed at the beginning and the internal memory size is O(D) ?

In this context, the algorithm of Barve, Grove, and Vitter [6] deserves special mention. It uses a value
of R = M/B. This algorithm stripes the runs across the disks such that for each run the first block is
stored in a random disk and the other blocks are stored in a cyclic fashion starting from the random disk.
They only analyze the expected performance of the algorithm (and no high probability bounds have
been derived). Their algorithm called Simple Randomized Mergesort (SRM), has an optimal expected
performance only when the internal memory size M is Ω(BD log D). However, the standard assumption
on M is that M = O(DB). The reason for the (slightly) sub-optimal performance is a consequence of
an occupancy based analysis that yields a bound of ω(1) bound on maximum number of blocks lying
in a single disk that must be read in a single phase.

This problem has been redressed by the algorithm of Hutchinson, Sanders and Vitter [13]. Their
approach is based on an algorithm of Sanders, Egner and Korst [23] who use lazy writing at the expense
of an internal buffer. By using Fully Randomized (FR) scheduling to allocate blocks of each stream
to disks, they show that an expected parallelism off Ω(D) can be achieved using an internal buffer of
size O(D). They used asymptotic queuing theoretic analysis to bound the expected number of writes
in a batched arrival queuing system with a bounded buffer. A batch corresponds to a memory-load
of keys that we are trying to classify into buckets and the bounded buffer is a part of the memory.
Vitter and Hutchinson extended it to a scheduling scheme called Random Cycling (RC) which is easy
to stripe across disks. The FR schedule is more complicated to implement and is not read-optimal
for M = o(BD log D). The RC scheduling resulted in optimal distributed sort (RCD) and optimal
mergesort (RCM) for M/B ≫ D [13] 5 that has generated practical interest [11].

In this paper we present a simple randomized algorithm for sorting on the PDM that makes only

Õ
(

log(N/M)
log(M/B)

)
passes through the data. Our algorithm uses techniques like staggering of the leading

blocks (of streams being merged) and periodic rearrangement of input blocks to prevent clustering of
the blocks on any single disk. Note that our bound holds with high probability for any value of N
unlike the previous randomized algorithms for which only expected bounds have been proved. In a sense,
we are able to retain the advantages of the simplicity of SRM with minimal modification and obtain
optimal parallelism for the entire range of the parameters. In our analysis we rely only on standard tools
that do not rely on asymptotic convergence. In addition, we are able to adhere to desirable properties
like striping and simplicity. The underlying approach in our algorithm is to first generate a random
permutation and subsequently sort the random permutation using a simple mergesort. In the first
phase, an efficient radix sorting algorithm is designed to generate a random permutation. The above
strategy bears resemblance to the approach of Valiant and Brebner [27] although requiring very different
techniques in the context of PDM. In fact, we develop a novel strategy to obtain full parallelism (Θ(D))
for merging random sequences. This is likely to find further applications.

5The exact value of the constant is dependent on the buffer size but it is one aspect where our algorithm possibly holds
an advantage.
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2.1 Fixed passes algorithms

In this paper we also focus on developing sorting algorithms with a small number of passes. We note
that for most of the applications of practical interest N ≤ M2. For instance, if M = 108 (integers),
then M2 is 1016 (integers) (which is around 100,000 tera bytes). Thus we focus on input sizes of ≤ M2

in this paper.
Recently, many algorithms have been devised for problem sizes of practical interest. For instance,

Dementiev and Sanders [11] have developed a sorting algorithm based on multi-way merge that overlaps
I/O and computation optimally. Their implementation sorts gigabytes of data and competes with the
best practical implementations. Chaudhry, Cormen, and Wisniewski [10] have developed a novel variant
of columnsort that sorts M

√
M keys in three passes over the data (assuming that B = M1/3). Their

implementation is competitive with NOW-Sort. (By a pass we mean N
DB read I/O operations and

the same number of write operations.) In [8], Chaudhry and Cormen introduce some sophisticated
engineering tools to speedup the algorithm of [10] in practice. They also report a three pass algorithm
that sorts M

√
M keys in this paper (assuming that B = Θ(M1/3)). In [9], Chaudhry, Cormen, and

Hamon present an algorithm that sorts M5/3/42/3 keys (when B = Θ(M2/5)). They combine columnsort
and Revsort of Schnorr and Shamir [25] in a clever way. This paper also promotes the need for oblivious
algorithms and the usefulness of mesh-based techniques in the context of out-of-core sorting. In fact,
the LMM sort of Rajasekaran [20] and all the algorithms in this paper (except for the integer sorting
algorithm) are oblivious.

Another important thrust of this paper is on algorithms that have good expected performance. In
particular, we are interested in algorithms that take only a small number of passes on an overwhelming

fraction of all possible inputs. As an example, consider an algorithm A that takes two passes on at
least (1−M−α) fraction of all possible inputs and three passes on at most M−α fraction of all possible
inputs. If M = 108 and α = 2, only on at most 10−14 % of all possible inputs, A will take more than
two passes. Thus algorithms of this kind will be of great practical importance.

We make the following contributions in this direction: 1) We bring out the need for algorithms that
have good expected performance in the context of PDM sorting. A saving of even one pass could make
a big difference if the input size is large. Especially, algorithms that run in a small number of passes
on an overwhelming fraction of all possible inputs will be highly desirable in practice. As a part of
this effort we prove a Lemma on random permutations that should be of independent interest. 2) The
second main contribution is in the development of algorithms for input sizes ≤ M2. This input size
seems to cover most of the applications of practical interest.

The above two thrusts of our interest have yielded several specific algorithms for PDM sorting. All
of these algorithms use a block size of

√
M . Here is a list: 1) A three pass algorithm for sorting M

√
M

keys. This algorithm is based on LMM sort and assumes that B =
√

M . In contrast, the algorithm of
Chaudhry and Cormen [8] uses a block size of M1/3 and sorts M

√
M/

√
2 keys in three passes. 2) We

also present another mesh-based algorithm that sorts M
√

M keys; 3) An expected two pass algorithm
that sorts nearly M

√
M keys. In this paper, all the expected algorithms are such that they take the

specified number of passes on an overwhelming fraction (i.e., ≥ (1 − M−α) for any fixed α ≥ 1) of
all possible inputs; 4) An expected three pass algorithm that sorts nearly M1.75 keys; 5) A seven pass
algorithm (based on LMM sort) that sorts M2 keys. 6) We also present a mesh-based algorithm that
sorts M2 keys; and 7) An expected six pass algorithm that sorts nearly M2 keys.
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2.2 Organization

In Section 3 we present our permutation algorithm and in Sections 4 and 5 we provide details of our
optimal randomized sorting algorithm. Section 6 presents our algorithms that take a small number of
passes. Section 7 concludes the paper.

