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Abstract The present study focuses on investigating the bifurcation character-
istics of a pitch-plunge aeroelastic system possessing coupled non-smooth nonlin-
earities, both in structural and aerodynamic fronts. To this end, a freeplay non-
linearity is considered in the stiffness of the pitch degree-of-freedom (DoF). The
effects of dynamic stall arising due to large instantaneous angles-of-attack (AoA)
are incorporated using the semi-empirical Leishman Beddoes (LB) aerodynamic
model. A systematic response analysis is carried out to discern the bifurcation
characteristics of the aeroelastic system considering the airspeed as the system
parameter. At low airspeeds, a series of dynamical transitions, including aperi-
odic responses, occur predominantly due to the structural freeplay nonlinearity
while the flow remains attached to the surface of the wing. However, beyond a
critical value of airspeed, the system response is dominated by high amplitude
pitch-dominated limit-cycle oscillations, which can be attributed to stall flutter.
It is demonstrated that the freeplay gap plays a key role in combining the effects
of structural and aerodynamic nonlinearities. At higher values of the freeplay gap,
interesting discontinuity-induced bifurcation scenarios, such as grazing and bound-
ary equilibrium bifurcations arise due to coupled nonlinear interactions, which can
significantly impact the safety of the aeroelastic system.

Keywords Dynamic Stall · Stall Flutter · Freeplay Nonlinearity · Grazing
Bifurcation · Boundary Equilibrium Bifurcation.

1 Introduction1

Aeroelastic systems, such as flexible wings, helicopter rotor blades, and wind tur-2

bines among many others, are subjected to coupled interactions between inertial,3
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elastic, and aerodynamic forces often with non-negligible nonlinearity, both in the4

structure or/and aerodynamics [8]. These nonlinear aeroelastic systems exhibit5

phenomenologically rich dynamical signatures, such as Hopf bifurcations leading6

to self-sustained limit cycle oscillations (LCOs) [18,34], transition to chaos [1,3],7

grazing bifurcations [31]. Identifying the onset of such dynamical transitions is im-8

portant from the standpoint of structural safety as self-sustained oscillations can9

induce fatigue damage over time, eventually leading to structural failure. There-10

fore, a bifurcation analysis can directly benefit the design of aeroelastic systems11

through an appropriate understanding of the underlying fluid-structure interaction12

dynamics.13

The dynamical signatures of the system responses are impacted significantly14

by the type of nonlinearity, emerging from either the structural [18], or the aerody-15

namic counterpart [11] of the aeroelastic system, or even from the combination of16

both [17,3]. Structural nonlinearities can be broadly categorized into distributed17

or concentrated types [1]. For large amplitude oscillations, the effects of distributed18

structural nonlinearities become pronounced and are usually incorporated using19

a polynomial expression for the stiffness term. On the other hand, concentrated20

structural nonlinearities, often mathematically modeled using piece-wise linear21

functions, can have a significant effect even in the case of low amplitude oscil-22

lations. Freeplay nonlinearity is one such concentrated nonlinearity that has re-23

ceived wide attention in the literature [1,23,32] due to its prevalence and impact24

on aeroelastic systems. Several studies have typically considered an isolated case of25

non-smooth structural nonlinearity to show its impact on the system and observed26

phenomenological transitions in the structural response. Recent studies, such as27

Vasconcellos et al. [31] and Monfared et al. [26] have considered Theodorsen’s un-28

steady and quasi-steady aerodynamic models, respectively, to estimate the loads on29

a pitch-plunge airfoil with freeplay nonlinearity and observed grazing bifurcations30

owing to the non-smooth structural nonlinearity. Verstraelen et al. [35] mathe-31

matically and experimentally demonstrated the co-existence of two-domain and32

three-domain LCOs through a grazing bifurcation scenario in aeroelastic systems33

with freeplay in pitch.34

On the other hand, the aerodynamic nonlinearity can significantly alter the35

aeroelastic responses when the structure is subjected to flow at high effective36

AoA under dynamic stall condition [25]. An aeroelastic instability in the dynamic37

stall regime, known as stall flutter, can give rise to high amplitude self-sustained38

oscillations. Dimitriadis and Li [9] experimentally investigated an aeroelastic sys-39

tem under dynamic stall and observed the route to stall flutter to occur via a40

subcritical Hopf bifurcation. Although high-fidelity Navier-Stokes simulations [3]41

can accurately capture the nonlinear aerodynamic effects and the flow separa-42

tion characteristics, this approach is associated with a prohibitive computational43

cost. Hence, several semi-empirical aerodynamic models [16] were developed to44

estimate the aerodynamic loads under dynamic stall conditions at a considerably45

low computational cost. In this context, the semi-empirical LB model is proven46

to effectively capture the different dynamic stall events except at very high AoA.47

The indicial form of the model was modified into a state-space representation by48

Leishman [20] and Leishman and Nguyen [21], making it convenient for the non-49

linear dynamic analysis of an aeroelastic system under the influence of dynamic50

stall without the loss of generality. LB model is non-smooth in nature; the effect51

of the associated non-smoothness on the response characteristics of an aeroelastic52
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system subjected to dynamic stall has been investigated by Galvanetto et al. [13].53

The authors observed a regime of LCOs with increasing amplitude that transition54

to aperiodic responses at the threshold of static stall event.55

A large section of the existing literature has only focused on investigating the56

aeroelastic systems with isolated nonlinearity either in the structure or in the flow.57

However, the presence of coupled nonlinearities can give rise to radically different58

dynamics that are not observed otherwise [19,27,7]. The presence of discontinuity59

in both structural and aerodynamic models adds more complexities to analyzing60

such systems and characterizing the underlying dynamics. Vasconcellos et al. [33]61

experimentally investigated stall-induced aeroelastic responses in the presence of62

cubic hardening type of distributed nonlinearity in pitch DoF and have shown63

that the preset angles (angle set in wind-off conditions) alter the Hopf bifurca-64

tion onset. Candon et al. [5] characterized the interactions between the freeplay65

and aerodynamic nonlinearities at transonic regimes by investigating their higher-66

order spectra. A recent study by Bethi et al. [2] investigated a pitch-plunge airfoil67

with various forms of distributed structural nonlinearities under dynamic stall68

conditions and reported a variety of transition scenarios, such as period-doubling69

cascade beyond a critical airspeed. Sai Vishal et al. [36] established the route to70

stall flutter in a system possessing freeplay nonlinearity in the structural com-71

ponent and subjected to nonlinear aerodynamic loads by invoking the theory of72

synchronization. However, the authors did not explore the response signatures73

arising from coupling two non-smooth nonlinearities (freeplay and dynamic stall)74

from a bifurcation perspective and only a synchronization route was suggested.75

Discontinuity-induced-bifurcations (DIBs) can be detrimental to the structure76

as they involve abrupt jumps in the response dynamics between coexisting attrac-77

tors and have a significant impact even at low amplitudes of oscillations. Kalmár-78

Nagy et al. [17] showed that aeroelastic systems with non-smooth nonlinearities79

in both structure and flow exhibited border collision and rapid bifurcations. The80

authors used a simplified bilinear model fitted to the coefficient of lift data from81

static stall experiments to calculate the aerodynamic loads. Lelkes et al. [22], using82

the same aerodynamic model, investigated the impact of a vibration absorber on83

the stability of equilibria and observed a shift in the onset of rapid bifurcation84

to higher airspeeds. However, this bilinear model does not account for the delay85

in the flow separation and added lift generation from the formation of dynamic86

stall vortex and hence, provides limited insight into the system. A more realistic87

approach would be to consider a dynamic stall model in order to incorporate the88

effects of flow separation and vortex shedding. To the best of the authors’ knowl-89

edge, the bifurcation behavior of such an aeroelastic system consisting of freeplay90

nonlinearity in the structure and a non-smooth dynamic stall model has largely91

remained unexplored in the literature. The present study is devoted to addressing92

this aspect. Another important parameter in aeroelastic systems involving freeplay93

nonlinearity is the freeplay gap, which can significantly alter the DIB behavior.94

Studies by Verstraelen et al. [35] have underscored the pivotal role played by the95

freeplay gap in dictating the DIBs in aeroelastic systems with linear aerodynam-96

ics. Extending this understanding to coupled non-smooth nonlinearities, therefore,97

becomes a necessary step to understand the associated DIB scenario better. The98

present study aims to take up this analysis as well.99

To that end, this study focuses on numerically investigating the dynamical100

signatures of an aeroelastic system subjected to coupled non-smooth nonlinearities101
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in the flow, as well as in the structure. A pitch-plunge airfoil, possessing freeplay102

nonlinearity in the pitch DoF and subjected to dynamic stall in the aerodynamics,103

is considered. The nonlinearity in aerodynamics is captured by using the LB model.104

A systematic response analysis is carried out with airspeed as the bifurcation105

parameter. Furthermore, the effect of the freeplay gap on the discontinuity-induced106

bifurcation scenario is investigated and the effects of mass-ratio and uncoupled107

frequency-ratio on the bifurcation behavior are also explored.108

The rest of the paper is organized as follows. Section 2 presents the mathe-109

matical model of the aeroelastic system and validation studies of the present LB110

model. The detailed bifurcation analysis of the pitch-plunge aeroelastic system111

in the presence of isolated nonlinearities in the structure and the flow, as well as112

combined nonlinearities, are presented in Subsections 3.1, 3.2 and 3.3, respectively.113

The effect of the freeplay gap on the bifurcation behavior and the impact of struc-114

tural parameters on the onset of dynamic stall are presented next in Subsection 3.4115

and 3.5, respectively. Finally, the salient findings from this study are summarized116

in Section 4.117

2 Mathematical model118

The structure pertaining to the aeroelastic system is considered to be a 2-D NACA119

0012 airfoil with pitch and plunge DoFs constrained using torsional and transla-120

tional springs attached at the elastic axis (see Fig. 1). The pitch angle is denoted by

Fig. 1 Schematic of pitch-plunge aeroelastic system.

