
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Novel mechanism for vorticity generation in black-hole
accretion disks

Chinmoy Bhattacharjee, Rupam Das, and S. M. Mahajan
Phys. Rev. D 91, 123005 — Published  4 June 2015

DOI: 10.1103/PhysRevD.91.123005

http://dx.doi.org/10.1103/PhysRevD.91.123005


A novel mechanism for vorticity generation in Blackhole accretion disks

Chinmoy Bhattacharjee 1,2, Rupam Das 3, S.M. Mahajan 1,2,4

1Institute for Fusion Studies, The University of Texas at Austin, Austin,TX 78712
2Department of Physics,The University of Texas at Austin, Austin,TX 78712.

3Department of Physical and Applied Sciences, Madonna University, Livonia, MI 48150 and
4Shiv Nadar University, Uttar Pradesh 201 314, India

Vorticity generation in accretion disks around Schwarzschild and Kerr black holes is investigated
in the context of magnetofluid dynamics derived for both General Relativity (GR), and modified
gravity formulations. In both cases, the Kerr geometry leads to a “stronger” generation of vorticity
than its Schwarzschild counterpart. Of the two principal sources, the relativistic drive peaks near
the inner most stable circular orbit (isco) whereas the baroclinic drive dominates at larger distances.
Consequences of this new relativistic vorticity source are discussed in several astrophysical settings.

I. INTRODUCTION

An exploration of the dynamics of accretion disks near
compact astrophysical objects can advance our under-
standing of phenomena as diverse as angular momentum
transport, jet production and gamma ray bursts [1–6].
Baroclinic instability arising from misalignment between
temperature and entropy gradients in a hot charged fluid
rotating in an accretion disk is considered to be one of
the most probable pathways for vorticity generation in
astrophysics [7–10]. Such vortices (electromagnetic and
hydrodynamic) can be amplified through several mecha-
nisms such as dynamos and MRI leading to a large scale
vortical field[11–13]. The resulting vortical field geome-
try can be responsible for angular momentum transport
and production, acceleration and collimation of jets in
black holes, protostars, microquasars etc [5, 7].

In this paper, we will explore additional sources of vor-
ticity generation that can contribute to angular momen-
tum transport, jet production and collimation as well as
broaden our understanding of black hole accretion, in
general. Unlike the traditional “baroclinic” mechanism,
these additional drives depend on the relativistic effects-
both special and general. Vorticity generation (via the
relativistic drives) in accretion disk near Schwarzschild
black hole was, previously, studied for a generalized ‘mag-
netofluid’ in curved spacetime[14]. The relativistic drive
for a pure barotropic system, naturally emerges in the
dynamics of a ‘Magnetofluid’, combining kinematic and
thermodynamical attributes of a hot fluid.

Let us begin by recapturing the salient features of the
magnetofluid formalism, and of earlier work on relativis-
tic drives.

1)The essence of the magnetofluid formalism (for a per-
fect fluid) lies in the construction of an antisymmetric,
hybrid tensor [15]

Mµν = Fµν + (m/q)Sµν , (1)

that is a weighted sum of the electromagnetic field tensor
Fµν (weight = charge q), and the composite (kinematic-
statistical) fluid tensor Sµν = ∇µ(GUν) − ∇ν(GUµ)
(weight =mass m) [15, 16]. The statistical factor G is
the thermodynamic enthalpy. In terms of Mµν , the en-

tire dynamics of the relativistic hot fluid is expressible in
the succinct equation (T is the temperature of the fluid)

qUνM
µν =

∇µp−mn∇µG
n

= T∇µσ, (2)

where the right hand side is the thermodynamic force ex-
pressed in terms of the fluid entropy σ using the standard
thermodynamic relation between entropy with enthalpy.
Here, Uµ and n represent, respectively, the plasma four
velocity and the number density.

2) The three-vector part of (2) reduces to the more fa-
miliar form of 3D vortex dynamics except that the stan-
dard fluid vorticity is replaced by the hybrid magneto-
fluid vorticity. The addition of relativity, however, in-
troduces a fundamental change; the topological helicity

invariant H =< ~Ω · ∇×−1~Ω > (with ~∇×−1 ~Ω being the
inverse curl of vorticity) of an ideal non-relativistic fluid
no longer pertains.

Through the “distortion” of space-time, relativistic dy-
namics breaks the helicity invariant even in ideal dynam-
ics (σ = σ(T )); new sources and sinks appear and the
creation and destruction of the generalized vorticity be-
comes possible in ideal dynamics [14, 15, 17, 18]. Such
sources can, therefore, be available to create vorticity in
the accretion disk.

3) Recently, this formalism was generalized to incor-
porate non-minimal coupling of the magnetofluid to a
curved background spacetime [19]. It is quite remark-
able, that the non-minimal coupling (introduced through
fm(R), a function of the Ricci scalarR) changes the equa-
tion of motion (2) only minimally

qUνMµν = QT∇µσ; (3)

it multiplies the right hand side with a curvature depen-
dent factor Q = (1+λfm(R)) that reduces to unity as the
non-minimal part goes to zero, as expected. This has also
resulted in the introduction of additional gravity-coupled
flow field tensor which, after appropriate 3+1 decompo-
sition, yields new expressions for generalized electric and
magnetic field. The formalism, epitomized in Eqs. (2)-
(3), will be, henceforth, called Magnetofluid formalism.