3 Integer sorting and Random Permutation

Often, the keys to be sorted are integers in some range [1, R]. Numerous sequential and parallel algo-
rithms have been devised for sorting integers. These integer sorting algorithms can be of two types,
namely, forward radix sorting (or Most Significant Bit (MSB) first sorting) and backward radix sorting
(or Least Significant Bit (LSB) first sorting). In either case the keys are sorted in phases where in each
phase the keys are sorted only with respect to some number of bits. In any phase of the LSB first
sorting we sort all the inputs keys with respect to the same set of bits. On the other hand forward radix
sorting works differently. In the first phase of this algorithm we sort all the input keys with respect some
number (say ℓ) of bits. This sorting partitions the input keys such that each part has keys whose most
significant ℓ bits are the same. Thus at the end of the first phase each bucket becomes an independent
input set that has to be sorted. In the second phase each bucket will be sorted with respect to some
number of the next most significant bits. As a result, the bucket will get split into many buckets, and
so on. This process of splitting buckets continues until the buckets are of small size. When this happens
the buckets can be sorted using a base-case algorithm.

Several efficient out-of-core algorithms have been devised by Arge, Ferragina, Grossi, and Vitter [4]

for sorting strings. For instance, three of their algorithms have the I/O bounds of O
(

N
B logM/B

N
B

)
,

O
(

N
FB logM/B

N
F + N

B

)
, and O

(
K
B logM/B

K
B + N

B logM/B |Σ|
)
, respectively. These algorithms sort K

strings with a total of N characters from the alphabet Σ. Here F is a positive integer such that
F |Σ|F ≤ M and |Σ|F ≤ N . These algorithms could be employed on the PDM to sort integers. For a
suitable choice of F , the second algorithm (for example) is asymptotically optimal.

In this section we analyze LSB first radix sort (see e.g., [12]) in the context of PDM sorting. This
algorithm sorts an arbitrary number of keys. We assume that each key fits in one word of the computer.
We believe that for applications of practical interest radix sort applies to run in no more than 4 passes
for most of the inputs.

The range of interest in practice seems to be [1,M c] for some constant c. For example, weather
data, market data, etc. are such that the key size is no more than 32 bits. The same is true for personal
data kept by governments. As another example, if the key is social security number, then 32 bits are
enough. However, one of the algorithms given in this section applies for keys from an arbitrary range
as long as each key fits in one word of the computer.

The first case we consider is one where the keys are integers in the range [1,M/B]. Also assume
that each key has a random value in this interval. If the internal memory of a computer is M , then it
is reasonable to assume that the word size of the computer is Θ(log M). Thus each key of interest fits
in one word of the computer. M and B are used to denote the internal memory size and the block size,
respectively, in words.

The idea can be described as follows. We build M/B runs one for each possible value that the keys
can take. From every I/O read operation, M keys are brought into the core memory. From out of all
the keys in the memory, blocks are formed. These blocks are written to the disks in a striped manner.
The striping method suggested in [20] is used. Some of the blocks could be non full. All the blocks
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in the memory are written to the disks using as few parallel write steps as possible. We assume that
M = CDB for some constant C. Let R = M/CB. The details of the algorithm IntegerSort follow.

Disk 1 Disk 2 Disk 3 Disk D

Run 1

Run 2

...

...

...

...

...

Run 3

Figure 2: The runs are striped across disks in a staggered fashion. In this example the leading blocks
are staggered by one disk - more generally they can be staggered by s disks.

Algorithm IntegerSort

for i := 1 to N/M do

1. In C parallel read operations, bring into the core memory M = CDB keys.

2. Sort the keys in the internal memory and form blocks according to the values of
keys. Keep a bucket for each possible value in the range [1, R]. Let the buckets be
B1,B2, . . . ,BR. If there are Ni keys in Bi, then, ⌈Ni/B⌉ blocks will be formed out of
Bi (for 1 ≤ i ≤ R).

3. Send all the blocks to the disks using as few parallel write steps as possible. The runs
are striped across the disks (in the same manner as in [20]) (see Figure 2).

The number of write steps needed is maxi{⌈Ni/B⌉}. 4. Read the keys written to the
disks and write them back so that the keys are placed contiguously across the disks.

Theorem 3.1 Algorithm IntegerSort runs in O(1) passes through the data for a large fraction (≥ (1 −
N−α) for any fixed α ≥ 1) of all possible inputs. If step 4 is not needed, the number of passes is (1 + µ)
and if step 4 is included, then the number of passes is 2(1 + µ) for some fixed µ < 1.

Proof: Call each run of the for loop as a phase of the algorithm. The expected number of keys
in any bucket is CB. Using Chernoff bounds, the number of keys in any bucket is in the interval
[(1 − ǫ)CB, (1 + ǫ)CB] with probability ≥ [1 − 2 exp(−ǫ2CB/3)]. Thus, the number of keys in every

bucket is in this interval with probability ≥
(
1 − exp

[
−ǫ2CB

3 + ln(2R)
])

. This probability will be

≥ (1 − N−(α+1)) as long as B ≥ 3
Cǫ2

(α + 1) ln N . This is readily satisfied in practice (since the typical
assumption on B is that it is Ω(M δ) for some fixed δ > 1/3).
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As a result, each phase will take at most ⌈(1 + ǫ)C⌉ write steps with high probability. This is

equivalent to ⌈(1+ǫ)C⌉
C passes through the data. This number of passes is 1+µ for some constant µ < 1.

Thus, with probability ≥ (1 − N−α), IntegerSort takes (1 + µ) passes excluding step 4 and 2(1 + µ)
passes including step 4. �

As an example, if ǫ = 1/C, the value of µ is 1/C.

Remark 3.1 The sorting algorithms of [28] have been analyzed using asymptotic analysis. The bounds
derived hold only in the limit. In comparison, our analysis is simpler and applies for any N .

We extend the range of the keys using the following algorithm. This algorithm employs forward
radix sorting. In each stage of sorting, the keys are sorted with respect to some number of their MSBs.
Keys that have the same value with respect to all the bits that have been processed up to some stage
are said to form a bucket in that stage. In the following algorithm, δ is any constant < 1.

Algorithm RadixSort

for i := 1 to (1 + δ) log(N/M)
log(M/CB) do

1. Employ IntegerSort to sort the keys with respect to their ith most
significant log(M/CB) bits.

2. Now the size of each bucket is ≤ M . Read and sort the buckets.

Theorem 3.2 N random integers in the range [1, R] (for any R) can be sorted in an expected (1 +

ν) log(N/M)
log(M/B) + 1 passes through the data, where ν is a constant < 1. In fact, this bound holds for a large

fraction (≥ 1 − N−α for any fixed α ≥ 1) of all possible inputs.