121

α, and the plunge displacement, non-dimensionalised using the semi-chord b = c/2122

(where c is chord length), is denoted by ϵ. The non-dimensional velocity and ac-123

celeration terms for the pitch and plunge motions are obtained by differentiating124

the corresponding responses with respect to the non-dimensional time τ = Vt/b,125

where V is the dimensional airspeed and t is the dimensional time. The elastic126

axis is located at ahb from the mid-chord point and the center of gravity is located127

at xαb from the elastic axis. The stiffness coefficients along the pitch-plunge DoFs128

is denoted by kϵ and kα, respectively. The governing equations of motion for the129
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given aeroelastic system in non-dimensional form is given by130

ϵ′′ + xαα
′′ +

(

ϖ

U

)2

G(ϵ) = − 1

πµ
CL, (1)

131

xα

rα2
ϵ′′ + α′′ +

(

1

U

)2

R(α) =
2

πµrα2
Cm. (2)

Here, U (= V/bωα) is the non-dimensional airspeed; ωα is the uncoupled pitch132

natural frequency; ϖ is the ratio of uncoupled pitch (ωα) and plunge (ωϵ) natural133

frequencies. µ represents the mass ratio given by m/πρb2, where m is the mass of134

the airfoil and ρ is the density of air. rα is the radius of gyration about the elastic135

axis given by
√

Iα/mb2, where Iα is the moment of inertia about pitch DoF. The136

non-dimensional stiffness along the plunge and pitch DoFs - G(ϵ) and R(α) - are137

represented as functions of ϵ and α, respectively. In the current investigation, the138

plunge stiffness is considered to be a linear function of ϵ, given by G(ϵ) = ϵ. The139

freeplay nonlinearity in the non-dimensional pitch stiffness R(α) is defined using140

a piece-wise linear function as given by141

R(α) =











α+ δ
2 , if α < − δ

2 .

0, if − δ
2 ≤ α ≤ δ

2 .

α− δ
2 , if α > δ

2 .

(3)

Here, δ represents the region of zero stiffness, known as freeplay gap. The variation142

of R(α) with the change in α is shown schematically in Fig. 2.143

Fig. 2 The schematic representation of the pitch stiffness R(α) as a function of the pitch
angle (α).

The aerodynamic load coefficients CL and Cm are estimated using the state-144

space representation of the LB formulation [20,21], consisting of a set of first145

order ordinary differential equations (ODEs) that model the aerodynamic loads146

associated with the different flow modules under dynamic stall; see Eq. 4.147

x
′ = f(x, α̂, q,U,M). (4)

Here, f is a 12 × 1 vector of nonlinear functions, x = [x1, x2, ..., x12]
T are the148

twelve aerodynamic states (see Appendix A), U is the non-dimensional airspeed149
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introduced earlier, M is the Mach number, α̂ and q denote the effective pitch angle150

and effective non-dimensional pitch rate, given by [8]151

α̂ = tan−1

(

sinα+ ϵ′ cosα

cosα− ϵ′ sinα

)

, (5)

q = 2α̂′ =
2

1 + ϵ′2

(

α′ + ϵ′′ + ϵ′2α′

)

, (6)

since ah = −1/2. Note that q is a nonlinear function of the acceleration ϵ′′ so152

that Eq. 4 features mass nonlinearity. Although the resulting equations of motion153

can be integrated numerically using an iterative scheme for ϵ′′, this approach is154

unwieldy for bifurcation analysis. An alternative is to linearize Eq. 6 by assuming155

that ϵ′2 is small such that156

q = 2
(

α′ + ϵ′′
)

. (7)

This alternative is chosen for the present work, the difference between equations 6157

and 7 being of the order of 10−8 for the frequencies and amplitudes considered158

here.159

The aerodynamic load coefficients are given by160

Ci = gi(x, α̂, q) i = c,N,m, (8)

where c, N, m represent the non-dimensional coefficients of the chordwise force,161

normal force, and pitching moment, respectively. The LB model uses the frame of162

reference where the loads perpendicular to and along the airfoil chord are calcu-163

lated. The lift coefficient (CL) is computed as164

CL = CNcosα− Ccsinα. (9)

The states x1 - x8 are associated with the unsteady attached flow regime, modi-165

fied from the Wagner’s function formulation by taking the Mach number (M) and166

flow compressibility into account (refer to Appendix A for the non-dimensional167

ODEs of the respective states). The normal force and moment coefficients associ-168

ated with the unsteady attached flow are given by169

CI
N =

(

4b

MV

)(

−x3

KαTI

+ α̂

)

+

(

b

MV

)(

−x4

KqTI

+ q

)

, (10)

170

CC
N = CNα

(

V

b

)

β2(A1b1x1 +A2b2x2), (11)

CI
m =

−1

M

(

−A3x5

b3KαMTI

+
−A4x6

b4KαMTI

+ α̂

)

− 7

12M

(

− x8

KqMTI

+ q

)

, (12)

171

CC
m =

[

0.25− xα

]

CC
N − π

8
b5β

V

b
x7, (13)

where M is the Mach number, TI = c/a, where a is the speed of sound and A1,172

A2, A3, A4, b1, b2, b3, b4 and b5 are LB model constants (corresponding values173

are provided in the Appendix A). CNα
is the slope of the normal force coefficient174

curve against pitch angle at attached flow conditions. Kα, Kq, KαM and KqM are175

empirical constants; the corresponding expressions are provided in the Appendix176
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A. The superscript I indicates the impulsive load coefficient and C indicates the177

circulatory load coefficient terms. A chord value of 0.637 m is chosen in this study178

following McAlister et al. [24].179

The states x9, x10 and x12 model the flow separation regime and represent180

the delayed normal force component, trailing edge separation point location, and181

the delayed version of the trailing edge separation point location. The delay in182

x12 is incorporated in order to improve the representation of the pitching moment183

due to trailing edge separation during flow reattachment. The aerodynamic load184

coefficients for the corresponding flow regime are given by185

Cf
N = CC

N

(

1 +
√
x10

2

)2

, (14)

186

Cf
m = [K0 +K1(1− x̂) +K2 sinπx̂

2]CC
N

(

1 +
√
x̂

2

)2

, (15)

187

Cf
c = 0.97 CNα

(

CC
N

CNα

)2√
x10, (16)

188

x̂ =

{

x10, if x10 > x12

x12, if x12 ≥ x10

(17)

where the superscript f denotes separated circulatory loads.189

The state x11 accounts for the extra lift generated due to the formation of190

leading edge vortex, when the value of x9 crosses an experimentally obtained191

critical normal force (CN1) value. K0, K1 and K2 are coefficients related to the192

position of the aerodynamic center and the shape of the moment break at stall that193

are estimated from static experiments. The normal force and moment coefficients194

generated by the leading edge vortex are given by195

CN
v = x11, (18)

196

Cm
v =







−1
4

[

1− cos

(

πτv

Tvl

)]

x11, if τv ≤ 2Tvl.

