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ONE PARAMETER FAMILY OF SOLITONS FROM MINIMAL

SURFACES

RUKMINI DEY AND PRADIP KUMAR

Abstract. In this paper, we discuss a one parameter family of complex Born-
Infeld solitons arising from a one parameter family of minimal surfaces. The
process enables us to generate a new solution of the B-I equation from a given
complex solution of a special type (which are abundant). We illustrate this
with many examples. We find that the action or the energy of this family of
solitons remains invariant in this family and find that the well-known Lorentz
symmetry of the B-I equations is responsible for it.

1. Introduction

In a previous paper [1], using hodographic coordinates, we found the general so-
lution to the minimal surface equation, namely a variant of the Weirstrass-Enneper
representation of the minimal surface. This was done by wick rotating the general
Born-Infeld soliton solution by Barbishov and Chernikov discussed in the last sec-
tion of [5]. Underlying this, there was the observation that the minimal surface
equation

(1 + φ2
t )φxx − 2φxφtφxt + (1 + φ2

x)φtt = 0

and the Born-Infeld equation

(1− φ2
t )φxx + 2φxφtφxt − (1 + φ2

x)φtt = 0

can be obtained one from the other by wick rotation of the variable t.
We know that if X(r, r̄) = (x1(r, r̄), t1(r, r̄), φ1(r, r̄))
and Y (r, r̄) = (x2(r, r̄), t2(r, r̄), φ2(r, r̄)) are two minimal surfaces in isothermal

coordinates (r1, r2), where r = r1 + ir2, which are harmonic conjugate to each

other, then X̃(r, r̄, θ) = cos(θ)X(r, r̄)+ sin(θ)Y (r, r̄) is again a minimal surface for
each θ, [2], page 213. Thus if we wick-rotate t → it, we get a one parameter family
of (complex) solitons, namely, S(r, r̄, θ) = cos(θ)Xs + sin(θ)Y s, where Xs(r, r̄) =
(x1(r, r̄), it1(r, r̄), φ1(r, r̄)), Y

s(r, r̄) = (x2(r, r̄), it2(r, r̄), φ2(r, r̄)).We find the F and
G functions corresponding to these complex solitons, (notation as in [5] page 617).

The process described here enables us to generate other solutions of the B-I,
given one complex solution which can be wick rotated to get a real minimal surface
(which can be then be written in isothermal coordinates using the Weierstrass-
Enneper repesentation). Then one can easily write the harmonic conjugate of the
minimal surface in the same form and then make the one-parameter combination
of the two mentioned above and wick rotate back to get the soliton family which
starts from a soliton solution which is the initial solution with t → −t, (note that
the B-I equation is invariant under t → −t), and ends at a different soliton solution.
We give many examples of this process.
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The paper is organized as follows. We first give one example illustrating the
case, namely that of the wick rotated helicoid and wick rotated the catenoid (since
the catenoid is the harmonic conjugate of the helicoid).

Next we show that the first fundamental form, namely Es, Gs and F s are in-
dependent of θ and hence the action As is invariant under θ. This is due to a
symmetry of the B-I equation which we explicitly show.

In the last section we give many examples illustrating the process described in
the paper.

2. The one parameter family of solitons

Let X(r, r̄) = (x1(r, r̄), t1(r, r̄), φ1(r, r̄))
and Y (r, r̄) = (x2(r, r̄), t2(r, r̄), φ2(r, r̄))
be minimal surfaces which are harmonic conjugates of each other, given by the

parameter r and its conjugate. They are isothermal in r1 and r2, where r = r1+ir2.
Then we know that cos(θ)X + sin(θ)Y is a minimal surface for every θ, [2].

Then Xs(r, r̄) = (x1(r, r̄), it1(r, r̄), φ1(r, r̄))
and Y s(r, r̄) = (x2(r, r̄), it2(r, r̄), φ2(r, r̄)) are Born-Infeld solitons for imaginary

time it1 and it2.
Xs and Y s are complex solitons. The superscript s stands for soliton.