Proof. In accordance with Theorem 3.1, each run of step 1 takes (1 + µ) passes. Thus RadixSort takes

(1 + µ)(1 + δ) log(N/M)
log(M/B) passes. This number is (1 + ν) log(N/M)

log(M/B) for some fixed ν < 1.

It remains to show that after (1 + δ) log(N/M)
log(M/B) runs of step 1, the size of each bucket will be ≤ M .

At the end of the first run of step 1, the size of each bucket is expected to be NBC
M . Using Chernoff

bounds, this size is ≤ (1 + ǫ)NBC
M with high probability, for any fixed ǫ < 1. After k (for any integer k)

runs of step 1, the size of each bucket is ≤ N(1 + ǫ)k(CB/M)k with high probability. This size will be

≤ M for k ≥ log(N/M)

log
h

M
(1+ǫ)CB

i . The RHS of the above expression is ≤ (1 + δ) log(N/M)
log(M/B) for any fixed δ < 1 as

long as M > C2B which is true for D ≥ C.
Step 2 takes one pass. �

Remark 3.2 As an example, consider the case N = M2, B =
√

M and C = 4. In this case, RadixSort

takes no more than 3.6 passes through the data.

We show how to randomly permute N given keys such that each permutation is equally likely. We
employ RadixSort for this purpose. The idea is to assign a random label with each key in the range
[1, N1+β ] (for any fixed 0 < β < 1) and sort the keys with respect to their labels. This can be done in

(1 + µ) log(N/M)
log(M/B) + 1 passes through the data with probability ≥ 1 − N−α for any fixed α ≥ 1. Here µ

is a constant < 1. For many applications, this permutation may suffice. But we can ensure that each
permutation is equally likely with one more pass through the data.
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When each key gets a random label in the range [1, N1+β ], the labels may not be unique. The
maximum number of times any label is repeated is Õ(1) from the observation that the number of keys
falling in a bucket is binomially distributed with mean 1/n and applying Chernoff bounds (equation 1
in Appendix B). We have to randomly permute keys with equal labels which can be done in one more
pass through the data as follows. We think of the sequence of N input keys as S1, S2, . . . , SN/DB where
each Si (1 ≤ i ≤ N/(DB)) is a subsequence of length DB. Note that keys with the same label can
only span two such subsequences. We bring in DB keys at a time into the main memory. We assume a
main memory of size 2DB. There will be two subsequences at any time in the main memory. Required
permutations of keys with equal labels are done and DB keys are shipped out to the disks. The above
process is repeated until all the keys are processed.

Remark 3.3 With more care we can eliminate this extra pass by combining it with the last stage of
radix sort.

Thus we get the following:

Theorem 3.3 We can permute N keys randomly in O( log(N/M)
log(M/B) ) passes through the data with probability

≥ 1 − N−α for any fixed α ≥ 1, where µ is a constant < 1, provided B = Ω(log N).

Remark 3.4 In the above Theorem, we assume that B = Ω(log N). This is a very benign assump-
tion that readily holds in practice. However, we later show how to eliminate this assumption without
sacrificing the asymptotic performance.

4 Randomized Sorting

In this section we present a randomized sorting algorithm that sorts N given keys in Õ
(

log(N/M)
log(M/B)

)

passes through the data. Our algorithm employs the permutation algorithm from Section 3.

4.1 A simple algorithm

We start with a simple version of the algorithm (called RSort1) which will be useful for exposition of
the basic ideas. Unfortunately, RSort1 may not run in an optimal number of I/O’s. This algorithm is
modified in the next subsection to achieve theoretical optimality. In the following algorithm, R = M/B.
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Algorithm RSort1

1. Randomly permute the input N keys using the algorithm of Theorem 3.3.
2. In one pass through the data form runs each of length M = DB.

3. for i := 1 to
log(N/M)

log R do

while there are more runs do

Merge the next R runs as follows.

Start by bringing in two blocks from each run. Assume that R = D = M/B
and the main memory is of size 2DB. Merge the runs to ship M keys out to the
disks. This run becomes an input run for the next iteration. If one of the
runs becomes empty before M output keys are formed, start all over again.
(We will show that the probability of this happening is negligible).

From here on, maintain the invariant that for each run we have two leading blocks
in the memory. Form BD output keys and ship them. Repeat this until the R
runs are merged.

Analysis. Let a phase refer to one run of step 3 of RSort1. In the following discussion ignore the
number of parallel I/Os needed to do one scan through the data while merging the runs.

Consider the problem of merging any R runs in some phase of RSort1. Consider some point in time
when there are 2D blocks in the main memory with 2 blocks per run. We merge these blocks to form M
output keys. Note that the M output keys are such that each key is equally likely to have come out of the
R runs - the number of keys from each run in a phase is binomially distributed with success probability
1
R and expectation B. Using Chernoff bounds, this number lies in the interval [(1− ǫ)B, (1+ ǫ)B] with
probability ≥ 2[1 − exp(−ǫ2B)/3], ǫ being any constant > 0. In other words, each run gets consumed
at the rate of at least (1 − ǫ) blocks per (1 + ǫ) blocks brought in (from each run). For B ≥ log N , this
holds with high probability. Note that the probability of ǫ being very close to 1 is very low and hence
the event of two blocks getting consumed before M output keys are formed is very low.

In summary, with high probability, it takes at most 1/(1 − ǫ) scans through a run before it gets

consumed completely. As a result, RSort1 makes Õ
(

log(N/M)
log(M/B)

)
scans through the input.

Even though RSort1 makes an optimal number of scans through the input, each scan may take more
than an optimal number of I/Os. This can be seen as follows. At the beginning of the algorithm, the
runs are striped in a cyclic fashion. Let the runs be R1, R2, . . . , Rq. The first block of run i will be in
disk (i− 1) mod D + 1; the second block of run i will be in disk i mod D + 1; and so on (for 1 ≤ i ≤ q).
If whenever blocks are accessed from different runs these blocks come from different disks, then it will
mean that the number of I/O operations is optimal as well. For instance if each run gets consumed at
the rate of one block per block brought in, then this will hold.

However, the runs get consumed at different rates. For instance, there could come a time when we
need a block from each run and all of these blocks are in the same disk. An occupancy analysis similar
to the one in Barve Grove and Vitter [6] will imply that the expected number of I/O operations in the
worst case could be non-optimal unless M/B is Ω(D log D).

In the next subsection we modify RSort1 to make it optimal and still retain the simplicity.