In this paper, then, we will investigate vorticity gen-
eration in accretion disk for minimally as well as non-
minimally coupled magnetofluid in Schwarzschild and
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Kerr spacetime. The magnitude of induced vorticity will
be estimated in the special case when matter and space-
time are coupled with constant Ricci scalar R0, the sim-
plest functional form of non-minimal coupling.

We first give a summary of the derivation of gener-
alized equation of motion of a new hybrid magnetofluid
in curved background space-time. Next, the Arnowitt-
Deser-Misner (ADM) formalism of electrodynamics [20–
23] presented in Appendix A is applied to this new for-
mulation of magnetofluid and the equations obtained are
cast into the vorticity evolution equation. These equa-
tions are analyzed for accretion disks to calculate and
estimate generalized vorticity. Finally we compare the
relativistic drives with the more conventional baroclinic
drive.

II. MAGNETOFLUID FORMALISM

The modified theory of gravity offers an alternative
approach to explain the inferred accelerated expansion of
the universe and other cosmological data by introducing
deviations from Einstein’s general relativity (GR). The
so called f(R) gravity modifies GR in the low energy
(curvature) regime but its behavior in the high energy
regime has also been the topic of current research [24–
26]. To expand the scope of our earlier calculations, we
incorporate the f(R) gravity (through the term λf(R))
in the magnetofluid formalism. Referring the reader to
[19] for a detailed derivation, we simply write down, here,
the two main equations: the modified Einstein equation
(G = c = 1)

(1 + Fg(R))Rµν − 1

2
(R+ fg(R))gµν

−(∇µ∇ν − gµν)Fg(R) = 8πTµνtotal, (4)

and the magnetofluid equation of motion

(1 + λfm(R))∇µTµνpf =[
qnF ν βU

β − λFm(R)(Tµνpf + gµνρ)∇µR
]
, (5)

where Fg = f ′g(R), R is the Ricci scalar and Tµνtotal
is the total stress-energy tensor for both perfect fluid
and Maxwell’s field in curved space-time. In the pre-
ceding equations, q is the charge of the particle and
Tµνpf = (p + ρ)UµUν + pgµν (with Uµ = dxµ/dτ) is the
energy momentum tensor for a perfect isotropic fluid;
τ is the proper time. The phenomenological parameter
λ represents the coupling strength of the plasma to its
background geometry, now modified through fm(R) and
Fm(R) = f ′m(R). The quantity p+ ρ = h is the enthalpy
of the fluid plasma and often appears in the formalism
as the combination G = h/mn with m, n, ρ and p being
the mass, number density, energy density and pressure
respectively.

Notice that the Equation of motion (5) is not yet in
the promised “canonical” form (3). To make progress,
following [15, 19], we will construct the new grand unified
vorticity tensorMµν that reflects non-minimal coupling.
After some patient algebra, we find that Mµν is again
the weighted sum (as (2)),

Mµν = Fµν +
m

q
Dµν (6)

but with a considerably more complicated

Dµν = (1 + λfm(R)− λRFm)Sµν +
m

q
λFmK

µν (7)

replacing Sµν = ∇µ(GUν) − ∇ν(GUµ). We needed to
“find” a new curvature-weighted antisymmetric flow field
tensor

Kµν = ∇µ(RGUν)−∇ν(RGUµ), (8)

to derive the sought after form. The new fluid tensor Dµν

contains, explicitly, the coupling of flow field to gravity.
Thus the dynamics of a hot fluid system in curved back-
ground space-time can be written into the “canonical”
4-D vortex form

qUνMµν = (1 + λfm(R))T∇µσ, (9)

the form advertised in (3). We have “assumed” that the
standard thermodynamic relations continue to hold; it is,
of course, contingent upon an appropriately well-defined
local concept of temperature in curved space-time.

Notice that, when λ = 0, Mµν reduces to its
minimally-coupled counterpart tensor Mµν defined in
([14, 15]).

Equation (9) is the main result that describes the mag-
netofluid dynamics in curved space time. It reveals that a
charged relativistic fluid, coupled non-minimally to grav-
ity, obeys a 4-D vortex dynamics like its gravity free and
minimally coupled (to gravity) counterparts. The new
grand vorticity tensor subsumes earlier limiting cases in
a transparent manner.

We would now apply the above formulation to inves-
tigate the vorticity generation in accretion disks around
black holes. To do calculations in terms of familiar quan-
tities, an appropriate 3+1 decomposition of the space-
time is necessary; it is presented in Appendix A. Next,
we present the 3D vortical dynamics in order to facilitate
computation of vorticity generation.