Proposition 2.1. Sθ = cos(θ)Xs + sin(θ)Y s are complex Born-Infeld solitons for
every θ.

Proof. We will put Sθ in the form in [5], last section. According to [1]
X = (x1(r, r̄), t1(r, r̄), φ1(r, r̄)) is a minimal surface implies
x1 − it1 = F1(r)−

∫

r̄2G′
1(r̄)dr̄

x1 + it1 = G1(r̄)−
∫

r2F ′
1(r)dr

φ1 =
∫

rF ′
1(r) +

∫

r̄G′
1(r̄)dr̄

where F1 and G1 are related by F1(r) = G1(r̄).
Similarly, Y = (x2(r, r̄), t2(r, r̄), φ2(r, r̄)) is a minimal surface implies,
x2 − it2 = F2(r)−

∫

r̄2G′
2(r̄)dr̄

x2 + it2 = G2(r̄)−
∫

r2F ′
2(r)dr

φ2 =
∫

rF ′
2(r) +

∫

r̄G′
2(r̄)dr̄

where F2 and G2 are related by F2(r) = G2(r̄).
Then

Sθ = (xs
θ, t

s
θ, φ

s
θ) = cos(θ)Xs + sin(θ)Y s

= (cos(θ)x1 + sin(θ)x2, icos(θ)t1 + isin(θ)t2, cos(θ)φ1 + sin(θ)φ2)

where recall superscript s stands for soliton.

xs
θ − tsθ = cos(θ)F1(r) + sin(θ)F2(r)

−
∫

(r̄2(cos(θ)G′
1(r̄) + sin(θ)G′

2(r̄))dr̄

= F s
θ (r) −

∫

r̄2Gs′
θ (r̄)dr̄

where F s
θ (r) = cos(θ)F1(r) + sin(θ)F2(r) and Gs

θ(r̄) = cos(θ)G1(r̄) + sin(θ)G2(r̄).
One can easily check that
xs
θ + tsθ = Gs

θ(r̄)−
∫

r2F s′
θ (r)dr

φs
θ =

∫

rF s′
θ (r) +

∫

r̄Gs′
θ (r̄).
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Renaming variables, r̄ = s, we get this is exactly in the form of solutions to
the Born Infeld equation as in [5], page 617. Thus Sθ is a (complex) Born-Infeld
soliton. �

Corollary 2.2. The partial derivatives of Sθ with respective to θ are also soliton
solutions.

Proof. ∂Sθ

∂θ = cos(θ + π
2 )X

s + sin(θ + π
2 )Y

s

∂2Sθ

∂2θ = cos(θ + π)Xs + sin(θ + π)Y s

∂3Sθ

∂3θ = cos(θ − π
2 )X

s + sin(θ − π
2 )Y

s

∂4Sθ

∂4θ = Sθ

These are again of the form cos(θ0)X
s+sin(θ0)Y

s and thus are soliton solutions.
�

3. An example:

Let us write the catenoid and the helicoid (two conjugate minimal surfaces) in a
variant of their Weirstrass-Enneper representation, [1], [3], which is also isothermal.

Proposition 3.1. a) The helicoid can be written in a parametrised form in the
following way:

x1 = − 1
2 Im(r + 1

r )

t1 = 1
2Re(r− 1

r )
φ1 = Im(lnr)
b) The catenoid can be written in a parametrised form in the following way:
x2 = 1

2Re(r +
1
r )

t2 = 1
2 Im(r − 1

r )
φ2 = −Re(lnr)

Proof. a) The non parametric form of helicoid is φ(x, t) = tan−1 t
x . As φx = −t

x2+t2

and φt =
x

x2+t2 , we have u = φz̄ = φxxz̄ + φttz̄.