9



4.2 A Second Algorithm: Periodic Resetting

The key ideas to make RSort1 optimal are: 1) Let Q1, Q2, . . . , QR be the runs to be merged at some
point in time. Let a stage refer to the step of bringing in required keys, merging the 2DB keys in
memory and forming M output keys. We keep the R runs such that the leading blocks for the runs
are in successive disks (or very nearly so); and 2) When there are many blocks in every run, the above
property may be difficult to maintain since as time progresses, the leading blocks deviate more and
more from the expected disk locations. We periodically rearrange the leading M keys of each run so
that the above property is reinstated after the rearrangement. Again we assume that R = M/B.

In the description that follows, we use M to denote DB and we assume that the actual internal
memory has size 2DB.

Algorithm RSort2

1. Permute the input N keys using the algorithm of Theorem 3.3.
2. In one pass through the data form runs of length M = DB each.

3. for i := 1 to
log(N/M)

log R do

while there are more runs do

Merge the next R runs as follows.

Begin by bringing in 2M
RB = 2 blocks from each run. Merge the runs

to ship M keys out to the disks to be used as an input run for the next iteration.
If one of the runs becomes empty before M output keys are formed, start all over
again. We shall show later that the probability of this event is low.

Maintain the property that there are exactly 2M
RB = 2 leading blocks per run.

Form BD output keys and ship them. Call the step of bringing in
enough keys to have 2M/(RB) blocks per run, merging them and outputting M
keys as a stage of the algorithm. After every R(= M/B) stages perform
a rearrangement of runs. In particular, read the leading M keys of each run
and write them back so that the leading blocks of the runs are in successive disks.
Use separate areas in the disks for the purpose of rewriting.

Repeat the above step until the R runs are merged.

Theorem 4.1 RSort2 takes Õ
(

log(N/M)
log(M/B)

)
read passes through the data provided B = Ω(

√
M log N).

Proof. Let a phase of the algorithm refer to one run of step 3 and let a stage of the algorithm refer to
bringing in enough keys per run (i.e. 2M/R keys per run), merging the runs, and shipping M keys out
to the disks.

It suffices to prove that each phase of the algorithm takes Õ(N/DB) I/Os.
In each stage of the algorithm the expected number of blocks consumed from each run is 1. If the

starting block of a run is i then after q stages, the leading block of this run is expected to be in disk
(i + q − 1) mod D + 1. Assume that the leading block of each run continues to be within one disk of its
expected disk. Consider the task of bringing into main memory at most K leading blocks of each run.
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How many I/Os will be needed? It is easy to see that in the worst case, 3 · K I/Os will suffice as each
disk can have at most 3 of the leading blocks. Thus when K = 1, three I/O’s suffice.

We can actually obtain a stronger result:

Lemma 4.1 Consider D disks and R runs with R ≤ D. The runs are striped in the usual way. Let the
leading block of each run stray away from its expected disk by at most q disks. The problem of bringing
in K blocks from each run can be accomplished in at most K + 2q I/Os.

Proof: Assume that R = D since this corresponds to the worst case. Also assume that K ≤ D for
simplicity (though the result is general). Consider any disk D. From out of the blocks we want to fetch,
how many blocks will reside in D? If the starting blocks of the runs are equidistant, then K blocks will
reside in D. The starting blocks of runs can be at most q disks away from their expected starting disks.
The starting disks of some of the runs could be to the right of their expected disks and the starting
blocks of some others could be to the left of their starting disks. The number of blocks in D (excluding
those K runs that are expected to have a block each in D) from out of the first kind of runs is at most q
and the number of blocks from the second kind is at most q. (We assume that there is sufficient buffer,
i.e. (K + 2q)DB for this purpose.) �

When we perform R stages, the expected number of keys coming out of each run is M . This number
will stray away from its expected value by at most

√
αM ln N with probability exceeding (1 − N−α).

Thus the leading block of each run will stray away by at most one disk provided B ≥
√

αM ln N . This
condition is readily satisfied in practice. In this case, each stage of the algorithm can be completed in
three I/Os with high probability.

Also, all the rearrangement of keys take an additional (1+ ν) log(N/M)/ log(M/B) read passes and
the same number of write passes, where ν is any constant > 0.

In summary, the number of read passes taken by the algorithm is 4(1+ν) log(N/M)
log(M/B) +(1+µ) log(N/M)

log(M/B) +2

with probability ≥ (1 − N−α) for any fixed α ≥ 1. Here ν, µ are constants between 0 and 1. Note that

the number write passes are only 2(1+ν) log(N/M)/ log(M/B)+(1+µ) log(N/M)
log(M/B) . end of proof Theorem

4.1 �

4.3 Relaxing the Constraint on B

RSort2 assumes that B = Ω(
√

M log N). This assumption can be relaxed with the following idea.
Employ a value of R = (M/B)ǫ for any constant 1 > ǫ > 0.

Note that when R = (M/B)ǫ, we have R < D. If Q1, Q2, . . . , QR are the runs, we stripe Q1 starting
from disk 1, Q2 starting from disk 1 + D/R, Q3 starting from 1 + 2D/R, and so on. (Assume w.l.o.g.
that D is an integral multiple of R). In other words, the leading blocks of the runs are D/R disks apart.
Therefore, even if the leading blocks of the runs stray by D/R blocks each stage can be performed in
three I/Os per disk. Further, if we can ensure that the deviation is less than half this quantity, i.e.
D/2R, then q = 0 and each stage can be performed in one I/O per disk. Each run contributes (M/B)1−ǫ

(expected) blocks in each stage.
The resultant algorithm RSort is the same as RSort2 except that rearrangements are done every

(M/B)ǫ stages and we use R = (M/B)ǫ.
When (M/B)ǫ stages are performed, the expected number of keys consumed from each run is M .

The actual value for any run can stray away from its expected value by
√

αM ln N , with probability
greater than (1 − N−α). If we can bound the deviation by 0.5 · DB/R the maximum number of blocks
required from any disk is 1 (i.e. q = 0). This happens when

√
αM ln N ≤ 0.5 · M1−ǫBǫ. This implies

that B ≥ 2M (ǫ−1/2)/ǫ(α ln N)1/(2ǫ).
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When ǫ = 1/2, the above condition becomes: B ≥ 2α ln N . This is a benign condition and readily
holds in practice. For a value of ǫ = 1

2 − δ (for any fixed δ > 0), the above condition becomes, B ≥ 1,

provided N ≤ eM2δ/α
.