A. Vortical Dynamics

With the 3+1 decomposition presented in Appendix A,
the space like projection, i.e., γβ µ projection of the uni-
fied field equation of motion (9) gives us the momentum
evolution equation

αqΓ~ξ + qΓ(~v × ~Ω) = −(1 + λfm(R))T ~∇σ (10)
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whereas the timelike ( nµ) projection gives the equation
of energy conservation

αqΓ~v · ~ξ = T (1 + λfm(R))(Ltσ − ~β · ~∇σ), (11)

where ~ξ and ~Ω are, respectively, the generalized electric
and magnetic fields given by Eq. (A6) and (A7) in Ap-
pendix A. Also, α, Γ, and ~v are defined in Eq. (A1), (A2)
and (A3). Sources responsible for magnetic field gener-
ation, in particular, the sources that are gravity driven,
can be derived from the generalized vorticity evolution
equation (which is really the generalized Faraday’s law)
by manipulating Eq. (10).

SinceMµν is an anti-symmetric tensor, the divergence
of its dual is zero, i.e., ∇µM∗µν = 0. Taking the γβ µ

projection of the preceding identity, we derive

Lt~Ω = L~β~Ω− ~∇× (α~ξ)− αΘ~Ω, (12)

where L denotes Lie derivatives with Lt = ∂t along tµ,

L~β~Ω = [~β, ~Ω], and the expansion factor Θ is defined in

Appendix A.
It should be noted that, even in the absence of non-

minimal coupling to gravity (λ = 0), (minimal) coupling
to gravity still manifests in the formalism. Equation (12),
in conjunction with equation (10), gives us the vorticity
evolution equation

Lt~Ω−~∇×(~v×~Ω)−L~β~Ω+αΘ~Ω = ~∇×
(
T

qΓ
(1 + λfm(R))~∇σ

)
.

(13)
All terms on the left hand side operate on the vor-

ticity three-vector ~Ω while the right hand side provides,
just as in the conventional picture, possible sources for
vorticity generation. The left hand side, however, has
lot more structure than the conventional 3-D vortex dy-
namics; the first two terms are the standard Helmholtz

like, while αΘ~Ω and L~β~Ω, are nontrivial gravity modifi-

cations. Thus, the gravity coupling does, fundamentally,
modify the projected 3D vortex dynamics, in spite of the
fact, that the 4D vortex equations had exactly the same
form.

III. VORTICITY GENERATION

In order to apply the formalism to vorticity genera-
tion in astrophysics, specifically in accretion disks around
compact objects like Schwarzschild and Kerr black holes,
we have to specify the space-time geometry; the space-
time metric that controls the motion of plasma particles.
The standard metric describing the stationary and axi-
ally symmetric (or spherically symmetric) spacetime for
Kerr (or Schwarzschild) black holes can be written as [27]

ds2 = gttdt
2+2gtφdtdφ+grrdr

2+gθθdθ
2+gφφdφ

2. (14)

The exploration of geodesic motions of plasma in ac-
cretion disks will allow us to compute various relevant

physical quantities. Since we are interested only in the
timelike geodesics in thin accretion disks, the Euler-
Lagrange equations can be derived from the Lagrangian
for the above stationary and axisymmetric spacetime,
2L = ds2/dτ2 = −1, with τ being the proper time
along timelike geodesics. Thus the corresponding Euler-
Lagrangian equations describing the timelike geodesics in
the equatorial plane take the form ([27]):

dt

dτ
=
Ẽgφφ + L̃gtφ
g2tφ − gttgφφ

, (15)

dφ

dτ
= − Ẽgtφ + L̃gtt

g2tφ − gttgφφ
, (16)

grr

(
dr

dτ

)2

= −1 +
Ẽ2gφφ + 2ẼL̃gtφ + L̃2gtt

g2tφ − gttgφφ
≡ Veff ,

(17)

where Ẽ and L̃ are specific energy and specific angu-
lar momentum respectively. For stable circular orbits in
the equatorial plane, using Veff = 0 and dVeff/dr = 0,
the constants of motion including angular velocity ω are
found to be

Ẽ = − gtt + gtφω√
−gtt − 2gtφω − gφφω2

, (18)

L̃ =
gtφ + gφφω√

−gtt − 2gtφω − gφφω2
, (19)

ω =
dφ

dt
=
−gtφ,r +

√
(gtφ,r)2 − gtt,rgφφ,r
gφφ,r

. (20)

The Lorentz factor for particles can be derived from

Γ =
Ẽgφφ + L̃gtφ
g2tφ − gttgφφ

=
1√

−gtt − 2gtφω − gφφω2
. (21)

Moreover, for any given scalar function P , the gradient
is defined as follows

~∇P =
1
√
grr

∂rP êr +
1
√
gθθ

∂θP êθ +
1
√
gφφ

∂φP êφ. (22)

Next, we assume a thin accretion disk with zero lati-
tudinal speed vθ = 0 for the plasma; we will also assume
that the radial velocity of the plasma is negligible com-
pared to the orbital velocity vφ >> vr. The orbits of the
plasma constituents are also taken to be almost circular
(ṙ ≈ 0). Since our formalism is based on perfect fluid, we
can also assume the plasma to be barotropic with its pres-
sure depending on density only, i.e., σ = F (T ). Then,
with this assumption, we can write the relation between

temperature and entropy gradient as T ~∇σ = χkb~∇T ,
which evidently will cause the baroclinic drive NB to van-
ish, where χ is dimensionless quantity of order unity.