That is u = −t+ix
2(x2+t2) =

iz
2|z|2 , where z = x+ it.

u =
i

2z̄
(1)

Similarly we have

v =
−i

2z
(2)

Let us make the following coordinate change, [1], [5]:

r =

√
1 + 4uv − 1

2v
. (3)

Then

u =
r

1− |r|2 and v =
r̄

1− |r|2 (4)

Equation 1, 2 and 4 gives

z =
i

2
(r − 1

r̄
) (5)

which in turn gives
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x = −1

2
Im(r +

1

r
) and t =

1

2
Re(r − 1

r
) (6)

also from equation 5, we have F (r) = i
2r and hence G(r̄) = −i

2r̄ , [1].

Then we have φ(r) =
∫

rF ′(r)dr+
∫

r̄G′(r̄)dr̄, [1], and thus φ(r) = −i
2 [ln r− ln r̄],

that is we have:

φ(r) = Im(ln r) (7)

(b) The nonparametric form of catenoid is

φ(x, t) = cosh−1
√
x2 + t2. As seen in helicoid case, for the catenoid we have:

As φx = x√
x2+t2−1

√
x2+t2

and φt =
t√

x2+t2−1
√
x2+t2

, and

u = φz̄ = φxxz̄ + φttz̄ =
φx + iφt

2

That is u = z
2
√
x2+t2−1

√
x2+t2

.

Again with the same coordinate change as in equation 3, 4 and u as above we
have z

z̄ = r
r̄ , that is:

z =
r

r̄
z̄. (8)

Now as we have

u =
z

2
√
x2 + t2 − 1

√
x2 + t2

=
z

2
√

|z|2 − 1
√

|z|2
.

That is
r

1− |r|2 =
z

2
√

|z|2 − 1
√

|z|2

Squaring it we have

z2

4(|z|2 − 1).|z|2 =
r2

(1− |r|2)2
Using equation 8, we have

4|r|2(r
r̄
z̄2 − 1) = (1− |r|2)2

That is

z̄2 =
r̄

r

(

(1 − |r|2)2
4|r|2 + 1

)

z̄ = ±1

2
(r̄ +

1

r
).

We take the positive sign, because this gives us the non-parametric form. Hence in
this case we have:

x =
1

2
Re(r +

1

r
), t =

1

2
Im(r− 1

r
), φ(r) = −Re(ln r)

�
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It is easy to check that the catenoid is conjugate harmonic to the helicoid because
x1 + ix2 = i(r + 1

r )

t1 + it2 = r − 1
r

φ1 + iφ2 = −ilnr
so that the right hand sides of all the expressions are analytic functions of the

complex variable r.

Proposition 3.2. F s
θ = i

2
e−iθ

r and Gs
θ = −i

2
eiθ

r̄ are the F and G functions for our
family of soliton solutions.

Proof. xs
θ = cos(θ)x1 + sin(θ)x2, tsθ = icos(θ)t1 + isin(θ)t2, φs

θ = cos(θ)φ1 +
sin(θ)φ2.

xs
θ − tsθ = cos(θ)(x1 − it1) + sin(θ)(x2 − it2)

xs
θ + tsθ = cos(θ)(x1 + it1) + sin(θ)(x2 + it2)

x1 − it1 = − i
2 (r̄ − 1

r )

x2 − it2 = 1
2 (r̄ +

1
r )

xs
θ − tsθ = − i

2 r̄e
iθ + i

2
e−iθ

r .

xs
θ + tsθ = i

2re
−iθ − i

2
eiθ

r̄

Thus F s
θ (r) =

i
2
e−iθ

r and Gs(r̄) = − i
2
eiθ

r̄ .

We can check that F s
θ (r) = Gs

θ(r̄).
Recall:
φs
θ =

∫

rF s′
θ (r)dr +

∫

r̄Gs′
θ (r̄)dr̄.

Thus
φs
θ = − i

2 (lnr)e
−iθ + i

2 (lnr̄)e
iθ.