An Alternative Analysis for large N . Assume that N is Ω(MC), for some constant C. The
expected number of I-Os for R stages is cR for some constant c from the properties of even distribution
of keys. Call this an epoch and because of rearrangements the epochs are independent. Therefore the
probability that more than

√
α(N/(MR)) ln N epochs exceed cR I/Os is less than 1/N . This can be

argued as follows. Let Xi = 1 if the i-th epoch requires in excess of 2cR I/O’s ( a bad epoch) and
0 otherwise. Clearly Pr[Xi = 1] ≤ 1/2 and Xi’s are independent. By applying Chernoff bounds to∑

i Xi, we obtain the required bound on the number of bad epochs. The total number of I/Os in a bad
epoch cannot exceed R1+ζ (for any constant ζ > 0) from Lemma 4.1. Therefore, if N = Ω(MC), for an
appropriate C, the total number of I/O’s over all bad epochs is o(N/B) with high probability.

Thus we obtain the following result:

Theorem 4.2 RSort takes Õ
(

log(N/M)
log(M/B)

)
read passes for (uniformly distributed) random input data.

Bounding the leading constant

For choice of ǫ = 1/2, the number of iterations made by the algorithm is no more than 2(1 + ν) ·
log(N/M)
log(M/B) where each iteration involves 2(1 + ν) read passes including rearrangement. The number of

write passes is same. This gives a total of 8(1+ ν) log(N/M)
log(M/B) passes with probability ≥ (1−N−α) for any

constant α ≥ 1.6 Here ν, µ are constants between 0 and 1. To this, we must add the time for generating
the initial random permutation.

When B is large, we can decrease the number of read passes made by RSort as follows. Let B = Mβ .
The condition on B becomes: Mβ ≥ M (ǫ−1/2)/ǫ(α lnN)1/(2ǫ). This condition is satisfied when ǫ < 1

2(1−β) .

For this choice of ǫ, the number of read passes made by RSort is (4−4β)(1+ν) log(N/M)
log(M/B)+(1+µ) log(N/M)

log(M/B)+2.

This follows from : 1) The permutation takes (1 + µ) log(N/M)
log(M/B) passes; 2) Initial runs formation takes

one pass; 3) Merging of runs takes 2(1 − β) × (1 + ν) log(N/M)
log(M/B) passes; and 4) the rearrangements take

2(1 − β) × (1 + ν) log(N/M)
log(M/B) read passes. When β = 1/2, the number of passes is 4(1 + ν) log(N/M)

log(M/B) +

(1 + µ) log(N/M)
log(M/B) + 2, which is the same as what RSort2 takes. As another example, when β = 3/4, the

number of read passes is 2(1 + ν) log(N/M)
log(M/B) + (1 + µ) log(N/M)

log(M/B) + 2.

4.4 Relaxing the constraint in RadixSort

The algorithms IntegerSort and RadixSort assume that B = Ω(lnN). As a consequence, the algorithm
of Theorem 3.3 also makes this assumption. We can relax this constraint in exactly the same manner as
in Section 4.3. In particular, the algorithm IntegerSort is modified as follows. Instead of sorting N keys
in the range [1,M/B], IntegerSort now sorts N keys in the range [1, R = (M/B)ǫ] where ǫ is defined in
Section 4.3. The algorithm runs in stages. In any stage we bring in M keys. Reading doesn’t pose any
difficulties in parallel access. There could be potential problems in writing. We address this problem in
exactly the same manner as in Section 4.3. Periodically, we start writing the runs so that the leading
blocks are equally apart.

6The mergesort algorithm in [13] has a constant 2+ D/m for the expected running time, where m is the size of internal
memory. However, it is not clear how one can obtain high probability bounds.
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4.5 The general case – M > DB

Thus far we have assumed that the size of internal memory is 2BD. But in practice, the internal
memory could be larger than a constant multiple of BD. All the results we have derived so far extend
to this case in a straight forward way. Let M = 2qBD for some integer q.

Theorem 3.3 now becomes:

Theorem 4.3 We can permute N keys randomly in (1 + µ) log(N/(qBD))
log(qD) + 1 passes through the data

with probability ≥ 1 − N−α for any fixed α ≥ 1, where µ is any constant > 0.

In the algorithm of Theorem 3.3, we sorted keys in phases where in each phase the range was [1,D].
There are several stages in any phase. A stage involves bringing into main memory around DB keys,
sorting them, and shipping around a block per key value (i.e., around DB keys) to the disks. In the
new algorithm, we have to sort the keys in phases where in each phase we sort keys in the range [1, qD].
Here again, there are many stages per phase. In any stage we bring in qDB keys, sort them, and ship
out around qDB keys. The only difference is that a stage previously involved one parallel read I/O and
in the new algorithm there are q parallel read I/Os per stage.

In a similar fashion, we obtain our final result:

Theorem 4.4 For M = 2qDB, RSort can be easily modified to run in Õ
(

log(N/(qBD))
log(qD)

)
passes through

the data.

5 Sorting Algorithms that Take a Small Number of Passes

We now shift our focus to PDM sorting algorithms that that take a small number of passes for problem
sizes of practical interest. More specifically, we assume that N ≤ M2 - the randomized algorithm of
the previous section will take expected Θ(1) passes. Here we explore what we can do in small number
of passes like three to five. We present several simple deterministic algorithms. Further we also explore
their performance for random inputs in terms of expected number of passes.

For this section we assume that the block size B is Ω(Mα) where α is a constant between 0 and 1
(typically α = 0.5). The reason for this is that it is consistent with current technology and larger block
sizes also favour parallelism.

5.1 A Lower Bound

The following lower bound result will help us judge the optimality of algorithms presented in this paper.

Lemma 5.1 At least two passes are needed to sort M
√

M elements when the block size is
√

M . At
least three passes are needed to sort M2 elements when the block size is

√
M . These lower bounds hold

on the average as well.

Proof. The bounds stated above follow from the lower bound theorem proved in [5]. In particular, it
has been shown in [5] that log(N !) ≤ N log B + I × (B log((M − B)/B) + 3B), where I is the number
of I/O operations taken by any algorithm that sorts N keys residing in a single disk. Substituting

N = M
√

M,B =
√

M , we see that I ≥
2M

“

1− 1.45
log M

”

“

1+ 6
log M

” . The RHS is very nearly equal to 2M . In other

words, to sort M
√

M keys, at least two passes are needed. It is easy to see that the same is true for the
PDM also. In a similar fashion, one could see that at least three passes are needed to sort M2 elements.
�
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5.2 Two Three-Pass Algorithms

In this section we present two three-pass algorithms for sorting on the PDM. Both of these algorithms
assume a block size of

√
M . The first algorithm is based on LMM sort and the second algorithm is

mesh-based. Both of them sort M
√

M keys.

5.2.1 LMM Based Algorithm

We adapt the (l,m)-merge sort (LMM sort) algorithm of Rajasekaran [20]. The LMM sort partitions
the input sequence of N keys into l subsequences, sorts them recursively and merges the l sorted
subsequences using the (l,m)-merge algorithm.