0, if τv > 2Tvl.
(19)

Here, Tvl is the experimentally obtained value of time taken for the vortex to travel197

one chord, while τv is the vortex time that starts when |x9| = CN1 and progresses198

with non-dimensional time τ as |x9| is increasing. The value of τv is reset to 0199

when |x9| < CN1. It is worthwhile to mention that the boundary at |x9| = CN1200

introduces non-smoothness in the aerodynamic model. The values of empirical201

constants CNα
, K0, K1, K2 and Tvl are dependent on M and are provided in202

Appendix A. The expressions for the non-dimensional derivatives of the states x9203

- x12 are also provided in Appendix A. The total values of the aerodynamic load204

coefficients are obtained from summing the separated circulatory, impulsive and205

vortex contributions, such that206

CN = Cf
N + CI

N + Cv
N

Cm = Cf
m + CI

m + Cv
m (20)

Cc = Cf
c
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The present LB model is validated with existing experimental results on a207

NACA 0012 airfoil at dynamic stall conditions. The coefficient of moment (Cm)208

and the coefficient of normal force (CN ) calculated from the LB model, used209

in this study [13], is validated against the experimental results of McAlister et210

al. [24] at M = 0.3 for an airfoil, sinusoidally pitching with the kinematics -211

α(τ) = 12◦ + 10◦ sin(κτ) - with the value of the reduced frequency κ = 0.0976.212

(see Fig. 3(a) and Fig. 3(b)). It is observed that the present results show a close213

agreement with the reference experimental results in this M regime. Evidently, the214

LB model is seen to be capable of capturing the aerodynamic loads under dynamic215

stall conditions with an agreeable accuracy.216

0 5 10 15 20 25

-0.3

-0.2

-0.1

0

0.1

Experimental Data [24]

LB Model

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5
Experimental Data [24]

LB Model

Fig. 3 Validation of the present LB model: (a) coefficient of moment (Cm) and (b) coefficient
of normal force (CN ) values obtained from the present computations are compared against the
experimental data in McAlister et al. [24] obtained from [8] for α(τ) = 12◦ + 10◦ sin(κτ) at
κ = 0.0976 and M = 0.3.

The full list of the discontinuity boundaries of the model is217

|x9| = CN1
, |x9|/CNα

= α1, |α̂| = α1, τv = Tvl, τv = 2Tvl,

218

x10 = x12, x10 = 0.7, α̂ ˙̂α = 0 (21)

It should be noted that most of these discontinuities are modeling artifacts. Al-219

though dynamic stall is an abrupt phenomenon comprising a series of rapid tran-220

sitions among different stages, it has not yet been established with confidence that221

it is discontinuous in the strict mathematical sense. The shedding of the Leading222

Edge Vortex, corresponding to |x9| = CN1
in the LB model, is probably the most223
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abrupt phenomenon occurring during dynamic stall but the time scale of this event224

is yet to be established for general cases. The LB model is quite successful in mod-225

eling the aerodynamic load response during dynamic stall, even in the challenging226

post-shedding phase, and is therefore used here. Some aspects of the model can227

be smoothed, such as Kirchoff’s load computation for low Mach numbers [4]. As228

the Mach number is significant in the present study, the original LB formulation229

is used, with the discontinuous Kirchoff function of Eq. 28 (although one aspect230

of this function is smoothed over, see later).231

3 Results and Discussions232

Three test cases are investigated in this section:233

– A system with freeplay in pitch and linear aerodynamics, obtained from the234

low-amplitude, linearized version of the Leishman-Beddoes model.235

– A system with linear structure and fully nonlinear Leishman-Beddoes aerody-236

namic loads.237

– A system with both freeplay in pitch and nonlinear aerodynamic loads, which238

is the combination of the previous two systems.239

Studying the effects of the structural and aerodynamic nonlinearities separately240

sheds light on the dynamic behavior of the combined nonlinear system since char-241

acteristics of the responses of the first two systems are found in the third. The tools242

used for the dynamic investigation are stability analysis of fixed points, numerical243

time integration, numerical continuation, and Floquet theory.244

3.1 Non-smoothness only in the structure245

In this section, we consider a pitch-plunge aeroelastic system with structural246

freeplay nonlinearity, subjected to linear aerodynamics. The structural parame-247

ters are chosen from Lee et al. [18] and are shown in Table 1. The aerodynamic

Table 1 The non-dimensional structural parameters of the aeroelastic system [18].

µ rα xα ah ϖ

100 0.5 0.25 -0.5 0.2

248

loads come from the linearized version of the Leishman-Beddoes model of the pre-249

vious section. The flow is assumed to be attached at all times such that only the250

first eight aerodynamic states are required. The Eq. 5 for the effective pitch angle251

is linearized to252

α̂ = α+ ϵ′,

while the non-dimensional pitch rate is given by Eq. 7. The aeroelastic equations253

of motion are reduced to254

x
′ = f(x,U,M) = Q(U,M)x+ q(U,M)R(α), (22)
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where x = [x1, x2, . . . , x12]
T is the aeroelastic state vector. The first eight states255

are aerodynamic, while x9 = ϵ′, x10 = α′, x11 = ϵ and x12 = α. The function256

R(α) is the freeplay function of Eq. 3 and the freeplay gap is set to δ = 1◦.257

The matrix Q(U,M) and the vector q(U,M) are obtained by substituting the258

linearized expressions for â, q into the aerodynamic state Eqs. 27 and linearized259

versions of the aerodynamic load coefficient Eqs. 20, i.e.260

CN = CL = CC
N + CI

N ,

Cm = CC
m + CI

m, (23)

Cc = 0.

Substituting these latest expressions in the equations of motion 1 and 2 and com-261

bining with equations 27 finally leads to Q(U,M) and q(U,M). Of all the Mach-262

dependent parameters in Table 4, only the lift-curve slope CNα
and K0 affect the263

linearized aerodynamic model. The value of CNα
for Mach number less than 0.3264

is obtained from the Prandtl-Glauert rule265

CNα
(M) =

2π√
1−M2

while K0, which determines the moment of the lift around the aerodynamic center,266

is set to zero at very low Mach numbers in this work1. Therefore, K0 is set to267

decrease exponentially from K0(0.3) = 0.0125 at M = 0.3 to 0 at M = 0.15 and268

to remain zero down to M = 0, i.e.269

K0(M) =

{

K0(0.3)
(

1− e8.3(M−0.15)
)

/
(

1− e1.245
)

, if 0.15 ≤ M < 0.3

0, if M < 0.15
(24)

This treatment is slightly arbitrary but it ensures the continuity of the system270

eigenvalues over the entire airspeed range of interest. The values of CNα
and K0271

for all Mach numbers equal to or higher than 0.3 are obtained by interpolating272

the data in Table 4.273

Table 2 Flutter speeds and frequencies of the two linear subsystems.

Linear subsystem Flutter speed Flutter frequency Divergence speed

Inner UFi
= 1.04 ωFi

= 0.17ωα UDi
= 2.5

Outer UFo
= 5.53 ωFo

= 0.55ωα -

The presence of freeplay in a linear system splits the phase space into three274

piecewise linear subdomains, as shown in Fig. 2. Inside the freeplay region, |α| ≤275

δ/2, the response dynamics are determined by the linear system,276

x
′ = Q(U,M)x,

1 The pitching moment around c/4 is not exactly equal to zero for thick airfoils, even at very
low Mach numbers. Here, it is set to zero as data are not available for M < 0.3. Taylor [30]
gives data for both the aerodynamic center position and lift curve slope as a function of M
but the former is in mediocre agreement with the values in Table 4 while the latter are in
significant disagreement.
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which has zero stiffness in pitch and is referred to as the inner linear system. The277

pitch axis lies on the c/4; as mentioned earlier, the aerodynamic pitching moment278

around this point has been set to 0 for M ≤ 0.15. At higher Mach numbers, the279

aerodynamic pitching moment is non-zero and determined by Eq. 24 or Table 4.280

For K0 = 0, the matrix Q(U,M) has a zero eigenvalue, which means that the281

fixed point lying at xF = 0 is neutrally stable. This situation occurs at M ≤282

0.15, which corresponds to U ≤ 2.5 given the choice of system parameters. For283

K0 ̸= 0, Q(U,M) has a positive real eigenvalue since it has no structural stiffness284

in pitch to counterbalance the aerodynamic pitching moment. This means that285

for all U > 2.5, the fixed point xF = 0 is an unstable spiral. This condition is286

known as static divergence in linear aeroelasticity and the divergence airspeed is287

denoted by UDi
. All response trajectories are pushed away and cross the freeplay288

boundary. As a consequence, a boundary-equilibrium bifurcation occurs at UDi
=289

2.5. Furthermore, linear flutter occurs at another critical value of the airspeed,290

UFi
= 1.04, which means that the single pair of complex conjugate eigenvalues of291

matrix Q(U,M) becomes purely imaginary and the fixed point xF = 0 becomes292

a neutrally stable focus. Circles whose pitch amplitude is equal to δ/2 graze the293

two discontinuity boundaries. Hence, a grazing bifurcation occurs at the flutter294

speed of the inner linear system. The flutter speed, UFi
, flutter frequency ωFi

and295

divergence speed UDi
of the inner linear system are given in Table 2.296
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(b) Eigenvalues of outer linear system

Fig. 4 Fixed point position variation with airspeed and eigenvalues of outer linear system.