In order to compute the appropriate temperature pro-
file in the region of interest in the accretion disk, we
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follow the prescription presented by Novikov and Thorne
(1973) [28]. It turns out that, for M = 14.3M� and

Ṁ = 0.472 × 1019gs−1, the inner and outermost stable
circular orbits (average width of accretion disk) are lo-
cated mostly in the optically thick region of the accretion
disk ; this is true for both geometries. Therefore, for an
optically thick region, using the Stefan-Boltzmann’s law,
the temperature profile can be written as [26, 27]

T (r) = z

(
f(r)

σSB

) 1
4

, (23)

where σSB is the Stefan-Boltzmann constant and z is
redshift due to gravitational effects. For θ = π/2, and
for vanishing disk inclination angle, the redshift can be
written as 1 + z = Γ. Here f(r) is the energy flux for a
relativistic accretion disk presented in ([26, 29]) by Page
and Thorne as

f(r) = − Ṁ0

4π
√
−g

ω,r

(Ẽ − ωL̃)2

∫ r

risco

(Ẽ − ωL̃)L̃,r dr, (24)

where risco is the radius of the innermost stable circu-
lar orbit in the accretion disk, Ṁ0 is the mass accretion
rate. The temperature and the Lorentz factor profiles,
displayed respectively in Figures (1) and (2), reveal sim-
ilar general features for the Kerr space-time: increasing
from their corresponding value at risco, they reach a peak
at some radius, and then monotonically decrease as we
move away from the center of the corresponding black
holes [30]. However, only the temperature profile in the
Schwarzschild geometry shares the similar feature. These
features of the temperature and the gamma (Γ) profiles
will manifest in the vorticity generation as well as in the
relative strength between the corresponding relativistic
and classical drives.

Throughout this paper, we will use parameters ob-
tained from observation on the galactic black hole
Cygnus-XI as representative: M = 14.38M�, Ṁ =
0.472 × 1019gs−1 and a = 0.99rg, where M and a are
respectively the mass, and angular momentum per unit
mass of the black hole [31, 32]. Figure (1) shows the tem-
perature profile in Kerr (Schwarzschild) geometry from
r = 1.5rg (r = 6rg) to r = 30rg with rg = GM/c2 in
the normalized unit of x = r/rg. The profile shows a
peak temperature between 106 − 107K which drops as
we move from the event horizon radially outward. These
profiles are used in this paper to calculate the vorticity
generation in the accretion disk.

A. Schwarzschild geometry

For a spherically symmetric and static space-time
(Schwarzschild space-time), the above vortical evolution
equation (13) reduces to the one presented in [14], i.e.,

Lt~Ω− ~∇× (~v× ~Ω) = ~∇×
(

(T/qΓ)~∇σ
)

. Since the spher-

ically symmetric and static space-time can be foliated

FIG. 1: Temperature profile for Schwarzschild (blue) and Kerr
black hole (red) from x = 1.5 to x = 30.

FIG. 2: Lorentz factor for Schwarzschild (green) and Kerr
black hole (red) from x = 1.5 to x = 30. The dashed
line (blue) indicates inner most circular orbit (isco) for
Schwarzschild blackhole.

without any shift function ~β, and the foliation obeys the
time translation symmetry leading to a vanishing extrin-
sic curvature, the new term involving Θ on the left hand
side disappears. Thus the structure is precisely like the
3-D vortex dynamics. The simplified vortical evolution
equation can be used to approximately compute the weak
field seed generation in the hot fluid system in the accre-
tion disk in Schwarzschild geometry.

The relevant space-time metric elements are

gtt = −α2 = −(1− 2rg
r

) ; grr = (1− 2rg
r

)−1,

gθθ = r2 ; gφφ = r2 sin2 θ. (25)

Then, using the equations (18-21), we can calculate the
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orbital velocity and gamma factor for the orbital motion
of plasma in the accretion disk. Since the radial velocity
of the plasma is assumed to be negligible compared to the
orbital velocity vφ >> vr, the orbits of the plasma ele-
ments are taken to be almost circular (ṙ ≈ 0). Then, in-
serting the Schwarzschild metric elements, (25), in equa-
tions (15-17) and imposing Veff = 0 and dVeff/dr = 0
reveals that there exists one stable circular orbit at x > 6
and one unstable circular orbit at 6 > x > 3 ([22]). This
also dictates the applicability of temperature profile in
accretion disk. The temperature profile used in this pa-
per is valid in the region of stable circular orbits.