The (l,m)-merge algorithm takes as input l sorted sequences X1,X2, . . . ,Xl and merges them as
follows. Unshuffle each input sequence into m parts. In particular, Xi (1 ≤ i ≤ l) gets unshuffled into
X1

i ,X2
i , . . . ,Xm

i . Recursively merge X1
1 ,X1

2 , . . . ,X1
l to get L1; Recursively merge X2

1 ,X2
2 , . . . ,X2

l to
get L2; · · ·; Recursively merge Xm

1 ,Xm
2 , . . . ,Xm

l to get Lm. Now shuffle L1, L2, . . . , Lm. At this point,
it can be shown that each key is within a distance ≤ lm from its final sorted position. Perform local
sorting to move each key to its sorted position.

The analysis of many of the sorting algorithms on a rectangular array is based on 0-1 principle so
that we only have to analyze inputs consisting arbitrary number of 0’s and 1’s. Central to our analysis
as well as others like [25, 15, 16] is the notion of dirty rows/columns/blocks.
Definition A row/column is dirty if it contains a mixture of 0’s and 1’s. Similarly a (rectangular) block
is dirty if it contains a mixture of 0’s and 1’s. Otherwise it is clean, i.e., it contains only 0’s or only 1’s.
Note that when an array is sorted in a row-major indexing scheme, at most one row is dirty.

Columnsort algorithm [14], odd-even merge sort [7], and the s2-way merge sort algorithms are all
special cases of LMM sort [20]. For the case of B =

√
M , and N = M

√
M , LMM sort can be specialized

as follows to run in three passes.

Algorithm ThreePass1

1. Form l =
√

M runs each of length M . These runs have to be merged using
(l,m)-merge. The steps involved are listed next. Let X1,X2, . . . ,X√

M be the
sequences to be merged.

2. Unshuffle each Xi into
√

M parts so that each part is of length
√

M . This
unshuffling can be combined with the initial runs formation task and hence
can be completed in one pass.

3. In this step, we have
√

M merges to do, where each merge involves
√

M
sequences of length

√
M each. Observe that there are only M records in each

merge and hence all the mergings can be done in one pass through the data.

4. This step involves shuffling and local sorting. The length of the dirty sequence
is (

√
M)2 = M . Shuffling and local sorting can be combined and finished in

one pass through the data as showm in [20].

We get the following:

Lemma 5.2 LMM sort sorts M
√

M keys in three passes through the data when the block size is
√

M .
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Observation 5.1 Chaudhry and Cormen [8] have shown that Leighton’s columnsort algorithm [14] can
be adapted for the PDM to sort

√
M1.5/2 keys in three passes. In contrast, the three pass algorithm of

Lemma 5.2 (based on LMM sort) sorts M1.5 keys in three passes.

5.2.2 A Mesh-Based Algorithm

In this section we describe a simple algorithm that can sort M3/2 elements using M internal memory.
Consider the input arranged as an M ×

√
M array. We will often refer to sub-meshes r× c where such a

submesh contains a subset of r consecutive rows and c consecutive columns beginning from a multiple
of r rows and c columns respectively.

Algorithm ThreePass2

1. Sort all the
√

M ×
√

M sub-meshes.
The sorting order is row major such that every consecutive submeshes have
their rows sorted in reverse directions.

2. Sort all columns vertically.

3. Sort every consecutive pair of
√

M/2 ×
√

M submesh by bringing them one
after the other (in a top to down ordering) into the internal memory. After
sorting, the smallest

√
M/2 elements are written out and the next one is

brought in till all sub-meshes are exhausted.

Let us first prove the correctness before we show that the algorithm makes exactly three passes.

Theorem 5.1 Algorithm ThreePass2 sorts the M ×
√

M data items correctly for all inputs.

Proof: Our proof is based on 0-1 principle and the notion dirty rows defined earlier. After Step 1,
every

√
M ×

√
M sub-mesh has at most 1 dirty row. After Step 2, there can be at most

√
M dirty rows

which can be further restricted to
√

M/2 from the principle of Shearsort [24]. This implies at most two
dirty

√
M/2 sub-meshes. Step 3 cleans up these in a manner similar to [15].

Now we proceed to bound the number of passes. Assume that the initial data is striped row wise, in
blocks of size

√
M . Therefore the entire submesh can be read using one parallel read. After sorting them

these are written out in a column major (striped across columns). This also achieves full parallelism
as each submesh contains

√
M blocks - one from each column. Therefore in the next phase sorting

columns can be done by reading one column at a time. While writing these back we do the reverse of
Step 1. Step 3 is clearly one pass through the data reading

√
M ×

√
M element sub-mesh at a time. �

5.3 A Useful Lemma

In this section we prove a lemma that will be useful in the analysis of expected performance of sorting
algorithms.

Consider a set X = {1, 2, . . . , n}. Let X1,X2, . . . ,Xm be a random partition of X into equal sized
parts. Let X1 = x1

1, x
2
1, . . . , x

q
1; X2 = x1

2, x
2
2, . . . , x

q
2; · · ·; Xm = x1

m, x2
m, . . . , xq

m in sorted order. Here
mq = n.

We define the rank of any element y in a sequence of keys Y as |{z ∈ Y : z < y}| + 1. Let r be any
element of X and let Xi be the part in which r is found. If r = xk

i (i.e., the rank of r in Xi is k) what
can we say about the value of k?
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Probability that r has a rank of k in Xi is given by

P =

(r−1
k−1

)(n−r
q−k

)
(n−1

q−1

) .

Using the fact that
(a

b

)
≤

(
ae
b

)b
, we get

P ≤

(
r−1
k−1

)k−1 (
n−r
q−k

)q−k

(
n−1
q−1

)q−1

Ignoring the −1’s and using the fact that (1 − u)1/u ≤ (1/e), we arrive at:

P ≤
(

rq/n

k

)k

e−(q−k)[r/n−k/q].

When k = rq
n +

√
(α + 2)q loge n + 1 (for any fixed α), we get, P ≤ n−α−2/e. Thus the probability

that k ≥ rq
n +

√
(α + 2)q loge n + 1 is ≤ n−α−1/e.

In a similar fashion, we can show that the probability that k ≤ rq
n −

√
(α + 2)q loge n + 1 is ≤

n−α−1/e. This can be shown by proving that the number of elements in Xi that are greater than r

cannot be higher than (n−r)q
n +

√
(α + 2)q loge n + 1 with the same probability.