Outside the freeplay region, |α| ≥ δ/2, the system dynamics are described by297

x
′ = Q(U,M)x± q(U,M)

(

α+
δ

2

)

= Qo(U,M)x± q(U,M)
δ

2
,

which is essentially a linear system with a nonlinear fixed point, given by298

xF = ±Qo(U,M)−1
q(U,M)

δ

2
. (25)

The α component of this fixed point is plotted in Fig. 4(a); it lies exactly on299

the freeplay boundary for airspeeds up to UDi
when it starts moving away from300
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this boundary. The stability of this fixed point is determined by the stability of301

the linear system x′ = Qo(U,M)x, which will be referred to as the outer linear302

system. The matrix Qo(U,M) has no positive real eigenvalues throughout the303

speed range of interest. The system undergoes flutter at UFo
= 5.53, as shown304

in Table 2, when one pair of complex conjugate eigenvalues becomes purely real,305

as shown in Fig. 4(b). Therefore, beyond UFo
, both the inner and outer linear306

systems become unstable and all response trajectories become unbounded.307

In order to calculate numerically the complete dynamics of the system, equa-308

tions 22 are solved using the pseudo-arclength continuation scheme in [8]. Given309

initial guesses for a point x0 on a limit cycle and for the period of the cycle, T0,310

at a chosen airspeed U0, a Newton system is set up such that311





∆x

∆T
∆U



 = −





∂f/∂x ∂f/∂T ∂f/∂U
∂x/∂s ∂T/∂s ∂U/∂s

x′T
−1 0 0









x(T )− x0

0

(x0 − x−1)
Tx′

−1



 ,

where ∆x, ∆T , ∆U are improvements to x0, T and U, f is the system’s non-312

linear function, x(T ) is the value of the system states obtained by means of a313

time integration of Eq. 22 over T seconds and with initial conditions x0, s is the314

pseudo-arclength and x−1, x
′

−1 are the states and their derivatives of a point on315

a nearby limit cycle that has already been determined accurately. The time in-316

tegration is carried out by means of a 4-5 order Runge-Kutta scheme with event317

detection in order to determine accurately the crossings of the freeplay bound-318

aries. The derivatives are determined numerically using a forward finite difference319

scheme. The Newton system is set up and solved repeatedly until convergence is320

achieved and then new direction vectors ∂x/∂s, ∂T/∂s, ∂U/∂s are calculated and321

a new limit cycle is pinpointed. Limit cycles branches are continued until a chosen322

amplitude is exceeded; the stability of each limit cycle is determined using Floquet323

theory and folds and branch points are detected.324
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Fig. 5 Limit cycle amplitude and period of the system with freeplay in pitch and linear
aerodynamics.

Figure 5(a) plots the variation with airspeed of the maximum value of α over a325

complete cycle. This maximum corresponds to the amplitude for symmetric limit326
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cycles but not for asymmetric ones. There is a primary branch of symmetric limit327

cycles that emanates from the grazing point that occurs at the flutter speed of the328

inner linear system, UFi
, and with period 2π/ωFi

. The branch is initially unstable329

and propagates in the decreasing airspeed direction but it then undergoes a fold330

and becomes stable. At U = 1.74 there is a branch point that causes the primary331

branch to become unstable and gives rise to a secondary asymmetric branch.332

The latter is again unstable and propagates in the decreasing U direction until it333

folds, becomes stable, and changes direction. It folds again at a higher airspeed334

and rejoins the primary branch at the second branch point, lying at U = 3.2.335

The amplitude of the primary branch continues to increase with U and tends to336

infinity as the flutter speed of the outer linear system is approached. The figure337

also plots the α coordinate of the stable fixed point that appears as a result338

of the boundary-equilibrium bifurcation mentioned earlier. Figure 5(b) plots the339

variation of the non-dimensional period, T = 2πV/ωb, of the two limit cycle340

branches with airspeed.341
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Freeplay boundary

(b) Branch 2, near first fold

Fig. 6 Phase plane plots of limit cycles on the two branches.

Both branches are related to grazing bifurcations. The primary branch is gen-342

erated when the circles of the fluttering inner linear system graze the freeplay343

boundary, as shown in Fig. 6(a) which plots a phase plane section of the unstable344

limit cycle at the grazing point. The secondary branch also grazes the freeplay345

boundary but in a different way, as seen in Fig. 6(b). The cycle features two loops,346

a large one that crosses both freeplay boundaries and a small one that grazes the347

boundary at −δ/2; this limit cycle lies near the first fold of the secondary branch348

at U = 1.5. At higher airspeeds, the small loop moves to the left and crosses the349

−δ/2 boundary. Near the second fold, at around U = 4.1 the small loop moves350

back towards the center of the phase plane and grazes again the same boundary.351

Note that the mirror image of the cycle in Fig. 6(b), which grazes +δ/2, is also a352

valid solution of the system. Finally, it must be mentioned that Floquet analysis353

did not detect any period doubling or torus bifurcation.354
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3.2 Non-smoothness only in the flow355

In this case, the structure is linear so that the effects of the non-smooth dynamic356

stall model can be studied in isolation. Galvanetto et al [13] analyzed the bifur-357

cation behavior of a similar system, choosing the Mach number as the bifurcation358

parameter; they observed a period-doubling cascade, culminating in aperiodic os-359

cillations. However, in the present study, the non-dimensional airspeed U is chosen360

as the bifurcation parameter. The density is chosen to be constant so that the Mach361

number varies with U and the parameters of the LB model at each U value are362

calculated by interpolation from the data provided in Table 4 in Appendix A.363

Adding the equations of motion to the aerodynamic equations of the LB model364

given in Eq. 4 results in an augmented system of the form365

x
′ = f(x,U,M), (26)

where, x = [x1, x2, ..., x16]
T is the state vector, the first 12 states being the aero-366

dynamic states of the full, nonlinear, Leishman-Beddoes model (see Appendix A),367

while x13 = ϵ′, x14 = α′, x15 = ϵ and x16 = α. The vector f is a 16 × 1 vector of368

nonlinear functions; the first 12 elements are those of the LB model while the last369

four are the system’s equations of motion, Eqs. 1 and 2.370
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Fig. 7 Real and imaginary parts of the eigenvalues of the Jacobian of the system with aero-
dynamic only nonlinearity around the fixed point. The circles denote the Hopf point.

The first step in the analysis is to determine the fixed points of the system,371

xF , for which f(xF ,U,M) = 0. Both the structural and aerodynamic loads of the372

system are symmetric since the shape of the airfoil is also symmetric. Therefore,373

the system is in equilibrium when all the displacements are zero; the flow is fully374

attached in this condition, which means that the separation point lies at the trailing375

edge. Consequently, the fixed point of the system is a 16×1 vector of zeros, except376

for the 10th and 12th states that are equal to 1; these states represent the position377

of the separation point. The next step is to calculate the stability in the Lyapunov378

sense of this fixed point by linearizing the system around xF in the form379

∆x
′ =

∂f

∂x

∣

∣

∣

∣

xF

∆x,
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where ∆x is a small departure from xF and ∂f/∂x|xF
is the Jacobian evaluated at380

xF . Figure 7 plots the variation of the real and imaginary parts of the eigenvalues381

of the Jacobian, showing clearly that one pair of complex conjugate eigenvalues382

becomes purely imaginary at UH = 5.53. This is the well-known condition of the383

Hopf bifurcation and signifies that a branch of limit cycles will emanate from the384

Hopf point UH , with frequency ωH = 35.4 rad/s. Note that the UH is identical385

to the flutter speed of the outer linear system in Table 2. This is logical since the386

structural system is now linear and has stiffness Kα in the entire phase space. Its387

stability around the fixed point is determined by very low-amplitude aerodynamic388

loads, which are linearized. Therefore, close to the fixed point, the present system389

and the outer linear system of section 3.1 are identical.390
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Fig. 8 Limit cycle amplitude and period of the system without freeplay and nonlinear aero-
dynamics, close to the Hopf point.