B. Kerr geometry

For an axisymmetric (but not spherically symmetric)
stationary system, like the Kerr black hole, our previous

assumption of zero shift function, ~β = 0, is no longer
valid. Consequently, the pertinent equation (13), in
general, does not show any similarity to standard 3D
vortex dynamics. The shift function for a rotating black

holes can be taken to be ~β = −ω êφ with respect to a
zero angular momentum observer. The term involving
the shift function, however, will give zero contribution
since we assume that both ω and Ω have only radial de-
pendence. In addition, it can be further shown that the
term involving the expansion factor Θ vanishes. Thus,
the vorticity evolution equation, even for Kerr geometry,
will resemble the standard 3D vortex dynamics.

The relevant space-time metric elements in Boyer-
Lindquist coordinates are [26]

gtt = −α2 = − (∆r − a2)

r2
; grr =

r2

∆r
,

gtφ = −2a

r2
(r2 + a2 −∆r) ; gφφ =

(r2 + a2)2 −∆ra
2

r2
,

(26)

where ∆r = (r2 + a2) − 2rgr. Then, again inserting
the Kerr metric elements, (26), in equations (15-17) and
imposing Veff = 0 and dVeff/dr = 0 reveals that the
inner most circular orbit in Kerr black hole is located at
x = 1.4545 for a = 0.99rg, which was taken into account
in deriving the temperature profile for accretion disk in
Kerr geometry. Note that we will assume a = 0.99rg
throughout the rest of the paper.

C. Computing Vorticity

For both Schwarzschild and Kerr configurations, com-
putation of vorticity generation requires knowledge of the
φ dependence of the temperature profile. However, the
most commonly used temperature profiles (including the
GR corrected ones) for accretion disks show only radial

dependence. Previously, an estimate of vorticity gener-
ation was computed using average temperature of the
accretion disk [14]. However, as shown in Figure (1),
general relativity restricts the application of an average
disk temperature throughout the disk as it involves re-
gions of unstable orbits leading to non-linear behavior.
Moreover, plasmas orbiting in accretion disks for both
black hole configurations undergo gravitational radiation
reaction, which for Kerr black hole can cause a plasma
particle to lose as much as 42 percent of its initial energy
as it approaches the event horizon [22].

Toroidal temperature dependence is created due to the
gravitational radiation by the orbiting plasma particles;
the induced radiation reaction, in turn, makes the sta-
ble circular orbits deviate slightly from geodesic motion
[22]. A particle, initially in a circular orbit at x > 6
(x > 1.4545) for Schwarzschild (Kerr) metric, slowly spi-
rals in to smaller nearly circular orbits as it radiates en-
ergy until it reaches the orbital radius x = 3 (x = 1.4545),
where the orbit becomes unstable. Therefore, the stable
circular orbits do not close in either geometry and, de-
pending on the magnitude of radiation reaction, the spa-
tial orbital trajectory in the equatorial plane is assumed
to be represented by r = r(φ), a solution to the geodesic
equation relating coordinates r to φ.

Next, we assume, without loss of generality, that the
orbits of the spiraling plasma elements in the disk can be
approximated by r(φ) = r0e

−ζφ, where r0 is the initial
radial distance of the plasma particles from the center of
the black hole, and ζ is the parameter that controls how
tightly a nearly circular orbit spirals around the black
hole. In general, the factor ζ can be a complicated func-
tion of black hole mass as well as the energy and the an-
gular momentum of plasma elements. Determined from
the geodesic equation relating coordinates r to φ with ap-
propriate boundary conditions, ζ can be a function of the
radial distance. However, since our focus is on the region
of accretion disk over which the timelike geodesic orbits
of the plasma elements are closely bound, we can assume
the spiraling parameter ζ to be a constant. A rapidly
varying spiral with varying ζ will contribute more to the
vorticity as can be seen from Eq.(27).

As mentioned earlier, the radiation reaction, can be the
source for slight deviations from the closed stable circular
orbit, thereby, imparting temperature variations around
a spirally circular orbit. Thus, for the spiral orbit, r(φ) =
r0e
−ζφ, ∂T/∂φ = (∂T/∂r)(dr/dφ) = −ζr(∂T/∂r), and

the seed vortical field |~Ω| may be estimated as

~Ω(r) = −χkbcrζ
q

1
√
grrgφφ

∂r(Γ
−1)(∂rT )∆t θ̂, (27)

where ∆t is the characteristic time for linear vorticity
generation under which the changes in spacetime geom-
etry is negligible. Therefore, we choose this timescale to
be ∆t = 2π/ω, and, as expected, this coordinate time
interval ∆t is related to the proper time interval ∆τ by
∆t = Γ∆τ . For an observer far away from the accre-
tion disk under observation, these two time intervals are
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FIG. 3: Vorticity magnitude for Schwarzschild black hole with
different ζ values between 6.0rg and 30rg for M = 14.8M�

practically the same. For the Schwarzschild geometry,
Eq. (27) simplifies to

~Ω(x) = −3ζkbπΓαχ

q
√
xrg

∂xT θ̂, (28)

x = r/rg is the normalized distance, and q = −e is the
electron charge.