If θ = 0 this corresponds to the wick rotated helicoid, namely φs
0 = Im(lnr)

and if θ = π
2 , this corresponds to the wick rotated catenoid, namely,

φs
π

2

= −Re(lnr) �

4. θ-invariants

Let Xs
θ = (xs

θ , t
s
θ, φ

s
θ) be a soliton solution as before.

We show that the coefficients of the first fundamental form, and hence the Born-
Infeld action is independent of θ.

Proposition 4.1. Let r = r1 + ir2. Then Es = xs2
θ,r1

− ts2θ,r1 + φs2
θ,r1

remains

invariant with respect to θ. Similarly, Gs = xs2
θ,r2

− ts2θ,r2 + φs2
θ,r2

remains invariant
with respect to θ. Also, F s = xs

θ,r1
xs
θ,r2

− tsθ,r1t
s
θ,r2

+ φs
θ,r1

φs
θ,r2

= 0 for all θ. Thus

As =
∫ √

EsGs − F s2dr1dr2 =
∫
√

1 + φs2
xs − φs2

ts dx
sdts is θ invariant.

Proof. We have
Xs

θ = Xs
1 cos θ +Xs

2 sin θ

where correspondingX1 and X2 are harmonic conjugate minimal surafces in r1 and
r2 variable, and

∂X1

∂r1
=

∂X2

∂r2
and

∂X1

∂r2
= −∂X2

∂r1
.

If Xi(r1, r2) = (xi, ti, φi), we have

Xs
θ = (x1(r, s) cos θ + x2(r, s) sin θ, i(t1(r, s) cos θ

+t2(r, s) sin θ), φ1(r, s) cos θ + φ2(r, s) sin θ)

As X1 and X2 are conjugate we have:
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∂X1

∂r1
=

∂X2

∂r2
and

∂X1

∂r2
= −∂X2

∂r1
.

Then

xs2
θ,r1 − ts2θ,r1 + φs2

θ,r1 = x2
θ,r1 + t2θ,r1 + φ2

θ,r1

= (X1r1 cos θ +X2r1 sin θ).(X1r1 cos θ +X2r1 sin θ)

= (X1r1 cos θ −X1r2 sin θ).(X1r1 cos θ −X1r2 sin θ)

= X1r1 .X1r1 cos
2 θ + sin2 θX1r2 .X1r2

+cos θ sin θX1r1 .X1r2 − cos θ sin θX1r1 .X1r2

Now we haveX1r1 .X1r1 = X1r2 .X1r2 , (since r1 and r2 are isothermal coordinates
for X1),

Es = xs2
θ,r1 − ts2θ,r1 + φs2

θ,r1

= X1r1 .X1r1

Hence Es is independent of θ.

xs
θ,r1x

s
θ,r2 − tsθ,r1t

s
θ,r2 + φs

θ,r1φ
s
θ,r2

= xθ,r1xθ,r2 + tθ,r1tθ,r2 + φθ,r1φθ,r2

= (X1r1 cos θ +X2r1 sin θ).(X1r2 cos θ +X2r2 sin θ)

= (X1r1 cos θ −X1r2 sin θ).(X1r2 cos θ +X1r2 sin θ)

= X1r1 .X1r2 cos
2 θ − sin2 θX1r2 .X1r1

+cos θ sin θX1r1 .X1r1 − cos θ sin θX1r2 .X1r2

Again X1r1 .X1r1 = X1r2 .X1r2 and X1r1 .X1r2 = 0, we have F s = 0.
Similiary we can prove for Gs. Hence we see that Es, F s, Gs all are independent

of θ which in turn gives As is independent of θ.
�

Lorentz Invariance of the Born-Infeld equation

There is a well-known symmetry, namely, the Lorentz invariance of the Born-
Infeld equation which is reponsible for these invariant quantities. We rederive it
here.

Proposition 4.2. There is a symmetry in the Born-Infeld equation, namely if
[

x′

t′

]

=

[

cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

] [

x
t

]

then φ(x′, t′) satisfies the same B-I equation

with x and t replaced by x′ and t′.

