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Abstract—In this letter, we study a few properties of Com-
plex Conjugate Pair Sums (CCPSs) and Complex Conjugate
Subspaces (CCSs). Initially, we consider an LTI system whose
impulse response is one period data of CCPS. For a given input
x(n), we prove that the output of this system is equivalent to
computing the first order derivative of x(n). Further, with some
constraints on the impulse response, the system output is also
equivalent to the second order derivative. With this, we show
that a fine edge detection in an image can be achieved using
CCPSs as impulse response over Ramanujan Sums (RSs). Later
computation of projection for CCS is studied. Here the projection
matrix has a circulant structure, which makes the computation
of projections easier. Finally, we prove that CCS is shift-invariant
and closed under the operation of circular cross-correlation.

Index Terms—Complex Conjugate Pair, CCPS, Derivative,
CCS, Shift-Invariant, Projections.

I. INTRODUCTION

FOR a given q∈N, define a set of complex exponential

sequences as Hq = {Sq,k(n) = e
j2πkn

q |0≤k≤q −
1, (k, q) = 1}, where 0≤n≤q − 1 and (k, q) denotes the

greatest common divisor (gcd) between k and q. By adding

all the elements of Hq , mathematician Srinivasa Ramanujan

introduced a trigonometric summation called as Ramanujan

Sum (RS) in 1918, denoted as cq(n) [1]. Later in 2014, P. P.

Vaidyanathan introduced a finite length signal representation

using cq(n) and its circular shifts [2], [3].

Motivated by this, we introduced a trigonometric sum-

mation known as Complex Conjugate Pair Sum (CCPS) in

one of our previous works [4]. As (k, q) = (q − k, q), for

every Sq,k(n)∈Hq , there exists a complex conjugate sequence

Sq,q−k(n)∈Hq , both together form a complex conjugate pair.

CCPS (cq,k(n)) is defined by adding each complex conjugate

pair, i.e.,

cq,k(n) = 2Mcos

(
2πkn

q

)

, (1)

where M =

{
1
2

if q = 1 (or) 2

1 if q≥3
, k∈Ûq if q > 1 and k = 1

if q = 1, refer Notations for Ûq . Recently, S. W. Deng

et al., introduced a two-dimensional subspace spanned by

a complex conjugate pair {Sq,k(n), Sq,q−k(n)} known as

Complex Conjugate Subspace (CCS) [5], denoted as vq,k. In

[4], we provided a new basis for CCS using CCPS. Further, a
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finite length signal is represented as a linear combination of

signals which belong to CCSs known as Complex Conjugate

Periodic Transform (CCPT) [4].

Inspired from [2], [3], [6], in this letter we discuss several

properties of CCPSs and CCSs, which may find applications

in signal processing. Contributions of this letter can be divided

into two parts. In the first part, we show that the operation of

linear convolution between a given signal x(n) and c̄q,k(n)
is equivalent to computing the first derivative of x(n), where

c̄q,k(n) denotes one period data of cq,k(n). This operation is

also equivalent to the second derivative if we consider an odd

number q and a circular shift of q−1
2 for c̄q,k(n). Then, the

problem of edge detection in an image is addressed using this

derivative equivalent operation. Moreover, we compare these

results with the results obtained by using RSs.

In the second part, we prove the following properties:

• CCS is a shift-invariant subspace.

• Since CCPT is a non-orthogonal transform [4], we com-

pute the projections onto CCSs. Further, we show that

the projection matrix is a circulant matrix, which reduces

the computational complexity of projections.

• CCS is closed under circular cross-correlation. Moreover,

the circular auto-correlation of any finite length sequence

is equal to the weighted linear combination of its projec-

tions auto-correlation.

The structure of this letter is as follows: Using CCPSs as

derivatives and the problem of detecting edges in an image

are studied in Section II. Properties of CCSs are discussed in

Section III. Finally, conclusions are drawn in Section IV.

Notations: (a, b) indicates the gcd between a and b. A least

common multiple is denoted as lcm. Rounding the value a to

the greatest integer less than or equal to a is denoted as ⌊a⌋.