Figures (3) and (4) show the radial dependence of the
magnitude of the vorticity generated in the accretion disk
plasmas embedded in Schwarzschild and Kerr geometries
for three different choices of ζ. Both figures show a dras-
tic reduction in |Ω| as the temperature maxima are ap-
proached (temperature gradient going to zero), and then
|Ω| picks up as we go over to the other side of the max-
imum. In addition, the existence of a second dip in the
Kerr vorticity profile can be attributed to the vanish-
ing of the gradient of the corresponding Lorentz factor.
Therefore, the effect of the relevant gamma and tempera-
ture gradients indicates a distinct vorticity profile in Kerr
spacetime, where vorticity changes direction twice before
it gradually decays radially outwards in the disk.

However, as we move radially outward in the disk,
both induced vorticities decrease almost at the same rate
maintaining their difference.

D. Black hole accretion disk in modified gravity

The results of last section were derived for the accre-
tion disk fluid minimally coupled to standard GR. We
will, now, explore the changes in vorticity generation
brought about by modified gravity, more precisely, by
the simplest functional form of f(R) = R0 = constant.
Following the discussion presented in section III, plasma
particles in Schwarzschild accretion disk is described by

FIG. 4: Vorticity magnitude for Kerr black hole with different
ζ values between 1.5rg and 30rg for M = 14.8M� with an
accretion rate Ṁ = 0.472× 1019g/s and a=0.99.

following metric components

gtt = −
(

1− 2rg
r
− R0

12
r2
)

= α2 ; grr =
1

α2
,

gθθ = r2 ; gφφ = r2 sin2 θ,
(29)

where R0 is the constant Ricci scalar. First, setting
gtt(r) = 0, we obtain the following condition on Ricci
scalar R0,

R0x
3 − 12x+ 24 = 0 (30)

with R0 = R0r
2
g , x = r/rg and a= a/rg. In order to

get a black hole without any naked singularity and with
event/cosmological horizons, the solution of Eq.(30) re-
stricts the value for R0 to be (−∞, 4/9) ([26]). Further
restrictions on R0 to isolate the geodesics for stable cir-
cular orbits can be imposed by demanding Veff = 0,
dVeff/dr = 0 and d2Veff/d

2r ≥ 0 :

R0 =
12(6− xc)

(15− 4xc)x3c
(31)

with xc being the radius of the stable circular orbit. The
above relation also reveals that there exist one innermost
and one outermost stable circular orbit and the upper
limit on R0 reduces to 2.85× 10−3. However, the choice
of an exact value of R0 befitting our current analysis
depends on the average width, the temperature and lu-
minosity profiles of black holes. Thus, if the temperature
and luminosity profiles prescribed by Page and Thorne
[29] are taken into account, it turns out that, for f(R)
Schwarzschild black holes, the new range of R0 further
reduces to (−∞, 10−6]. Then the only judicious choice
turns out to be R0 = 10−6, for it satisfies the average
radius of the outer edge of a Schwarzschild black hole
accretion disk at r ≈ 70rg by setting the innermost and
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outermost stable circular orbits, according to equation
(31), at xc = 6 and xc = 143.45 [26].

A similar analysis, carried out for the Kerr metric in
modified gravity with the metric elements,

gtt = −α2 = − (∆r − a2)

Ξ2r2
; grr =

r2

∆r
,

gtφ = − 2a

Ξ2r2
(r2 + a2 −∆r) ;

gφφ =
(r2 + a2)2 −∆ra

2

Ξ2r2
(32)

with

∆r = (r2 + a2)(1− R0

12
r2)− 2rgr, (33)

Ξ = 1 +
R0

12
a2, (34)

demands R0 (upon setting 1/grr = 0) to satisfy

(x2 + a2)

(
1− R0x

2

12

)
− 2x = 0. (35)

While Eq.(35) yields the range for R0 ∈ [−0.3, 0.6], a
new range for R0 ∈ (0, 0.6] emerges if a Kerr black hole
with two event horizons and one cosmological horizon
is demanded. However, once again, upon demanding
veff = 0, dVeff/dr = 0 and d2Veff/d

2r ≥ 0 along
with the appropriate temperature and luminosity pro-
files mentioned above, we find the stable circular orbits
can exist only for R0 ∈ [−1.2 × 10−3, 6.67 × 10−4]. To
maintain the consistency in our numerical plots, we again
choose R0 = 10−6, for it satisfies the the average radius
of the outer edge of a Kerr black hole accretion disk at
r ≈ 16rg by setting the innermost and outermost stable
circular orbits at xc = 1.4545 and xc = 143.45 respec-
tively. It should be noted here that temperature profiles
used for both classes of accretion disks remain the same
as long as we choose R0 ≈ 10−6 [26].

The general expression of vorticity generated in modi-
fied gravity is

~Ω(r) = −(1 +R0)
χkbcrζ

q

1
√
grrgφφ

∂r(Γ
−1
m ) (∂rT ) ∆t θ̂,

(36)

with Γm and λfm(R) = R0 denoting the modified lorentz
factor and the nonminimal coupling of plasma to f(R)
gravity respectively. Similar to Eq.(28), we have an ana-
lytical expression for modified Schwarzschild spacetime

~Ω(x) = −(1 +R0)
3ζkbπΓmαmχ

q
√
xrg

∂xT θ̂, (37)

where αm is associated with Modified Schwarzschild met-
ric component gtt.