Strictly speaking, the nonlinear function f is not differentiable around xF be-391

cause of the discontinuity in slope of Eq. 28 at α̂ = 0. For the present case, the392

slope of f(α̂, α1) jumps from 2.6 × 10−3 to −2.6 × 10−3 as α̂ crosses from 0−393

to 0+. In order to calculate the Jacobian around xF the slope df/dα̂ was set to394

0 at α̂ = 0. This is a negligible modification of the LB model, considering that395

the same slope can take values over ±30 at higher values of the effective pitch396
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angle. It also renders the model more physical because there is no reason why397

the derivative of the lift curve slope of an airfoil should be discontinuous across398

α = 0. As a consequence, the system does indeed undergo a Hopf bifurcation at399

xF and the resulting limit cycle branch can be determined by means of numerical400

continuation, up to a point.401

The shooting-based pseudo-arc length continuation scheme mentioned previ-402

ously is used again in order to determine the dynamics of the system with linear403

structure and nonlinear aerodynamics. At small amplitudes of oscillation, there404

are no discontinuities in the system, other than the one occurring at α̂ = 0 and405

dealt with already. The system becomes non-smooth first when |x9| = CN1
, which406

is grazed before the other discontinuity boundaries as the oscillation amplitude407

increases. Figure 8 plots the variation of limit cycle amplitude and period with408

U close to the Hopf point. It can be seen that the bifurcation is supercritical, as409

the resulting limit cycle branch is stable and propagates in the increasing airspeed410

direction. Both the amplitude and frequency increase smoothly with airspeed,411

without undergoing any folds, until x9 grazes CN1
, as seen in Fig. 8(c). The graz-412

ing limit cycle is plotted in a phase plane section in Fig. 8(d). At that point, the413

numerical continuation procedure detects a branch point; it then breaks down be-414

cause the system develops memory. The time response from initial conditions over415

a cycle depends on the time instance at which |x9| exceeds CN1
, that is the time416

the vortex is shed. The vortex shedding time now becomes an additional system417

state, which is not associated with an equation of motion. If the vortex time is418

retained as an initial condition, the Newton system of the continuation process419

becomes overdetermined; if it is ignored, the Newton system fails to converge. It420

may be possible to write an additional equation of motion for the vortex state but421

such a development is not the focus of the present paper. As a consequence, the422

dynamics of the system after the grazing bifurcation are determined by means of423

long time integrations only.424
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Fig. 9 Bifurcation plot of the system without freeplay subjected to nonlinear aerodynamic
loads modelled using LB formulation. The initial conditions are α(0) = 15◦, α′(0) = 0, ϵ(0) = 0
and ϵ′(0) = 0.
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Figure 9 plots a bifurcation diagram, obtained by calculating the maxima of425

α(τ) over a long time duration at each airspeed, by means of a 4-5 order Runge-426

Kutta scheme with very small tolerance of 10−12 and no event detection. In Ap-427

pendix B it is shown that this way of solving the equations of motion gives identical428

results to using event detection. The same conclusion was reached by Liu et al. [23]429

and Galvanetto et al. [13]. The initial behavior of the system is identical to the430

one seen in Fig. 8. After the branch point, the response undergoes a transition to431

aperiodic oscillations. At around U = 6.7, the system transitions again to periodic432

high-amplitude oscillations typical of a fully developed stall flutter. This second433

transition occurs when all the discontinuity boundaries are exceeded by a signifi-434

cant amount during an oscillation cycle so that no grazing or near-grazing events435

are occurring. The time integrations are stopped at U = 8 when the amplitude in436

pitch reaches 30◦.437

It is not clear whether the aperiodic oscillations observed in Fig. 9 are physical.438

Experimentally observed aperiodic stall flutter oscillations and coexisting limit439

cycles have been reported in the literature [10] but at very low Mach numbers440

and the nature of the coexisting limit cycles were different. As the numerical441

continuation scheme could not proceed past the branch point, the cause of the442

aperiodic oscillations is unclear. It may be that the multitude of discontinuous443

boundaries results in numerous grazing events so that the limit cycle becomes a444

torus but this explanation could not be confirmed.445

3.3 Non-smoothness in both structure and flow446

The present section deals with the bifurcation behavior of the pitch-plunge aeroe-447

lastic system featuring both freeplay nonlinearity in the pitch stiffness and aerody-448

namic nonlinearity due to dynamic stall during large amplitude oscillations. The449

freeplay gap is set to δ = 1◦, as in section 3.1. At low amplitudes of oscillation450

and airspeeds, the Leishman-Beddoes model behaves nearly linearly, so that the451

dynamics of the system are still determined by the inner and outer linear systems452

of section 3.1. The flutter and divergence characteristics of Table 2 and the fixed453

point positions and dynamics of Fig. 4 are still relevant. The high-amplitude dy-454

namics are dictated by the outer linear system and nonlinear aerodynamic loads,455

just like the system in section 3.2.456

Figure 10 plots the limit cycle amplitude and period of this system, calculated457

using numerical continuation. The plot stops when the amplitude in x9 reaches458

CN1
at U = 5.47, a branch point occurs and the numerical continuation scheme459

breaks down, as mentioned in the previous section. Figures 10(a) and 10(b) are460

nearly identical to those of Figs. 5(a) and 5(b) for the system with linear aerody-461

namics; the only significant difference being the occurrence of the branch point at462

|x9| = CN1
. The stable fixed points are also nearly identical, while the boundary-463

equilibrium bifurcation occurs at the same airspeed i.e. at U = 2.5. As the numer-464

ical continuation scheme breaks down at the third branch point, the subsequent465

dynamics of the system are analyzed by means of long time integrations.466

Figure 11 plots the bifurcation diagram of the system, obtained using long time467

integrations at each airspeed. The numerical scheme was again the Runge-Kutta468

4-5 method with the same low tolerance. The first limit cycle oscillations occur469

at around U = 0.9 and they have small amplitude, as shown in Fig. 12(a) and470
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Fig. 10 Limit cycle amplitude and period of system with freeplay and nonlinear aerodynamics
up to |x9| = CN1
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Fig. 11 (a) Bifurcation diagram for a system with freeplay gap of δ = 1◦ and initial conditions
α(0) = 15◦, α′(0) = 0, ϵ(0) = 0 and ϵ′(0) = 0. The aerodynamic loads are captured using the
LB formulation. (b) A zoomed section of bifurcation plot for airspeeds U = 1 - 3.5 is provided.
The black lines in (b) indicate the freeplay boundary located at α = ±0.5◦.
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Fig. 12(b). Furthermore, the flow is fully attached; Fig. 12(c) shows that x10 = 1471

at all times, i.e. the separation point lies at the trailing edge, and that x9 does472

not increase beyond ±0.04, i.e. |x9| << CN1
so that no vortex shedding can occur.473

The limit cycle occurs due to the grazing bifurcation occurring at UFo
= 1.04 as474

discussed in section 3.1. The corresponding frequency spectrum (Fig. 12(c)) shows475

that the response has a single dominant frequency along with its super-harmonic,476

representative of a period-1 limit cycle [23,31].477
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Fig. 12 Onset of period-1 LCO at U = 0.9. (a) The time response (b) α vs α′ phase portrait
(c) FFT showing a single peak and its harmonic and (d) x9 vs x10 phase portrait. The lines
marked in black indicate the freeplay boundaries at α = ±0.5◦ and region enclosed marks the
zero stiffness region (freeplay gap δ = 1◦ and α(0) = 15◦).

As U is gradually increased up to U = 3.4, a secondary limit cycle branch is478

created at the first branch point, resulting in asymmetric limit cycles that feature479

a small loop that grazes the freeplay boundary, as seen in Fig. 13(a) and Fig. 13(b).480

At higher airspeeds, this secondary branch merges with the primary branch, and481

only symmetric limit cycles can occur, see Fig. 13(c) and Fig. 13(d). Again, the482

amplitudes of these limit cycles are low enough to ensure that the aerodynamic483

loads are nearly linear and no stall or dynamic stall occurs. Figure 14 plots x9 vs484

x10 phase portraits up to U = 5.4, showing that x10 = 1 and |x9| < CN1
at all485

times.486

At U = 5.47, x9 starts to graze the CN1
boundary, as shown in Fig. 15. At487

U = 5.45, x9 approaches this boundary but does not graze it yet, see Fig. 15(a)488

and Fig. 15(b). Furthermore, x10 does not drop below 0.96, which means that489

the flow is nearly fully attached. At U = 5.6, x9 crosses the CN1
boundary and490

α grazes the α1 boundary, see Fig. 15(c) and Fig. 15(d). Now, the trailing edge491

separation point position, x10 oscillates between 0.4 and 1, so that a significant492

portion of the wing experiences separated flow. Furthermore, the crossing of the493

CN1
boundary means that the vortex-induced aerodynamic loads are no longer494

equal to zero at all times. As a consequence, the flow oscillates between attached495

conditions, light stall, and deep stall and the oscillations start to become quasi-496

periodic. Light stall signifies that only trailing edge separation occurs. Deep stall497

means that a leading-edge vortex is shed [13,9].498
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Fig. 13 The transition of the response via a near grazing impact. (a) The time response (b)
phase portrait for U = 3.4 showing formation of near tangent to the discontinuous boundary
(marked using line in (a) and (b)) and the subsequent loss of tangent shown in (c) time response
(d) phase portrait at higher airspeeds.
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Fig. 14 The x9 vs x10 plots for cases (a) U = 2.5 (b) U = 3.7 (c) U = 5.4 showing negligible
flow separation.

