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Observable tensor-to-scalar ratio and secondary gravitational wave background
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In this paper we will highlight how a simple vacuum energy dominated inflection-point inflation
can match the current data from cosmic microwave background radiation, and predict large pri-
mordial tensor to scalar ratio, r ∼ O(10−3

− 10−2), with observable second order gravitational
wave background, which can be potentially detectable from future experiments, such as DECi-hertz
Interferometer Gravitational wave Observatory (DECIGO), Laser Interferometer Space Antenna
(eLISA), Cosmic Explorer (CE), and Big Bang Observatory (BBO).

Detecting the primordial gravitational waves (GWs)
will lead to the finest imprints of the nascent Universe,
which will confirm the inflationary paradigm [1], quan-
tum nature of gravity [2, 3], and a new scale of physics
beyond the Standard Model (BSM). During the slow roll
inflation one can excite both scalar and tensor perturba-
tions, see [4], and the interesting observable parameter is
the tensor-to-scalar ratio, r. There are many models of
inflation, see [5], which can predict both large and small
r, while matching the other observables, such as the am-
plitude of temperature anisotropy, the tilt in the power
spectrum, and its running of the spectrum by the cosmic
microwave background radiation (CMBR) [6], within the
observed window of O(8) e-foldings of primordial infla-
tion from the Planck satellite. However, it is worthwhile
also to constrain the potential beyond the the pivot scale,
k∗ = 0.05 Mpc−1, where the relevant observables are nor-
malised.
The aim of this paper will be to provide a simple

toy model example of inflationary potential, which can
generate large tensor perturbations, in particular large
potentially observable, r, by the ground based experi-
ments such as Bicep-Keck array [7], and also leave im-
prints of GWs with a frequency range, 10−4− 103 Hz, at
DECi-hertz Interferometer Gravitational wave Observa-
tory (DECIGO) [8], Laser Interferometer Space Antenna
(eLISA) [9], Cosmic Explorer (CE) [10], and Big Bang
Observer (BBO) [11], see also [12]. Therefore, correlat-
ing GWs at two different frequencies and wavelengths
inspired by the same model of inflation.
As we will show, inflection-point models of infla-

tion [13, 14], provides this unique possibility to excite
the GWs from the pivot scale, where the CMBR observ-
ables are normalized to the end of inflation.
In order to illustrate this, let us now consider a sim-

ple potential which allows inflection-point, and we will
strictly assume that φCMB, ∆φCMB ≤ Mp [14–16].

V (φ) = V0 +Aφ2 −Bφn + Cφ2(n−1), (1)

where V0 corresponds to cosmological constant term dur-
ing inflation, the coefficients A, B, C are appropriate
constants with dimensions, and n ≥ 3 is an integer.

The physical motivation for the above potential directly
comes from a softly broken supersymmetric theory with
a renormalizable and non-renormalizable superpotential
contribution with canonical kähler potential, see [13]. In
these papers it was assumed that V0 = 0. However, the
supergravity extension, naturally provides cosmological
constant, V0 if no fine tuning is invoked to cancel such
a contribution, see for details [14]. Inflation will have
to come to an end via phase transition, or via hybrid
mechanism [17]. In the present work we will also explore
the possibility of having large V0, in particular to achieve
potentially observable r ≥ O(10−3) at the pivot scale.
In the above Eq. (1), V0, A, B, C are all subject to

various cosmological constraints from the latest Planck
data [6], here we quote the central values, which we will
use for the reconstruction of V0, A, B, C from the fol-
lowing well-known observables:

As ≈
V

24π2M4
plεV

≈ 2.2× 10−9 (2)

ns ≈ 1 + 2ηV − 6εV ≈ 0.96 (3)

dns/d lnk ≈ 16εV ηV − 24ε2V − 2ξ2V ≈ −0.013 (4)

d2ns/d ln k
2 ≈ −192ε3V + 192ε2V ηV − 32εV η

2
V

− 24εV ξ
2
V + 2ηV ξ

2
V + 2σ3

V ≈ 0.03 , (5)

where εV , ηV , ξV , σV are slow-roll parameters defined
below. All the above quantities are measured at the pivot
scale, k∗ = 0.05 Mpc−1, and we have considered the cen-
tral values in this paper, such as As(k∗) is the amplitude
of the temperature anisotropy in the CMB, ns(k∗) is the
spectral tilt, dns/d ln k(k∗) is the running of the tilt and
d2ns/d ln k