Figures (5) and (6) show the plot of this generalized
vorticity |Ω| (in the disk) as a function of the distance
x = r/rg in the gravitational field of a blackhole of mass

FIG. 5: Vorticity Ω for Schwarzschild black hole with different
ζ values in modified gravity within 6.0rg and 30rg for M =
14.8M�.

FIG. 6: Vorticity Ω for Kerr black hole with different ζ values
in modified gravity within 1.5rg and 30rg for M = 14.8M�
with an accretion rate Ṁ = 0.472× 1019g/s and a=0.99.

M = 14.8M� and R0 = 10−6. The kink-like behavior of
|Ω|-versus x = r/rg, as earlier, originates in the vanishing
gradients of temperature and the Lorentz factor. Differ-
ent values of ζ, used in the Figures (5) and (6), capture
the influence of the modified gravity on toroidal temper-
ature fluctuations. Here, it should be emphasized that
vorticity magnitude profile in the modified gravity can
be drastically different for arbitrary functions of f(R),
which signifies how the matter is coupled to its back-
ground spacetime.

It must be noted that as maximum temperature ob-
tained in f(R) models turns out to be lower than Cygnus
X-1 observation values, the probability of the existence
of an accretion disk in f(R) Schwarzschild black hole be-
comes very slim [32]. Still we present the result here for
f(R) Schwarzschild black hole as an analytical example.
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E. Relative strength of relativistic and baroclinic
drive

The generalized magnetofluid dynamics, derived for a
barotropic equation of state, will have only the relativis-
tic vorticity drives. We would now, like to compare the
relative magnitudes of the relativistic, and possibly baro-
clinic vorticity sources. At first glance, it is evident (from
the metric) that the relativistic source will dominate
baroclinic source as we approach the event horizon. But,
to make a comparison between the relativistic and baro-
clinic drives, let us construct a simple baroclinic drive of

the form ∇T × ∇σ ≈ (ε/r)g
−1/2
φφ ∂φ(kbT ), where ε is a

measure of the departure from strict barotropic behav-
ior. The preceding approximation introduces a smaller
toroidal temperature variation that quantifies the non-
barotropic component.

In figures (7) and (8), we compare the relative strength
of the relativistic and baroclinic drive for black hole ac-
cretion disks in Schwarzschild and Kerr geometries. We
plot the relative magnitude as a function of the radial
distance, x = r/rg; both plots start from their respective
innermost stable circular orbit (isco). In both cases, the
relativistic drive becomes dominant as we approach the
inner most stable orbit. For smaller values of ε, we see
the magnitude of the relativistic drive keeps increasing as
the departure from barotropic fluid is minimal. Also, the
dashed line shows the ratio to be unity and from both
figures we see that the relativistic drive remains domi-
nant, for smaller values of ε; the dominance continues to
longer distances from inner most stable circular orbit. In
both cases, the Lorentz factor plays an important role
in determining their relative strength. Thus, the sud-
den dip in the relative strength profile in Kerr metric
can be attributed to the vanishing gradient of the corre-
sponding Lorentz factor inherent in the relativistic drive.
Moreover, the relative magnitude in Kerr black hole is
less than that in Schwarzschild black hole because of the
significant energy loss of plasmas in Kerr spacetime due
to gravitational radiation reaction as it approaches the
non-stable orbits. The jump in relative intensity from
ε = 0.01 to ε = 0.05 remains significant in both geome-
tries.

IV. CONCLUSION

We have explored in this paper the possibility of gen-
erating what may be called “generalized vorticity” in ac-
cretion disks surrounding compact gravitating objects,
in particular, the Kerr, and Schwarzschild black holes.
The accretion disc plasma is coupled non-minimally (via
f(R) gravity) to the surrounding specified space-time.
Although vorticity can be generated by the well-known
baroclinic mechanism ( non zero ∇T ×∇σ), we have con-
centrated, in this paper, on exploring what are classed as
relativistic drives stemming from space-time distortions
caused by special as well as general relativistic effects.

FIG. 7: Ratio between relativistic and baroclinic drive in
Schwarzschild black hole with ε=0.01 (black), 0.05(green) and
0.1(blue). The red line represents the ratio of unity.

FIG. 8: ratio between relativistic and baroclinic drive in
kerr black hole with with ε=0.01 (black), 0.05(green) and
0.1(blue). The red line represents the ratio of unity.

We find that the Kerr geometry, due to the intrinsic rota-
tion, is a more efficient vorticity generator as compared to
the Schwarzschild counterpart. We also observe a slight
increase in vorticity generation even if an extremely weak
f(R) (non-minimal) coupling, f(R) = R0 = constant,
is turned on, which implies that a noticeable change in
vorticity generation will be observed in strong f(R) cou-
pling. Physically, the increase in efficiency is directly re-
lated to the amount of deviation from the circular orbits
(of the plasma particles) caused by the distorted geome-
try.