For a given n ∈ N, Euler’s totient function ϕ(n) is defined as

ϕ(n) =
n∑

i=1

⌊
1

(i,n)

⌋

. As (k, n) = (n − k, n), ϕ(n) is even for

n ≥ 3. Symbol d|N denotes that d is a divisor of N . Define a

set Ûn = {a∈N | 1≤a≤
⌊
n
2

⌋
, (a, n) = 1}, hence #Ûn = ϕ(n)

2 .

Mm,n(C) indicates set of all m×n matrices with entries from

complex numbers. If m = n, Mm,n(C) = Mn(C).

II. CCPSS AS DERIVATIVES AND APPLICATION

Here we perform an operation using CCPSs, which is equiv-

alent to the derivative. In particular, we prove the following:

Theorem 1. Consider an LTI system whose impulse response

is c̄q,k(n), q > 1, then for a given input x(n) the output y(n)
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of the system, i.e., x(n) ∗ c̄q,k(n) is equivalent to computing

the first order derivative of x(n).

Proof: Let x(n) = C, where C is a constant value, then

y(n) = C

q−1
∑

l=0

c̄q,k(l) = 0, as

q−1
∑

l=0

c̄q,k(l) = 0, for q > 1.

(2)

If x(n) = u(n − n0), where u(n) is an unit step sequence,

then

y(n) =

q−1
∑

l=0

c̄q,k(l)u(n− n0 − l), (3)

here y(n) 6=0, ∀ n0≤n≤n0 + q − 2. If x(n) = n, then

y(n) = n

q−1∑

l=0

c̄q,k(l)

︸ ︷︷ ︸
=0

−

q−1∑

l=0

lc̄q,k(l)

︸ ︷︷ ︸
P

= −M





q−1∑

l=0

le
j2πkl

q +

q−1∑

l=0

le
−j2πkl

q





= M

[

q

1− e
j2πk

q

+
q

1− e
−j2πk

q

]

= Mq.

(4)

From the above analysis, we draw the following conclusions

regarding the system output. That is, the system output is:

1) Zero for constant input.

2) Non-zero at the on transient of the unit step sequence.

3) Non-zero constant along the ramps.

In the context of image processing, any function/operation

satisfying the above three properties is equivalent to first order

derivative [6]–[8]. Therefore, x(n) ∗ c̄q,k(n) is equivalent to

computing the first order derivative of x(n).
Further, with some modifications in the impulse response,

the above operation is equivalent to the second order deriva-

tive. To be a second order derivative, the system output should

satisfy the first two conclusions mentioned in Theorem 1 and

it should be zero for x(n) = n [6]. That is, the term P in

(4) should be equal to zero, but the assumption of c̄q,k(n) as

impulse response leads to P = Mq. So, instead of c̄q,k(n), we

try by considering its circular shifts as an impulse response.

Therefore,

q−1∑

l=0

lc̄q,k(l −m) =
q

1− cos (v)
[cos (u+ v)− cos (u)] , 1≤m≤q − 1,

(5)

where u = 2πkm
q

and v = 2πk
q

. Now for what value of m,

cos (u+ v) = cos (u)? Figure 1 depicts cos (u+ v) vs cos (u) for

different q and k values. It is observed that independent of k

both the values are equal whenever q is an odd number and

m = q−1
2 . Hence, we can summarize the above discussion as:

Theorem 2. For a given odd number q, the operation of linear

convolution between a given signal x(n) and c̄q,k
(
n− q−1

2

)

is equivalent to computing the second order derivative of x(n).

A. Application

Edge detection of an image is crucial in many applications,

where the derivative functions are used [7], [8]. In this work,

we address this problem using CCPSs and compare the results

1 2 3 4 5 6m
(a)
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0

1
q=7, k=2
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m
(b)

-1

0

1
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m
(c)
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1
q=33, k=7

2 4 6 8
m
(d)

-1

0

1
q=10, k=3

Fig. 1: (a)-(d) cos (u+ v) vs cos (u) for different q and k values.