At U = UFo
= 5.53 the stable fixed points shown in Fig. 10(a) become unstable.499

Response trajectories starting near the fixed point spiral outwards until they cross500

the freeplay boundary. Then, they increase abruptly in amplitude and graze or501

cross both the |x9| = CN1
and |α| = α1 boundaries. The steady-state response is502

an aperiodic limit cycle since no periodic limit cycles can exist between U = 5.47503

and U = 6.6. Even though the bifurcation occurring at UFo
involves a pair of504

complex eigenvalues becoming purely imaginary and the system is nonlinear, it505

cannot really be called a Hopf. No limit cycle branch is generated at the fixed506

point and the response jumps directly to a high-amplitude aperiodic oscillation.507

It is worth summarizing that, between U = 5.47 and 5.53, the system undergoes508

multiple grazing bifurcations and a Hopf-like bifurcation.509

As the airspeed is increased further, the response becomes completely aperiodic510

until U = 6.6; see Figs. 16(a) and 16(b)). The aperiodic attractors have been511

categorized as quasiperiodic and chaotic states using the topological invariants,512

such as Largest Lyapunov Exponent and correlation dimension; see Appendix C.513
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Fig. 15 (a) The time response and (b) phase portrait of x9 vs x10 for the airspeed U =
5.45. (c) The time response and (d) x9 vs x10 for the airspeed U = 5.6. The black lines in (a)
and (c) represent the static stall angle (α1 = ±13.46◦) and the red dashed lines indicate the
boundaries of sub-domains due to the presence of freeplay. The figure depicts the transition
of p-1 LCOs to quasi-periodic oscillations as the value of x9 crosses the critical normal force
(CN1) boundary marked using black lines in (b) and (d).

In Fig. 16(a), the range of α values is split into five sub-domains; S1 lies inside514

the freeplay region, S2,3 inside the δ/2 ≤ |α| ≤ α1 region and S4,5 in the |α| > α1515

region. It can be seen that the time response of α oscillates aperiodically between516

all five of these regions. The boundary crossing picture of Fig. 16(a) is not complete517

because there are other discontinuous boundaries that do not depend on α, see518

Eq. 21. The x9 vs x10 phase plot (Fig. 16(c)) shows multiple loops, the smallest of519

which stay within x10 > 0.9 and |x9| < CN1
, which means that the flow is nearly520

attached. The vast majority of the loops cross the CN1
boundary, so that vortex521

shedding is occurring over most of the cycles. Similar aperiodic responses were522

observed and attributed to an aperiodic attractor in [13].523
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Fig. 16 (a) The time histories, (b) α vs α′ phase portraits and (c) x9 vs x10 phase portraits
for the corresponding airspeed U = 6.4 depicting the aperiodic nature of the response. The
black lines represent the boundaries of sub-domains S4 and S5 located at static stall angle (α1

= ± 12.24◦) and the dashed red lines represent the boundaries of sub-domains S1, S2 and S3,
respectively.
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The response transitions from aperiodic to periodic as the airspeed is increased524

to U = 6.6 (Fig. 17(a)), marking the onset of high-amplitude periodic and symmet-525

ric stall-induced LCOs; see Fig. 17(b). This event can be attributed to deep stall526

as the amplitudes of the pitch response reach a value considerably higher than the527

static stall angle; see Fig. 17(c). The value of x10 decreases to nearly zero at every528

half cycle and |x9| exceeds ±CN1 by a significant amount. This means that not529

only does the trailing edge separation point move up towards the leading edge, but530

a strong vortex is also shed twice every cycle, causing additional vortex-induced531

lift and pitching moment, as seen in Fig. 17(d) and Fig. 17(e). Flow reattachment532

begins when the vortex clears the trailing edge, after the sharp drop in the pitch-533

ing moment. Separation, vortex shedding, and reattachment occur alternatively534

on the upper and lower sides of the airfoil.535
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Fig. 17 The time history (a), α vs α′ phase portrait (b), x9 vs x10 phase portrait (c), coeffi-
cient of lift versus vs pitch hysteresis (d) and coefficient of moment versus vs pitch hysteresis
(e) for the corresponding airspeed U = 6.6. The black lines in (b) represent the boundaries of
sub-domains S4 and S5 located at static stall angle (α1 = ± 11.96◦) and the red dashed lines
represent the boundaries of sub-domains S1, S2 and S3, respectively.

The effect of freeplay nonlinearity on the system dynamics is predominant at536

lower amplitudes of oscillations. As shown in section 3.1, the oscillation ampli-537

tude due to freeplay remains small and only starts to increase significantly as538

the flutter speed of the outer linear system is approached. At this condition, the539

freeplay-induced oscillations start to cause light stall earlier than the nonlinear540

aerodynamics alone would have caused it. Deep stall, on the other hand, appears541

virtually unaffected by freeplay. However, if a system has only freeplay nonlinear-542

ity, the response amplitude is directly proportional to the freeplay gap [6]. This543

means that increasing the freeplay gap will increase the amplitude range in which544

freeplay has a significant effect and, in the case of the system with both freeplay545

and nonlinear aerodynamics, will increase the interaction between the two nonlin-546

earities [35]. This serves as an impetus to investigate the effect of increasing the547

freeplay gap and the following section presents the same.548
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3.4 Effect of freeplay gap on the onset of dynamic stall549

The bifurcation plot of Fig. 11 may be seen as an approximate superposition of550

the bifurcation plots of Fig. 5 and Fig. 9. This indicates a minimal interaction551

between the nonlinearities arising from the structure and the aerodynamics due to552

the fact that the freeplay gap is very small. In fact, it is so small that, when the553

system is undergoing dynamic stall oscillations, the freeplay is nearly linearized.554

In this section, it is shown that increasing the freeplay gap causes higher degrees555

of interaction between the two nonlinearities. The bifurcation plots for the cases556

δ = 2◦, 3◦ and 4◦, focusing on the speed range U = 5− 7, are shown in Figs. 18(a)557

- 18(c). These particular airspeeds are chosen because the system response transi-558

tions into stall flutter in this range. It is observed that the qualitative nature of the559

dynamics is similar in all cases. However, the amplitude of the oscillations reaches560

the static stall angle (indicated using black lines) at progressively lower airspeeds561

as δ is increased. For example, the amplitude of oscillations reaches α1 at U = 5.6562

when δ = 1◦ (refer to Fig. 11 in subsection 3.3) while for δ = 4◦ (Fig. 18(c)), it563

reaches it at U = 5.3. The onset of large-amplitude stall flutter is also shifted to564

lower airspeeds as the freeplay gap is increased.565

It is worth noting that the width of the region of aperiodic oscillations reduces566

as δ is increased. The qualitative nature of the response is similar for all δ in567

the chosen airspeed range: small amplitude oscillations increasing to light stall,568

followed by higher amplitude aperiodic oscillations involving vortex shedding and569

finally periodic deep stall oscillations. However, the amplitudes of each of these570

phenomena and the airspeed ranges in which they occur are quantitatively affected571

by the increase in δ.572

The effect of the freeplay gap can be seen more clearly when the bifurcation573

plot is calculated using δ and not U as a bifurcation parameter. Figure 19 depicts574

the bifurcation plots for distinct airspeeds U = 5, 5.5, 6, 6.5 as function of δ. The575

chosen airspeeds include all the dynamical transitions that occur in the range U576

= 5 - 7. It can be seen that, at U = 5 and 5.5, increasing the freeplay gap from 0◦577

to 5◦ changes the nature of the steady-state response from static to aperiodic or578

quasi-periodic stall flutter oscillations. For U = 6 all responses are quasi-periodic,579

only the amplitude is affected by the freeplay gap. For U = 6.5, the response580

evolves from aperiodic to periodic stall flutter. The most important conclusion581

from Fig. 19 is that increasing the freeplay gap can cause stall flutter to occur at582

an airspeed significantly lower than the Hopf speed of the system without freeplay,583

which lies at U = 5.53.584

The phase plots of x9 and x10 corresponding to δ = 0◦, 1◦, 2◦ and 3◦ are585

given in Figs. 20(a) - 20(d), respectively, for U = 5.7, in order to demonstrate586

further the impact of freeplay on dynamic stall onset. Fig. 20(a) represents the587

case δ = 0◦; flow separation is seen to be negligible, and no vortex formation588

can be observed as the x9 values still lie within the CN1 boundary (marked by589

dashed lines in black). However, at δ = 1◦, the phase portrait of x9 and x10 is590

of quasi-periodic nature, such that the response switches between light stall and591

deep stall; see Fig. 20(b). As δ is increased to values greater than 1◦, the phase592

portraits are indicative of aperiodic dynamics with the response reaching further593

into the deep stall regime (see Fig. 20(c) and Fig. 20(d)). The extent of trailing594

edge flow separation is also observed to increase with freeplay gap as x10 reaches595

values close to zero, representing an almost completely separated flow.596
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Fig. 18 Zoomed bifurcation plot in U = 5 - 7 region for freeplay gap (a) δ = 2◦, (b) δ = 3◦,
(c) δ = 4◦ . The lines marked in black correspond to the static stall angle of incidence (Note
that this value varies with Mach number and in turn with U).