Thus, the probability that k is not in the interval
[rq

n
−

√
(α + 2)q loge n + 1,

rq

n
+

√
(α + 2)q loge n + 1

]

is ≤ n−α−1.
As a consequence, probability that for any r the corresponding k will not be in the above interval is

≤ n−α.
Now consider shuffling the sequences X1,X2, . . . ,Xm to get the sequence Z. The position of r in Z

will be (k − 1)m + i. Thus the position of r in Z will be in the interval:

[
r − n√

q

√
(α + 2) loge n + 1 − n

q
, r +

n√
q

√
(α + 2) loge n + 1

]

We get the following Lemma:

Lemma 5.3 Let X be a set of n arbitrary keys. Partiton X into m = n
q equal sized parts randomly

(or equivalently if X is a random permutation of n keys, the first part is the first q elements of X,
the second part is the next q elements of X, and so on). Sort each part. Let X1,X2, . . . ,Xm be the
sorted parts. Shuffle the Xi’s to get the sequence Z. At this time, each key in Z will be at most
n√
q

√
(α + 2) loge n + 1 + n

q ≤ n√
q

√
(α + 2) loge n + 2 positions away from its final sorted position. �

Observation 5.2 Let Z be a sequence of n keys in which every key is at a distance of at most d from its
sorted position. Then one way of sorting Z is as follows: Partition Z into subsequences Z1, Z2, . . . , Zn/d

where |Zi| = d, 1 ≤ i ≤ n/d. Sort each Zi(1 ≤ i ≤ n/d). Merge Z1 with Z2, merge Z3 with Z4, · · ·,
merge Zn/d−1 with Zn/d (assuming that n/d is even; the case of n/d being odd is handled similarly);
Followed by this, merge Z2 with Z3, merge Z4 with Z5, · · ·, and merge Zn/d−2 with Zn/d−1. Now it can
be seen that Z is in sorted order.
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Observation 5.3 The above discussion suggests a way of sorting n given keys. Assuming that the
input permutation is random, one could employ Lemma 5.3 to analyze the expected performance of the
algorithm. In fact, the above algorithm is very similar to the LMM sort [20]. Moreover, we need roughly
O(fracn

√
q) internal memory to complete each phase of the sorting in one pass.

5.4 An Expected Two-Pass Algorithm

In this section we present an algorithm that sorts nearly M
√

M keys when the block size is
√

M . The
expectation is over the space of all possible inputs. In particular, this algorithm takes two passes for

a large fraction of all possible inputs. Specifically, this algorithm sorts N = M
√

M
c
√

log M
keys, where c is a

constant to be fixed in the analysis. This algorithm is similar to the one in Section 5.3. Let N1 = N/M .

Algorithm ExpectedTwoPass

1. Form N1 runs each of length M . Let these runs be L1, L2, . . . , LN1 . This takes
one pass.

2. In the second pass shuffle these N1 runs to get the sequence Z (of length N).
Perform local sorting as depicted in Section 5.3. Here are the details: Call the
sequence of the first M elements of Z as Z1; the next M elements as Z2; and
so on. In other words, Z is partitioned into Z1, Z2, . . . , ZN1 . Sort each one of
the Zi’s. Followed by this merge Z1 and Z2; merge Z3 and Z4; etc. Finally
merge Z2 and Z3; merge Z4 and Z5; and so on.

Shuffling and the two steps of local sorting can be combined and finished in
one pass through the data. The idea is to have two successive Zi’s (call these
Zi and Zi+1) at any time in the main memory. We can sort Zi and Zi+1

and merge them. After this Zi is ready to be shipped to the disks. Zi+2 will
then be brought in, sorted, and merged with Zi+1. At this point Zi+1 will be
shipped out; and so on.

It is easy to check if the output is correct or not (by keeping track of the
largest key shipped out in the previous I/O). As soon as a problem is detected
(i.e., when the smallest key currently being shipped out is smaller than the
largest key shipped out in the previous I/O), the algorithm is aborted and
the algorithm of Lemma 5.2 is used to sort the keys (in an additional three
passes).

Theorem 5.2 The expected number of passes made by Algorithm ExpectedTwoPass is very nearly two.

The number of keys sorted is M
√

M
(α+2) loge M+2 .

Proof. Using Lemma 5.3, every key in Z is at a distance of at most ≤ N1

√
M

√
(α + 2) loge M + 2

from its sorted position with probability greater than (1 − M−α. We want this distance to be ≤ M .

This happens when N1 ≤
√

M
(α+2) loge M+2 .

For this choice of N1, the expected number of passes made by ExpectedTwoPass is 2(1−M−α)+5M−α

which is very nearly 2. �
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As an example, when M = 108 and α = 2, the expected number of passes is 2 + 3 × 10−16. Only
on at most 10−14 % of all possible inputs, ExpectedTwoPass will take more than two passes. Thus this
algorithm is of practical importance. Please also note that we match the lower bound of Lemma 5.1
closely.

Observation 5.4 ThreePass2 can also be modified in a similar manner to obtain an expected two pass
algorithm. The columnsort algorithm [14] has eight steps. Steps 1, 3, 5, and 7 involve sorting the
columns. In steps 2, 4, 6, and 8 some well-defined permutations are applied on the keys. Chaudhry and
Cormen [8] show how to combine the steps appropriately, so that only three passes are needed to sort
M

√
M/2 keys on a PDM (with B = Θ(M1/3)). Here we point out that this variant of columnsort can

be modified to run in an expected two passes. The idea is to skip steps 1 and 2. Using Lemma 5.3, one

can show that modified columnsort sorts M
√

M
4(α+2) loge M+2 keys in an expected two passes. Contrast

this number with the one given in Theorem 5.2.

5.5 An Expected Three Pass Algorithm

In this section we show how to extend the ideas of the previous section to increase the number of keys
to be sorted. In particular, we focus on an expected three pass algorithm. Let N be the total number
of keys to be sorted and let N2 = N

√
(α + 2) loge M + 2/(M

√
M).

Algorithm ExpectedThreePass

1. Using ExpectedTwoPass, form runs of length M
√

M
(α+2) loge M+2 each. This will

take an expected two passes. Now we have N2 runs to be merged. Let these
runs be L1, L2, . . . , LN2 .

2. This step is similar to Step 2 of ExpectedTwoPass. In this step we shuffle the
N2 runs formed in Step 1 to get the sequence Z (of length N). Perform local
sorting as depicted in ExpectedTwoPass.

Shuffling and the two steps of local sorting can be combined and finished in
one pass through the data (as described in ExpectedTwoPass).

It is easy to check if the output is correct or not (by keeping track of the largest
key shipped out in the previous I/O). As soon as a problem is detected (i.e.,
when the smallest key currently being shipped out is smaller than the largest
key shipped out in the previous I/O), the algorithm is aborted and another
algorithm is used to sort the keys. One choice for this alternate algorithm is
the seven pass algorithm presented in the next section.

Theorem 5.3 The expected number of passes made by Algorithm ExpectedThreePass is very nearly
three. The number of keys sorted is M1.75

[(α+2) loge M+2]3/4 .