2(k∗) designates the running of the the run-
ning of the tilt [6]. Further note that the slow roll pa-
rameters can be expressed in terms of the potential, and
given by, see review [5]:

εV =
M2

P

2

(

V ′

V

)2

; ηV = M2
P

(

V ′′

V

)

; (6)

ξ2V = M4
P

(

V ′V ′′′

V 2

)

; σ3
V = M6

P

(

V ′2V ′′′′

V 3

)

. (7)

Another key formula is the tensor perturbations and the
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value of r, and its tilt, which are given by:

At ≈
2V

3π2M4
pl

, r(k = k∗) =
At(k∗)

As(k∗)
. (8)

nt ≈ −2εV ,

In fact, the coefficients, A, B, C can be computed in
terms of V0, As, r, ns, with the help of the following rela-

tion, see [15, 16]:

V (φCMB) =
3

2
Asrπ

2, V ′(φCMB) =
3

2

√

r

8
(Asrπ

2),

V ′′(φCMB) =
3

4

(

3r

8
+ ns − 1

)

(Asrπ
2). (9)

Given the observable constraints, see Eq. (2,3,4,5), we
scan the parameter space by fixing the value of n = 3, 4.
By insisting that the total number of e-foldings of infla-
tion to be N = 50 along with φCMB ∼ O(Mp), we obtain
the following benchmark points, as tabulated in Table. I.

Benchmark n V0(k∗) A(k∗) B(k∗) C(k∗)
dns

d ln k
(k∗)

d2ns

d ln k2
(k∗) r(k∗)

Points (BP)

1 3 7.44×10−10 0.868×10−10 0.689×10−10 0.190 ×10−10 -0.006 0.003 0.024

2 3 1.506×10−10 0.2046 ×10−10 0.2246×10−10 0.0757×10−10 -0.0148 0.001 0.005

3 4 14.245×10−10 1.240 ×10−10 0.500 ×10−10 0.112 ×10−10 -0.0148 0.021 0.046

TABLE I. We have used ns = 0.96, As = 2.2×10−9, φCMB =
1 in the Planck units for all the benchmarks evaluated at
k∗ = 0.05 Mpc−1. The three benchmark points match the
current CMBR data, i.e. the central values used in Eqs. (2,3).

We now plot the amplitude of the scalar power spec-
trum, As in Fig. [1], for the three benchmark points,
see [I], two of them are for renormalizable potential and
one for non-renormalizable potential. We illustrate the
power spectrum beyond the Planck window of O(8) e-
foldings, and show that the scalar amplitude grows out-
side this observable window, and reaches Ps(k) ≤ 10−1.5

for k ≤ 20Mpc−1 at the end of 50 e-foldings of inflation.
This happens due to the fact that both ǫV , ηV change
non-monotonically within the observational window of
O(8) e-foldings. At the pivot point, k = 0.05Mpc−1, the
scalar power spectrum, the tilt and its running all match
the observed data, see Table I, and Eqs. (2,3,4,5), but as
soon as the inflaton has crossed φCMB, or the pivot point,
the value of ǫV reaches its maximum, and then decreases
rapidly, while the other slow roll parameter ηV decrease
before increasing again as φ decreases [15, 16]. At small
φ ≪ φCMB , the slow roll parameter ηV → 2A

V0

. It is the
large ηV at small φ ≪ φCMB, that leads to more power
at small length scales. This property was first noticed
in [15]. Note that, for large V0, it can dominate the en-
ergy density well after the CMB observable window to
the end of the inflation, inflation will typically end via
phase transition as discussed above. In our case, there
will be a bump-like feature in the potential close to the
pivot scale. This, in turn, will give rise to large r cor-
responding to the benchmark points. In this paper we
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FIG. 1. The scalar power spectra has been shown for the
benchmark scenarios in table I.

will not discuss how to end inflation, and how to reheat
the Universe in any detail [18], but we will now ask the
possibility of generating GWs at different length scales
and frequencies.