Proof. Let

(

a b
c d

)

, ad− bc 6= 0, denote the symmetry to Born-Infield equation,

then we have: φx′ = aφx + cφt, φx′x′ = a2φxx + c2φtt + 2acφxt, φt′ = bφx + dφt,
φt′t′ = b2φxx + d2φtt +2bdφxt, and φx′t′ = abφxx + cdφtt + (bc+ ad)φxt. Hence B-I
equation for φ(x′, t′) changes to

(1 − φ2
t′)φx′x′ + 2φx′φt′φx′t′ − (1 + φ2

x′)φt′t′ (9)

= [1− (bφx + dφt)
2](a2φxx + c2φtt + 2acφxt) + 2(aφx + cφt)(bφx + dφt)

[abφxxcdφtt + (ad+ bc)φxt]− [1 + (aφx + cφt)
2](b2φxx + d2φtt + 2bdφxt)
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In above expression 9, coefficient of φxx is

a2 − (bφx + dφt)
2a2 + 2ab(aφx + cφt)(bφx + dφt)− b2 − (aφx + cφt)

2b2

= (a2 − b2) + φ2
x(a

2b2 + 2a2b2 − a2b2) + φ2
t (−a2d2 + 2abcd− b2c2)

+φxφt(−bda2 + 2abad+ 2abcb− 2abb2)

= (a2 − b2)− φ2
t (a

2d2 + b2c2 − 2abcd)

Hence for invariance of B-I equation we must have a2 − b2 = 1, and a = d, b = c.
With these condition coefficient for φxx in equation 9 will be

(a2 − b2)− φ2
t (a

2d2 + b2c2 − 2abcd) = (a2 − b2)[1− φ2
t (a

2 − b2)] = 1− φ2
t

When a2 − b2 = 1 a = d and b = c, we have coefficient of φxt in equation 9 as
2φxt.

In the same way the coefficient of φtt in equation 9 = (1+φx)
2. Hence 9 changes

to B-I equation in φ(x, t) that is we have φ(x′, t′) is a soliton if and only if φ(x, t)
is a solition. Also we have a2 − b2 = 1 if and only if a = cosh θ and b = sinh θ.

That is under the coordinate change

[

cosh(θ) sinh(θ)
sinh(θ) cosh(θ)

]

, solution to the Born-

Infield equation remain invariant. �

It is easy to check that this symmetry keeps As invariant. This is expected since
the B-I equation is obtained by minimizing this action.

5. Many more examples

Recall the Weierstrass-Enneper representation of minimal surfaces, namely, in
the neighborhood of a nonumbilic interior point, any minimal surface can be rep-
resented in terms of w as follows, [3],

x(ζ) = x0 +Re

∫ ζ

ζ0

(1− w2)R(w) dw

t(ζ) = t0 +Re

∫ ζ

ζ0

i(1 + w2)R(w) dw

φ(ζ) = φ0 +Re

∫ ζ

ζ0

2wR(w) dw

This is an isothermal representation (w.r.t. ζ1 and ζ2 where ζ = ζ1 + iζ2.)
Various examples of minimal surfaces are as follows, [3], page 148.
R(w) = 1 leads to the Enneper minimal surface.

R(w) = κ
2w2 , κ real, leads to the catenoid, z

κ = cosh−1(
√
x2+t2

|κ| ).

R(w) = iκ
2w2 , κ real, leads to the right helicoid z

κ = tan−1(xt ).

R(w) = κeiα

2w2 leads to the general helicoid.

R(w) = 2
(1−w4) leads to the Scherk’s minimal surface.

R(w) = −2aisin(2α)
(1+2w2cos(2α)+w4) , 0 < α < π/2, a > 0 leads to the general Scherk’s

minimal surface.
R(w) = 1− w−4 (and substituting −t for t) leads to the Henneberg surface.