3.5 Impact of system parameters on the onset of dynamic stall597

In the previous section, the freeplay gap was varied but the structural system598

parameters remained constant. Naturally, these parameters play a primordial role599

in dictating the aeroelastic response of the system as they affect the flutter speeds600

and frequencies of the inner and outer linear systems and, hence, the airspeeds at601

which freeplay-induced and stall-induced oscillations occur as well as the frequency602

of these oscillations. Many studies have demonstrated the dependence of various603

nonlinear aeroelastic systems on the structural system parameters, see [3,14] for604

recent examples.605
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Fig. 19 Bifurcation plot with δ as the bifurcation parameter ranging from 0◦ − 5◦ for (a) U
= 5 (b) U = 5.5 (c) U = 6 (d) U = 6.5.
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Fig. 20 Phase plot of x9 and x10 for freeplay gap (a) δ = 0◦, (b) δ = 1◦, (c) δ = 2◦, (d)
δ = 3◦ at U = 5.7. The dashed lines in indicate the critical normal force (CN1) value.

The effects of two important system parameters, namely, the mass ratio (µ)606

and frequency ratio (ϖ) on the bifurcation characteristics and flutter onset, are607

investigated by keeping the other structural parameters constant, as already given608

in Table 1. First, µ is incremented in the range 50 - 250, and the resulting changes609

in the system dynamics and onset of stall flutter are studied. It is important to610

study the effect of the value of µ on the dynamic characteristics of the inner and611

outer linear systems. Figure 21(a) plots the variation of the flutter speeds of the612

two linear systems with µ, while Fig. 21(b) presents the variation of the flutter613

frequency. It can be seen that, as µ increases, both flutter speeds increase while614

both flutter frequencies decrease. As the wing becomes heavier with respect to the615

air and the springs, higher airspeeds are required for the aerodynamic loads to be616

important enough to destabilize the system, while the wind-off natural frequencies617

decrease.618

A combined bifurcation plot for µ = 50, 100, 150, 200, 250 is presented in Fig. 22(a)619

and the corresponding zoomed sections are provided in Figs. 22(b) - 22(e). It is620

observed that the onset of stall flutter is postponed as the value of µ is increased.621
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Fig. 21 Effect of µ on the flutter speed and frequency of the inner and outer linear systems.

This can be attributed to the fact that the flutter speeds of both the inner and622

outer linear systems increase with µ, as mentioned in the previous paragraph.623

No significant change in the qualitative nature of the system was observed but all624

oscillations are moved to higher airspeeds, all stall flutter amplitudes are decreased625

(the amplitudes of the freeplay-induced oscillations depend mostly on the size of626

the freeplay gap), while the airspeed range of the aperiodic oscillations increases627

between µ = 50 and 100 and decreases steadily for µ > 100. Table 3 details the628

airspeed ranges of the three main types of response encountered.629

Fig. 22 (a) Combined bifurcation plot for µ = 50, 100, 150, 200, 250 and freeplay gap δ = 1◦.
A zoomed section of the bifurcation plot in the flow speed region (b) U = 0 - 4 for µ = 50, (c)
U = 0 - 5 for µ = 150, (d) U = 0 - 6 for µ = 200 and (e) µ = 250, respectively. Please note
that the zoomed section plot for the case µ = 100 is shown earlier in Sec. 3.3

Next, the frequency ratio (ϖ) is incremented in the range of 0.3 - 0.99 while630

the other parameters are kept constant. Figure 23 plots the effect on the flutter631
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Table 3 The airspeed ranges of different response types for µ = 100, 150, 200 and 250, up to
U = 8.

Response↓ µ → 50 100 150 200 250

Freeplay-induced oscillations 0.7-4.1 0.8-5.6 1.3-6.2 1.5-6.7 1.6-7.1
Aperiodic stall flutter 4.2-5 5.6 - 6.5 6.3 - 6.8 6.8 - 7 7.2
Periodic stall Flutter 5.1-8 6.6-8 6.9-8 7.1-8 7.3-8

speeds and frequencies of the inner and outer linear systems. The figure shows632

that both the flutter condition of the inner linear system increases linearly with633

ϖ, since this parameter determines the stiffness of the only spring in the system.634

On the other hand, the flutter speed of the outer linear system first decreases635

and then increases with ϖ. At around ϖ = 0.8, the outer linear system starts to636

flutter at a lower airspeed than the inner. This means that, for ϖ ≥ 0.8, only stall637

can cause self-excited oscillations. The inner linear system may flutter at a higher638

airspeed than the outer but it is still unstable due to the positive real eigenvalue639

at U > 2.5. Consequently, in the speed range between U = 2.5 and UFo
the system640

has a stable fixed point just outside the freeplay region, whose position is given641

by Eq. 25. At all speeds above UFo
, the system response is stall flutter, as a Hopf642

bifurcation occurs around the fixed point at UFo
.643
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Fig. 23 Effect of ϖ on the flutter speed and frequency of the inner and outer linear systems.

Similar to the previous case, a combined bifurcation plot for ϖ = 0.3, 0.5, 0.7,644

0.8 and 0.99 is presented in Fig. 24(a) and the zoomed sections of the marked inset645

(U = 0 to 3) are provided in Figs. 24(b) - 24(f). In all cases, the initial conditions646

used in the time integrations lay outside the freeplay range. It is observed that647

the onset of freeplay-induced LCOs is delayed while the onset of stall flutter is648

shifted to lower airspeeds as the value of ϖ increases. The response dynamics of649

the system are significantly affected by the change in the ϖ value.650
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Fig. 24 (a) Combined bifurcation plot for ϖ = 0.3, 0.5, 0.7, 0.8, 0.99 and freeplay gap δ = 1◦.
A zoomed of the bifurcation plot in the airspeed region U = 0 - 3 for the respective ϖ value
(b) ϖ = 0.3, (c) ϖ = 0.5, (d) ϖ = 0.7, (e) ϖ = 0.8 and (f) ϖ = 0.99 is provided.

4 Conclusions651

The present study investigates the response dynamics of a pitch-plunge aeroelas-652

tic system possessing discontinuous nonlinearities in both the structure and the653

aerodynamics. First, the bifurcation behavior of the system with freeplay only is654

analyzed, followed by that of the system with nonlinear aerodynamics only. Then,655

the system is subjected to the combined effects of dynamic stall and freeplay non-656

linearity in the pitch degree of freedom. Finally, the impact of three important657

structural system parameters - freeplay gap (δ), mass ratio (µ), and frequency658

ratio (ϖ), on the response characteristics of the system are investigated. The im-659

portant findings of this study are the following:660

– The bifurcation plot of the system with both freeplay and aerodynamic non-661

linear is approximately a superposition of the bifurcation plots of the systems662

with isolated nonlinearities. Freeplay-induced and stall-induced effects interact663

only within a narrow airspeed region around the flutter speed of the outer linear664

system, which is also the Hopf condition of the system without freeplay. Past665

this airspeed, the freeplay is effectively linearized, since the oscillation ampli-666

tude is much higher than the freeplay gap. Freeplay only affects the dynamics667

of the system at low airspeeds, causing low-amplitude oscillations.668

– Increasing the size of the freeplay gap also increases the interaction between669

the two nonlinearities. The amplitude of the freeplay-induced oscillations is670

proportional to the freeplay gap, so that, if this gap is large enough, dynamic671

stall can occur at airspeeds significantly lower than the flutter speed of the672

outer linear system.673

– Increasing the value of the mass ratio µ does not alter qualitatively the system’s674

dynamics, even though all limit cycles occur at higher airspeeds and have675

slightly lower amplitudes. The range of airspeeds in which aperiodic LCOs can676

occur shrinks drastically as µ increases.677
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– Varying the ratio of plunge-to-pitch natural frequency ϖ modifies significantly678

the behaviour of the system. At particular values of ϖ, the flutter speeds of679

the inner and outer linear systems are inversed so that no freeplay-induced680

oscillations can occur.681

The system investigated in this work features a very high number of discon-682

tinuous boundaries: two boundaries due to the freeplay and 11 boundaries due683

to the Leishman-Beddoes model. The number and nature of the discontinuities684

have made it impossible to carry out numerical continuation beyond the grazing685

of the first Leishman-Beddoes boundary. Future work will be aimed at developing686

a numerical continuation strategy that can handle the sudden appearance of an687

additional vortex-related system state when deep stall occurs.688

A Aerodynamic state-space ODEs689

The set of ODEs used to calculate the states pertaining to the unsteady attached flow regime690

are given by691
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The LB model uses the Kirchhoff theory to calculate the load coefficients corresponding692

to the flow separation regime. The point of trailing edge separation is used to determine the693

loss in the normal force coefficient with respect to the ideal flow scenario. The position of the694

trailing edge separation point is given by695

f(α̂, α1) =







1− 0.3e
(
|α̂|−α1

S1
)
, if |α̂| ≤ α1.