with the results obtained using RSs [6]. Consider the Lena

image and convert it into two one-dimensional signals, namely

x1(n) and x2(n), by column-wise appending and row-wise

appending respectively. Now compute x1(n)∗ c̄5,1(n), x2(n)∗
c̄5,1(n), x1(n) ∗ c̄5,2(n) and x2(n) ∗ c̄5,2(n), the results are

depicted in figure 2 (a)-(d) respectively. From the results, it

is clear that we can find the edges using CCPSs. Note that,

performing convolution on x1(n) and x2(n) gives better detec-

tion of horizontal (Figure 2 (a) and (c)) and vertical (Figure 2

(b) and (d)) edges respectively. Let Ûq = {k1, k2, . . . , kϕ(q)
2

},

q∈N, then we can write the relationship between RSs and

CCPSs as

c̄q(n) = c̄q,k1
(n) + c̄q,k2

(n) + · · ·+ c̄q,kϕ(q)
2

(n). (6)

Using this and linearity property of convolution sum, we can

write x1(n)∗ c̄5(n) = x1(n)∗ c̄5,1(n)+x1(n)∗ c̄5,2(n). Figure

2 (e)-(f) validates the same. So, fine edge detection can be

achieved using CCPSs over RSs, where RSs are integer-valued

sequences and CCPSs are real-valued sequences. A similar

kind of analysis can be done using CCPSs as the second

derivative.

Fig. 2: (a)-(d) Applying convolution between Lena image and c̄q,k(n) in
both vertical (column-wise appending) and horizontal (row-wise appending)
directions respectively: (a)-(b) With q = 5 and k = 1. (c)-(d) With q = 5
and k = 2. (e) Convolving Lena image with c̄5(n) in a vertical direction. (f)
Adding (a) and (c) then subtract the result from (e).

III. PROPERTIES OF CCS

Construct a circulant matrix Dq,k∈Mq(R) as given below

Dq,k =
[

c̄0q,k . . . c̄lq,k . . . c̄
q−1
q,k

]

, (7)
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where c̄lq,k indicates l times circular downshift of the sequence

c̄q,k. Using the factorization property of Dq,k, we can write

Dq,k = Bq,kB
H
q,k, where

BH
q,k =

[
Sq,q−k(0) Sq,q−k(1) . . . Sq,q−k(q − 1)
Sq,k(0) Sq,k(1) . . . Sq,k(q − 1)

]

2×q

.

(8)

From (8), the column space of Dq,k is equal to vq,k. Moreover,

the first two columns of Dq,k are linearly independent [4]. So,

any signal x∈vq,k can be written as,

[x]q×1 =
[
c̄0q,k c̄1q,k

] [

β̂q,k

]

= [Fq,k]q×2

[

β̂q,k

]

2×1
. (9)

Let q1∈N, q2∈N and N = lcm(q1, q2), then the orthog-

onality property of CCPSs is
[

ĉ
l1
q1,k1

]T

N×1

[

ĉ
l2
q2,k2

]

N×1
=

2NMcos
(

2πk1(l1−l2)
q1

)

δ(q1 − q2)δ(k1 − k2) [4], where ĉliqi,ki
is

obtained by repeating c̄liqi,ki
periodically N

qi
times. Using this

we can conclude the following: The vectors in the basis of

vq,k are not orthogonal; The subspaces vq1,k1
and vq2,k2

are

orthogonal to each other. With this basic introduction, now we

discuss a few of CCS properties in the following subsections.

A. shift-invariant Subspace

A natural question for a signal belongs to CCS is: What is

the effect if we consider a shifted version of the input signal?

We answer this question by proving the following theorem:

Theorem 3. CCS is a circular shift-invariant subspace, i.e., if

x∈vq,k, then xl∈vq,k, here the shift is interpreted as circular

shift (modulo q).

Proof: From (9), circular shifting x by an amount l gives

xl =
[

c̄lq,k c̄l+1
q,k

] [

β̂q,k

]

. (10)

c̄lq,k for any l∈Z is still a column in Dq,k. It implies both

c̄lq,k∈vq,k and c̄l+1
q,k∈vq,k. This results in xl∈vq,k. In fact,

using the row-Vandermonde structure of BH
q,k one can prove

that any two consecutive columns of Dq,k act as the basis for

vq,k, hence xl∈vq,k.