R(w) = ia(w2−1)
w3 − ib

2w2 , a and b real, and setting w = e−iγ/2, leads to the general
Enneper surface and , in particular, for a = 1 and b = 0, to the Catalan’s surface.

R(w) = (1− 14w4 + w8)−1/2 leads to the Schwarz-Riemann minimal surface.
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Description and pictures of these minimal surfaces can be found in [3].
These are in isothermal representation.
To find their harmonic conjugate minimal surfaces, we need to replace R(w) by

−iR(w).
Because if

x1(ζ) = x01 +Re

∫ ζ

ζ0

(1 − w2)R(w) dw

t1(ζ) = t01 +Re

∫ ζ

ζ0

i(1 + w2)R(w) dw

φ1(ζ) = φ01 +Re

∫ ζ

ζ0

2wR(w) dw

and

x2(ζ) = x02 +Re(−i

∫ ζ

ζ0

(1− w2)R(w) dw)

= x02 + Im

∫ ζ

ζ0

(1− w2)R(w) dw

t2(ζ) = t02 +Re(−i

∫ ζ

ζ0

i(1 + w2)R(w) dw)

= t02 + Im

∫ ζ

ζ0

i(1 + w2)R(w) dw

φ2(ζ) = φ02 +Re(−i

∫ ζ

ζ0

2wR(w) dw)

= φ02 + Im

∫ ζ

ζ0

2wR(w) dw

then,

x1 + ix2 = x01 + ix02 +
∫ ζ

ζ0
(1 − w2)R(w) dw

t1 + it2 = t01 + it02 +
∫ ζ

ζ0
i(1 + w2)R(w) dw

φ1 + iφ2 = φ01 + iφ02 +
∫ ζ

ζ0
2wR(w) dw.

Since the right-hand side are holomorphic functions of ζ = ζ1 + iζ2,
(x2, t2, φ2) is harmonic conjugate of (x2, t2, φ2) are and the representations above

are isothermal (w.r.t. ζ1 and ζ2) .
Thus we can combine cosθ(x1, t1, φ1) + sinθ(x2, t2, φ2) and get another minimal

surface.
By “wick rotating”, namely, t → it, we get a one -paramter family of solitons,

cosθ(x1, it1, φ1) + sinθ(x2, it2, φ2)
Each choice of R(w) gives us an example. Thus we get many examples.
Remark: We re-emphasize that the process described here enables us to gener-

ate other solutions of the B-I, given one complex solution which can be wick rotated
to get a real minimal surface (which can be then be written in isothermal coordi-
nates using the Weierstrass-Enneper repesentation). Then one can easily write the
harmonic conjugate of the minimal surface in the same form and then make the
one-parameter combination of the two mentioned above and wick rotate back to get
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the soliton family which starts from a soliton solution which is the initial solution
with t → −t, (note that the B-I equation is invariant under t → −t), and ends at
a different soliton solution. We have given many examples of this process.

Remark: We are using the word solition for solutions of the B-I equations. But
since these are complex solutions, they need not be actual solitons.

Remark: Given a minimal surface in isothermal coordinates, its harmonic
conjugate in isothermal coordinates is also a minimal surface. This is because
X = X(u, v) is a minimal surface iff X is isothermal (w.r.t u and v) and har-
monic, [4]. (Here X(u, v) = (x(u, v), t(u, v), φ(u, v)).)

Correction: There are corrections in [1]. Equation (14) should read z̄ = z̄0 +
F (ζ̄)−

∫

ζ̄2G′(ζ̄).

Here F (r) = G(r̄).
Also, in [1] our representation is a little different from the Weierstrass-Enneper

representation, though both are isothermal. The domain of validity of the W-E
representation is away from the umbilical points, namely, φxxφyy − φ2

xy = 0, while

our representation fails where φzzφz̄z̄ − φ2
z̄z = 0.

Acknowledgement: The first author would like to thank Professor Randall
Kamien for the observation that the minimal surface equation is just the wick
rotated Born-Infeld equation.
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