Now, since the scalar power spectrum has an increasing
trend in the infrared, see Fig. [1], one can ask whether
this would source any gravitational waves at the second
order. The gravitational perturbations can be sourced
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by the matter perturbations at the second order, this
has been studied in Refs. [19, 20]. Based on this we
can ask how much the amplification of GWs will be at
scales around O(10 − 20) Mpc−1? Also, what will be
the frequency range of these GWs, and would they be
detectable by DECIGO, eLISA, CE, and BBO?

In order to understand this amplification of the GWs,
let us first study the metric perturbations, defined as,

ds2 = −a(η)2[(1+ 2Φ)dη2+ {(1− 2Φ)δij +
1

2
hij}dxidxj ]

where Φ is the metric potential, we have taken anisotropic
stress to be absent, and hij denotes the second-order ten-

sor perturbation, which satisfies hi
i = 0, hj

i,j = 0 (i.e.
traceless and transverse conditions). We are keen on the
tensor perturbations, which can be expressed as follows,

hij(x, η) =
1

(2π)3/2

∫

d3keik.x[hk(η)eij(k)+hk(η)ẽij(k)]

The two polarization tensors in the above equations are
normalized, such that eijeij = 1 = ẽij ẽij , eij ẽij = 0.

Note that, at large k (k & 108 Mpc−1) of our inter-
est, the first-order tensor perturbation during inflation
is negligible. By expanding the Einstein tensor and the
energy-momentum tensor up to the second-order, and
substituting the same in the Einstein equation, the fol-
lowing equation can be obtained [19, 20] 1,

h′′

k + 2Hh′

k + k2hk = S(k, η). (10)

The source term S(k, η) can be written as [19, 20],

S(k, η) = −4elm(k)Slm(k)

=

∫

d3q

(2π)3/2
elm(k)qlqmF(k,q, η), (11)

where,

F(k,q, η) = 12Φ(q, η)Φ(|k− q|, η) (12)

+
8

HΦ′(q, η)Φ(|k − q|, η) + 4

H2
Φ′(q, η)Φ′(|k− q|, η).

To estimate the source term, we evaluate the Bardeen
potential first [4]. Since the scalar power spectrum starts
rising for k ≫ keq ∼ 0.01 Mpc−1, the second-order source
term can only be significant for k ≫ keq. Consequently,
we only consider the modes which are re-entering the
Hubble patch during the radiation domination. In this

1 To compute the power spectrum, and then the corresponding en-
ergy density, it is convenient to work in Fourier space. For the ‘+’
polarization eij(k), The above equation for the tensor perturba-

tions, then, can be recast as, The amplitude h̃k, corresponding
to the “×” polarization 2 also obeys a similar equation.
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FIG. 2. The relative contribution of the gravitational wave
to the energy density has been shown for the benchmark sce-
narios in table I.

epoch, the Bardeen potential satisfies the following evo-
lution equation :

Φ′′ +
6(1 + w)

(1 + 3w)η
Φ′ + wk2Φ = 0 , (13)

with w = 1/3. Ignoring the decaying mode at early times,
the solution takes the following form :

Φ(k, η) =
c(k)

(kη)3

[

kη√
3
cos

(

kη√
3

)

− sin

(

kη√
3

)]

. (14)

Note that the Bardeen potential Φ(k) can be split in
to two parts, a contribution from the primordial per-
turbation φk (η ≪ 1) and the transfer function as
Φ(k, η) = Φ(kη)φk. The coefficient c(k) is estimated
matching of Φ(k, η) with the primordial perturbation at
η ≪ 1. This gives Φ(k, η ≪ 1) = −c(k)/9