0.04 + 0.66e
(
α1−|α̂|

S2
)
, if |α̂| > α1.

(28)

Here, α1 is the point where f(α1, α1) = 0.7, which is approximately equal to the static stall696

angle. It should be noted that α1 serves as a discontinuous boundary that is responsible for697

splitting the phase space into two additional domains apart from the existing domains due698

to the presence of freeplay in the structure. S1 and S2 are constants that are obtained from699

experiments for each airfoil type. The ODEs corresponding to the flow separation regime are700

given by701

x9
′ =

(CN )C + CN
I − x9

TP

, x10
′ =

f
( x9

CNα
, α

)

− x10

Tf

, (29)

702

x12
′ =

f(α̂, α)− x12

0.63Tf0

, (30)

where TP , Tf and Tf0 are time delay constants obtained from dynamic stall experiments. The703

parameters Tf and α1 vary as the flow detaches and re-attaches. The vortex shedding phase704

begins when the value of |x9| ≥ CN1 marking the onset of flow separation. In this regime, the705

parameters vary such that706
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Tf =
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1
3
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1
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4Tf0 , if 2Tvl < τv .

(31)

α1 =

{

α10 , if αα′ ≥ 0.

α10 − (1− x10)
1

4 δα1
, if αα′ < 0.

(32)

Here, α10 is the experimentally obtained static stall angle of incidence, and δα1
is a parameter707

dependent on airfoil shape that is used to capture the point of static stall angle with better708

accuracy during a dynamic event. The flow reattachment process begins when |x9| < CN1 and709

the parameters Tf and α1 in this regime are defined as710

Tf =

{

Tf0 , if x10 ≥ 0.7

2Tf0 , if x10 < 0.7
; α1 = α10 . (33)

where Tvl is the experimentally obtained value of time taken for a vortex to travel one chord.711

The ODE that provides the solution to the state x11 is given by712

x11
′ =

{

c′v − x11

Tv
, if αc′v ≥ 0 and 0 < τv < 2Tvl.

−x11

Tv
, otherwise.

(34)

c′v is the derivative of the vortex feed cv that determines the strength of vortex induced normal713

force given by cv = CC
N −Cf

N
. The parameter (Tv) that controls the change in x11 also changes714

according to the flow condition and is given by715

Tv =


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1
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1
2
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0.9Tv0 , if 2Tvl < τv .

(35)

In the flow separation phase and during flow reattachment (|x9| < CN1), Tv = Tv0 . Finally,716

the 12 aerodynamic states x′

1 - x′

12 defined earlier and the structural states depicting the pitch717

and plunge, velocity and acceleration terms, [α′, α′′, ϵ′, ϵ′′] together form a state-space system718

of total 16 ODEs i.e h = [x′

1, x
′

2, ..., x
′

16]. The parameters α10 , δα1
, S1, S2, TP , Tf0 , Tvl and719

Tv0 are also dependent on M and the parameter values for each M concerned with this study720

are provided in Table 4. Note that the parameter values are obtained from are obtained from721

Galvanetto et al. [13]. The intermediate values of the empirical parameters between any two722

Mach numbers are estimated using the polynomial cubic hermite interpolation technique for723

the bifurcation study.724

The expressions of the empirical constants Kα, Kq , KαM and KqM are given by725

Kα =
0.75

(1−M) + πβ2M2(A1b1 +A2b2)
, (36)

726

Kq =
0.75

(1−M) + 2πβ2M2(A1b1 +A2b2)
, (37)

727

KαM =
A3b4 +A4b3

b3b4(1−M)
,KqM =

7

15(1−M) + 3πβM2b5
. (38)

Here, A1 = 0.30, A2 = 0.70, A3 = 1.50, A4 = −0.50,728

b1 = 0.24, b2 = 0.53, b3 = 0.25, b4 = 0.10 and b5 = 0.50.729

B Validity of the chosen numerical integration scheme730

The integration method adopted can affect the solutions of the system. It was verified by731

Galvanetto et al. [13] that such stringent values of tolerance can visibly negate the errors arising732

from integration for discontinuous systems (albeit the computational time may marginally733
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Table 4 Mach dependent NACA 0012 airfoil parameters [13]

Mach number 0.3 0.4 0.5

CNα 6.6211 7.0502 7.5100
α10 0.2529 0.2073 0.1741
δα1 0.0367 0.0349 0.0253
S1 0.0262 0.0284 0.0305
S2 0.0201 0.0140 0.0105
K0 0.0125 0.0300 0.1000
K1 -0.108 -0.108 -0.100
K2 0.04 0.05 0.04
Tf0 3.0 2.5 2.2
TP 1.7 1.8 2.0
Tv0 6.0 6.0 6.0
Tvl 5.25 6.75 6.75
CN1 1.45 1.20 1.05

increase), by comparing results obtained through event detection and without event detection.734

To ensure an accurate solution with the fourth-order Runge-Kutta integration scheme, we have735

considered a stringent tolerance of 10−12 (both in absolute and relative levels of tolerance) for736

the numerical integration using an adaptive time-stepping approach. To validate the accuracy737

of the chosen numerical integration scheme, we compare the aperiodic responses presented738

in our manuscript for two different tolerance values with the solutions obtained with event739

detection (see Fig. 25). It is evident from Fig. 25 that a less stringent tolerance of 10−6
740

can influence the errors in capturing the discontinuous boundaries. However, the stringent741

tolerance of 10−12 considered in this study seems to be as effective as the event detection742

scheme in accurately capturing the dynamics. Therefore, we adopt this approach as it reduces743

the computational cost significantly.744

C Characterization of the aperiodic dynamics745

Figure 26 presents the reconstructed phase-portraits corresponding to the pitching responses746

of the aeroelastic system with combined structural and aerodynamic nonlinearities as a rep-747

resentative case for three different flow velocities, where the system exhibits quasi-periodic748

(U = 5.8), weakly chaotic (U = 6.5), and periodic (U = 7.0) response, respectively. The749

phase-space reconstruction [29] is carried out based on a optimum time delay τ̄ , estimated750

using the method of average mutual information [12]. Although the phase-space attractors can751

qualitatively distinguish between the periodic and the aperiodic states, quantitative measures752

are required to precisely identify the nature of aperiodicity. To that end, we characterize the753

aperiodic responses by estimating the quantitative topological measures of the corresponding754

reconstructed phase-portraits, namely the largest Lyapunov exponent (LLE) and the correla-755

tion dimension; see Fig. 27.756

Lyapunov exponent is the quantitative measure of the exponential rate at which an in-757

finitesimal perturbation to a trajectory of a system grows or decays in the state space and is758

a measure of the sensitivity of the system to the initial conditions. LLE is calculated in this759

study using the Rosenstein algorithm [28]. It can be observed from the first column of Fig. 27760

that a positive LLE is estimated for U = 6.5, representing chaotic dynamics as the trajectories761

diverge exponentially within a bounded volume of the phase space. It is to be noted that the762

very small positive value of LLE (= 0.00033) represents weak chaos. On the other hand, the763

quasi-periodic and periodic dynamics are categorized by zero (for U = 5.8) and negative LLE764

(for U = 7.0), respectively.765

Correlation dimension based on Grassberger–Procaccia algorithm [15] has been determined766

next to confirm the dynamical signatures of the attractors observed in the reconstructed phase-767

portraits. It helps to identify the chaotic oscillations, characterized by the presence of a strange768

attractor in the phase space with a non-integer correlation dimension. As presented in the sec-769

ond column of Fig. 27, chaos is characterized by a correlation dimension of 2.51 for U = 6.5,770



32 Sai Vishal et al.

0 500 1000 1500

-20

-10

0

10

20

0 500 1000 1500

-20

-10

0

10

20

Fig. 25 (a) Pitch time history obtained by Runge-Kutta integration scheme (ode45) using
a tolerance of 10−6 compared with time history obtained by ode45 with event detection. (b)
Pitch time history obtained by Runge-Kutta integration scheme (ode45) using a tolerance of
10−12 compared with time history obtained by ode45 with event detection.

depicting the fractal nature of the chaotic signal. However, the quasi-periodic and periodic771

dynamics are characterized by the integer correlation dimensions of 2 and 1, respectively, for772

U = 5.8 and U = 7.0. The correlation dimension of 2 for a quasi-periodic attractor corre-773

sponds to the two-dimensional toroidal attractor in the phase space. On the other hand, a774

one-dimensional periodic attractor is denoted by a correlation dimension of 1.775
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