Since CCS is Shift-invariant, it may be useful in applications

like wireless communication [9], subspace tracking: which

play a vital role in video surveillance, source localization in

radar and sonar, etc., [10].

B. Computing the Projections

In CCPT, a signal x∈MN,1(C) is represented as a linear

combination of signals belongs to CCSs [4],

x =
∑

qi|N

⌊ qi
2 ⌋∑

k=1
(k,qi)=1

Eqi,kβqi,k
︸ ︷︷ ︸
xqi,k

∈vqi,k

= [TN]N×N [β]N×1 . (11)

Here, TN is the transformation matrix, β is the transform

coefficient vector, xqi,k denotes the projection of x onto vqi,k,

[Eqi,k]N×2 = [Fqi,k, . . . ,Fqi,k]
T and βqi,k

∈M2,1(C) is the

transform coefficients vector corresponds to vqi,k. As given

in [4], a major application of CCPT is estimating the period

and frequency information of a signal using β. While the

non-orthogonal basis of vqi,k makes CCPT a non-orthogonal

transform, i.e., it requires computation of T−1
N to find β.

According to Strassen’s algorithm, computing T−1
N requires

a computational complexity of O(N2.81) [11]. To use CCPT

in an efficient way, one has to overcome this limitation, for

this we compute xqi,k instead of β, which can serve for

the same purpose. Since [Eqi,k]
H [

Eqx,ky

]
= 0, ∀ i 6=x

(where qi|N and qx|N ), the projection of x onto vqi,k can

be computed as follows:

xqi,k = Eqi,k(E
H
qi,k

Eqi,k)
−1EH

qi,k
︸ ︷︷ ︸

Pqi,k
∈MN : Projection matrix

x. (12)

Here Pqi,k can be further reduced as given below:

Pqi,k =
qi

N






P̂qi,k . . . P̂qi,k

...
. . .

...

P̂qi,k . . . P̂qi,k




 ,where (13)

[P̂qi,k]qi×qi
= Fqi,k(F

H
qi,k

Fqi,k)
−1FH

qi,k
. (14)

Let us divide the input signal x into N
qi

blocks, that is x =
[

x(1),x(2), . . . ,x
( N
qi

)
]T

, where ith block x(i)∈Mqi×1. Then,

from (12) and (13) we can write

xqi,k =
qi

N






P̂qi,k . . . P̂qi,k

...
. . .

...

P̂qi,k . . . P̂qi,k











x(1)

...

x
( N
qi

)




 =






yqi,k

...

yqi,k




 ,

(15)

where

yqi,k =
qi

N
P̂qi,k

N
qi∑

i=1

x(i). (16)

Now consider a matrix P̃qi,k =
Dqi,k

qi
, then P̃2

qi,k
=

Bqi,k
BH

qi,k
Bqi,k

BH
qi,k

q2
i

= P̃qi,k, since BH
qi,k

Bqi,k = qiI. More-

over, the even symmetry property of CCPSs makes P̃H
qi,k

=

P̃qi,k. So, we can say that P̃qi,k is an orthogonal projection

matrix. Since vqi,k is the column space of Dqi,k, we can write

P̂qi,k = P̃qi,k =
Dqi,k

qi
. With this, (16) can be modified as,

yqi,k =
1

N
Dqi,k

N
qi∑

i=1

x(i) =
1

N
Dqi,kx̂. (17)

So, the orthogonal projection xqi,k is computed as follows:

First, multiply x̂ with the circulant matrix Dqi,k, then multiply

the result with a scale factor 1
N

to get yqi,k. Now repeat yqi,k

periodically N
qi

times to obtain xqi,k. The number of multi-

plications (computational complexity) involved in computing

xqi,k are qi
2+ qi. From (11), there are total of 1

2

∑

qi|N

ϕ(qi) =

N
2 number of CCSs are involved in representing x. So, the total

number of multiplications (Mtotal) required for computing

projections for all N
2 CCSs are

Mtotal =







2 + 1
2

∑

qi|N
qi≥3

ϕ(qi)(q
2
i + qi), if 2 ∤ N

8 + 1
2

∑

qi|N
qi≥3

ϕ(qi)(q
2
i + qi), if 2 | N

. (18)
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For few N values both Mtotal and
⌊
N2.81

⌋
are tabulated

TABLE I: COMPARISON OF Mtotal vs
⌊

N2.81
⌋

FOR FEW N VALUES

N 3 6 8 32 82
Mtotal 14 62 172 9708 170568
⌊

N
2.81

⌋

21 153 344 16961 238680

in Table I. From the table, we can conclude that Mtotal <<

O(N2.81) and there is an approximate of 40% reduction in the

computational complexity for the values given in the table.