Proof. Here again we make use of Lemma 5.3.
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In this case q = M
√

M
(α+2) loge M+2 . In the sequence Z, each key will be at a distance of at most

N2M
3/4[(α + 2) loge M + 2]1/4 from its sorted position (with probability ≥ (1 − M−α)). We want this

distance to be less than M . This happens when N2 ≤ M1/4

[(α+2) loge M+2]1/4 .

For this choice of N2, the expected number of passes made by ExpectedTwoPass is 3(1−M−α)+7M−α

which is very nearly 3. �

Observation 5.5 Chaudhry and Cormen [8] have recently developed a sophisticated variant of column-
sort called subblock columnsort that can sort M5/3/42/3 keys in four passes (when B = Θ(M1/3)). This
algorithm has been inspired by the Revsort of Schnorr and Shamir [25]. Subblock columnsort introduces
the following step between steps 3 and 4 of columnsort: Partition the r× s matrix into subblocks of size√

s × √
s each; Convert each subblock into a column; and sort the columns of the matrix. At the end

of step 3, there could be at most s dirty rows. With the absence of the new step, the value of s will be
constrained by s ≤

√
r/2. At the end of the new step, the number of dirty rows is shown to be at most

2
√

s. This is in turn because of the fact there could be at most 2
√

s dirty blocks. The reason for this is
that the boundary between the zeros and ones in the matrix is monotonous (see Figure 5 in [8]). The
monotonicity is ensured by steps 1 through 3 of columnsort. With the new step in place, the constraint
on s is given by r ≥ 4s3/2 and hence a total of M5/3/42/3 keys can be sorted. If one attempts to convert
subblock columnsort into a probabilistic algorithm by skipping steps 1 and 2 (as was done in Observation
5.4), it won’t work since the monotonicity is not guaranteed. So, converting subblock columnsort into an
expected three pass algorithm (that sorts close to M5/3 keys) is not feasible. In other words, the new step
of forming subblocks (and the associated permutation and sorting) does not seem to help in expectation.

On the other hand, ExpectedThreePass sorts Ω
(

M1.75

log M

)
keys in three passes with high probability.

5.6 A Seven-Pass Algorithm

In this section we show how to adapt LMM sort to sort M2 keys on a PDM with B =
√

M . This
adaptation runs in seven passes. Let N = M2 be the total number of keys to be sorted.
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Algorithm SevenPass

1. Use LMM sort (c.f. Lemma 5.2) to form runs of length M
√

M each. Now there
are

√
M runs that have to be merged. Let these runs be L1, L2, . . . , L√

M .

Use (l,m)-merge to merge these runs, with l = m =
√

M . The tasks involved
are listed below.

2. Unshuffle each Li (1 ≤ i ≤
√

M) into
√

M subsequences L1
i , L

2
i , . . . , L

√
M

i .

3. Merge L1
1, L

1
2, L

1
3, . . . , L

1√
M

; Let Q1 be the resultant sequence; Merge

L2
1, L

2
2, . . . , L

2√
M

; Let Q2 be the resultant sequence; · · ·; and merge

L
√

M
1 , L

√
M

2 , . . . , L
√

M√
M

; Let Q√
M be the resultant sequence. Note that each

Qi(1 ≤ i ≤
√

M) is of length M
√

M .

4. Shuffle Q1, Q2, . . . , Q√
M . Let Z be the shuffled sequence.

5. It can be shown that the length of the dirty sequence in Z is at most M . Clean
up the dirty sequence as illustrated in ExpectedTwoPass.

Theorem 5.4 Algorithm SevenPass runs in seven passes and sorts M2 keys.

Proof: In accordance with Lemma 5.2, step 1 takes three passes. Step 2 can be combined with step 1.
Instead of writing M keys of a run directly into the disks, do the unshuffling and write the unshuffled
runs. In step 3 there are

√
M subproblems each one being that of merging

√
M sequences of length M

each. These mergings can be done in three passes (c.f. Lemma 5.2). Finally, steps 4 and 5 together
need only one pass (c.f. ExpectedTwoPass). �

5.7 An Expected Six Pass Algorithm

In this section we show how to adapt SevenPass to get an algorithm that sorts nearly M2 elements in an
expected six passes. Call the new algorithm ExpectedSixPass. This algorithm is the same as SevenPass

except that in step 1, we use ExpectedTwoPass to form runs of length M
√

M
(α+2) loge M+2 each. This will

take an expected two passes. There are
√

M such runs. The rest of the steps are the same. Of course
now the lengths of Lj

i ’s and Qi’s will be less. We get the following:

Theorem 5.5 ExpectedSixPass runs in an expected six passes and sorts M2√
(α+2) loge M+2

keys.

6 Conclusions

In this paper we present a simple randomized algorithm for sorting on the PDM that makes only

Õ
(

log(N/M)
log(M/B)

)
passes through the data. Our algorithm uses techniques like staggering of the leading

blocks (of streams being merged) and periodic rearrangement of input blocks to prevent clustering of
the blocks on any single disk. Note that our bound holds with high probability for any value of N
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unlike the previous randomized algorithms for which only expected bounds have been proved. In a sense,
we are able to retain the advantages of the simplicity of SRM with minimal modification and obtain
optimal parallelism for the entire range of the parameters. In our analysis we rely only on standard tools
that do not rely on asymptotic convergence. In addition, we are able to adhere to desirable properties
like striping and simplicity. The underlying approach in our algorithm is to first generate a random
permutation and subsequently sort the random permutation using a simple mergesort.

To the best of our knowledge, the techniques of staggered striping and periodic rearrangement
have not been used previously and have the potential for further applications. Implementation of
the algorithms and experimental comparison with previous algorithms should be a topic of future
investigations. As pointed out earlier, theoretical comparison of the associated constant factors can be
misleading since our bounds hold with high probability. Simulations results will not suffice, since it is
hard to capture the many advantages of the simplicity of SRM in an actual PDM environment.

We have also presented several algorithms that take a small number of passes for problem sizes
of practical interest. In addition, we have presented algorithms with good expected performance. In
practice, these could turn out to be the more efficient than the theoretically optimal algorithms.
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Appendix A: Chernoff bounds

If a random variable X is the sum of n iid Bernoulli trials with a success probability of p in each trial, the
following equations give us concentration bounds of deviation of X from the expected value of np. The
first equation is more useful for large deviations whereas the other two are useful for small deviations
from a large expected value.

Prob(X ≥ m) ≤
(np

m

)m
em−np (1)

Prob(X ≤ (1 − ǫ)pn) ≤ exp(−ǫ2np/2) (2)

Prob(X ≥ (1 + ǫ)np) ≤ exp(−ǫ2np/3) (3)

for all 0 < ǫ < 1.
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