√
3. Thus c(k)

can be estimated from the primordial power spectrum as
follows [19],

c(k)2 ≃ (9
√
3)2

4

9

2π2

k3
As(k) ≃

216π2

k3
As(k) (15)

whereAs(k) denote the primordial scalar power spectrum
(i.e. the power spectrum as η → 0). Before getting into
the numerical results, we describe the behavior of the
amplitude hk and the source term first [20]. The ampli-
tude hk is largest at a time ηi, when kηi ≃ 1, i.e. during
the period of Hubble re-entry of the respective mode.
At this point its amplitude can be simply estimated as
S(k, ηi)/k

2. Once a mode enters horizon, it starts os-
cillating, and the amplitude decreases as inverse of the
scale factor. Also, the source term S(k) decreases faster
during radiation domination before eventually becoming
constant during matter dominated epoch. For our bench-
marks, see Table I, we find that the source term scales as
1/aγ, where γ ≃ 2− 3. For the modes, which enter early
in the radiation dominated epoch, the source term can
become too small before entering the matter dominated
epoch, so the amplitude simply decreases as inverse of
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the scale factor until today. The energy density of the
gravitational wave (in logarithmic intervals of k) is given
by (see e.g. [21]),

ρGW(k, η) =
〈ḣij ḣ

ij〉
32πG

=
1

32πG

k2

a(η)2
Ph(k, η), (16)

where η is the conformal time, and the power spectrum
Ph(k, η) takes the following form

Ph(k, η) =
k3

2π2
(|hk(η)|2 + |h̄k(η)|2). (17)

The relative energy density ΩGW(k, η) =
(1/12)(k2/a(η)2H(η)2)Ph(k, η), then, can be esti-
mated at the present epoch by, (Ω0

radh
2/Ωeq

rad)Ω
eq
GW(k),

where we take h = 0.68, and Ωeq
GW(k) evaluated at the

re-entry

Ω0
GW(k)h2 =

Ω0
radh

2

2Ωeq
rad

(

g∗eq
g∗i

)1/3
k2Ph(k, ηi)

12a(ηi)2H(ηi)2
.(18)

where ηi represents the conformal time around the Hub-
ble re-entry of the respective mode when the amplitude
hk is maximum, thus kηi ∼ O(1). During radiation dom-

ination ρtotal = ρrad ∝ H(η)2 ∝ g
−1/3
∗ a−4. Further,

the effective number of degree of freedom contributing
to the energy density and to the entropy density have
been assumed to be the same during this epoch, with
g∗eq = 106.75, g∗ = 3.36 and Ωradh

2 ≃ 4.3 × 10−5. We
show the estimated Ω0

GW(k)h2 for the benchmark sce-
narios in Fig.2. Note that the BBN and CMBR con-
straints on ΩGW (i.e. ΩGW . 10−5, see e.g. [24]) is
satisfied by our benchmark scenarios. Further, we have
also checked that for these scenarios the mass range of
primordial blackholes (if they are at all formed due to
various astrophysical uncertainties) are typically below
1010 gm, and therefore no significant constraint arises
from their evaporation during early Universe [25].
Before concluding, let us point out to the key physics

for generating large primordial r. This is due to the pres-
ence of V0 term. It is conceivable that instead of V0, one
might be able to invoke many scalar fields giving rise to
an enhancement in the Hubble expansion rate [26]. It
would be interesting to see if multi-scalar fields can also
reproduce sufficiently blue tilt in the power spectrum be-
yond the 8 e-foldings of observed window via inflection-
point inflation.
To summarise, we have provided an example of infla-

tionary potential, which is capable of generating large
tensor-to-scalar ratio, in our scans we have given exam-
ples of r = 0.024, 0.046, 0.005. These values of r are gen-
erated by the inflection-point inflation, which provides
large running of the slow roll parameters outside the pivot
scale such that the power spectrum increases in the in-
frared until the end of inflation. The latter sources the
secondary GWs with ΩGWh2 ≤ 10−6, which can be po-
tentially detectable by DECIGO, eLISA, BBO and CE,
therefore, opening up new vistas for GW cosmology.
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