Therefore, estimating the period and frequency information

through projection computation requires less computational

complexity over the direct inverse computation method. Apart

from this computational advantage, in some applications, it

is required to know the existence of certain periods in an

observed signal. In such scenarios, computing projections for

those CCSs are sufficient.

C. Correlation of Sequences in CCS

DFT of CCPS: For a given q∈N and k∈Ûq ,

DFT [c̄q,k(n)] = C̄q,k(K) =

{

q, if K = k (or) q − k,

0, Otherwise.

(19)

Let rc(l) denotes the circular autocorrelation of c̄q,k(l), then

DFT [rc(l)] = Rc(K) = C̄q,k(K)C̄q,k(K) = qC̄q,k(K).

Taking IDFT of above equation leads to rc(l) = qc̄q,k(l).
Using this relation, we prove the following Theorem.

Theorem 4. CCS is closed under circular cross-correlation

operation, i.e., if x(n)∈vq,k and y(n)∈vq,k then the circular

cross-correlation rxy(l) also belongs to vq,k.

Proof: Given x(n)∈vq,k and y(n)∈vq,k then

rxy(l) =

q−1∑

n=0





1∑

m1=0

βm1 c̄q,k(n−m1)





︸ ︷︷ ︸

x(n)





1∑

m2=0

γ∗
m2

c̄q,k(n− l −m2)





︸ ︷︷ ︸

y∗(n−l)

=
1∑

m1=0

1∑

m2=0

βm1γ
∗
m2





q−1∑

n=0

c̄q,k(n−m1)c̄q,k(n− l −m2)





=
1∑

m1=0

1∑

m2=0

βm1γ
∗
m2

q c̄q,k(l +m2 −m1)
︸ ︷︷ ︸

∈vq,k

.

From above, rxy(l) is a weighted linear combination of signals

belongs to vq,k, hence rxy(l)∈vq,k.

Further, the autocorrelation of a N -length signal x(n) is

rx(l) =

N−1∑

n=0

x(n)x∗(n− l) (20)

Using (11), the above equation can be modified as

rx(l) =
∑

qi|N

⌊
qi
2 ⌋

∑

k1=1
(k1,qi)=1

∑

qj |N

⌊ qj
2

⌋

∑

k2=1
(k2,qj)=1

[
N−1∑

n=0

xqi,k1
(n)x∗

qj ,k2
(n− l)

]

︸ ︷︷ ︸
Q

.

(21)

where Q =

{
N
qi
rxqi,k1

(l), if qi = qj & k1 = k2

0, if k1 6=k2
, since

CCS is shift-invariant and both vqi,k1
, vqj ,k2

are orthogonal

to each other for k1 6=k2. Now substituting Q in (21) leads to

1

N
rx(l) =

∑

qi|N

⌊ qi
2 ⌋∑

k1=1
(k1,qi)=1

1

qi
rxqi,k1

(l). (22)

The above result is summarized as follows:

Theorem 5. The circular autocorrelation of a signal is equal

to the linear combination of its projections (onto CCSs)

autocorrelation, with a proper normalization.

This property is useful if the given signal is contaminated

with additive noise. In such scenarios projecting rx(l) onto

CCSs gives an accurate period and frequency estimation over

projecting x(n).

IV. CONCLUSION

In this work, we have shown how to use CCPSs as first

and second order derivatives. Here, the first order derivative

is used to find the edges in an image. It is shown that fine

edge detection can be achieved using CCPSs over RSs. Later

we discussed few properties of CCSs, which may find their

applications in signal processing. In particular, the signal infor-

mation can be estimated with lesser computational complexity

using CCS projections.
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