We also compared the efficiency of the relativistic drive
with a model baroclinic drive. The strength of the baro-
clinic drive is given in terms of a parameter ε, that mea-
sures the departure from strict barotropy. For most ac-
cretion disk plasmas in quasi equilibrium, ε is expected to



9

be small. We find that, for reasonable values of ε, the rel-
ativistic drive is dominant for the disk regions nearer to
the compact object; as the distance increases, and for rel-
atively larger ε, the barcolinic term becomes comparable
to the relativistic drive. This vorticity growth occurs in
orbital timescale, similar to MRI instability, which later
can amplify through several dynamo mechanisms [33–35].

Unlike GR-MHD, our formalism can be extended to
multi fluid species with each species obeying its its own
vortical dynamics[36, 37]. In addition, the induction
equation in this formalism has source terms for vortic-
ity generation; these sources can catapult the accretion
disk to a state of finite vorticity from one with no vortic-
ity (electromagnetic and hydrodynamic). This formal-
ism can also be studied in the context of vortex gen-
eration in the proto-planetary disks near supermassive
star where gravity plays a dominant role. Hyrdody-
namic simulations indicate these proto-planetary disk to
be inherently baroclinic due to negative radial entropy
gradient[7, 13, 35]. The turbulence caused by the baro-
clinic instabilities are found to be suitable for angular mo-
mentum transport and vortex formation in the disk which
are suggested to lead to planet formation. Our model, if
applied to the evolution of proto-planetary disk, will pro-
vide additional sources for angular momentum transport
and vortex formation even in a barotropic disk.

Regardless of the details, the curvature drive (in min-
imal as well as in non-minimal gravity) will always gen-
erate “generalized” vorticity which, either by itself, or
after amplification through a generalized dynamo mech-
anism, can provide a mechanism for angular momentum
transport. These amplified vortical fields can also colli-
mate the jets emanating from the disk where field lines
co-rotate with the disk, by the flux freezing theorem. The
plasma leaving the disk can drag the field lines due to its
large conduction coefficient which wraps the field lines
around rotation axis. The field lines then exert a radial
force which can compress the jet of plasma leading to jet
collimation [2].
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Appendix A: 3+1 dynamics of gravito-magnetofluid

The approach chosen for the 3+1 splitting selects a
family of foliated fiducial 3-dimensional hypersurfaces
(slices of simultaneity) Σt labelled by a parameter t =
constant in terms of a time function on the manifold.
Furthermore, we let tµ be a timeline vector whose in-
tegral curves intersect each leaf Σt of the foliation pre-
cisely once and which is normalized such that tµ∇µt = 1.

This tµ is the ‘evolution vector field’ along the orbits of
which different points on all Σt ≡ Σ can be identified.
This allows us to write all space-time fields in terms of
t-dependent components defined on the spatial manifold
Σt. Lie derivatives of space-time field along tµ are iden-
tified with ‘time-derivatives’ of the spatial fields since
Lie derivatives reduce to partial time derivative for an
adapted coordinate system tµ = (1, 0, 0, 0).

Moreover, since we are using the Lorentzian signature,
the vector field tµ is required to be future directed.
Let us decompose tµ into normal and tangential parts
with respect to Σt by defining the lapse function α and
the shift vector βµ as tµ = αnµ + βµ with βµnµ = 0,
where nµ is the future directed unit normal vector
field to the hypersurfaces Σt. More precisely, the
natural timelike covector nµ = (−α, 0, 0, 0) = −α∇µt
is defined to obtain nµ = (1/α,−βµ/α) which satisfy
the normalization condition nµnµ = −1. Then, the
space-time metric gµν induces a spatial metric γµν
by the formula γµν = gµν + nµnν . Finally, the 3+1
decomposition is usually carried out with the projection
operator γµ ν = δµ ν + nµnν , which satisfies the
condition nµγµν = 0. Also, the acceleration is defined as
aµ = nν∇νnµ.

Now, with the above foliation of space-time, the space-
time metric takes the following canonical form ([20])

ds2 = −α2dt2 + γij(dx
i + βidt)(dxj + βjdt), (A1)

and it immediately follows that, with respect to an Eu-
lerian observer, the Lorentz factor turns out to be

Γ =
[
α2 − γij(βiβj + 2βivj + vivj)

]−1/2
, (A2)

satisfying dτ = dt/Γ, where vi is the ith component of
fluid velocity ~v = d~x/dt. Then the decomposition for the
four velocity is ([14])

Uµ = αΓnµ + Γγµ νv
ν , (A3)

with nµU
µ = −αΓ.

Now, since our unified anti-symmetric field tensorMµν

is constructed from the anti-symmetric tensors Fµν and
Dµν , we apply the ADM formalism of electrodynamics
presented in [20–23] to define the generalized electric and
magnetic field respectively as

ξµ = nνMµν ; Xµ =
1

2
nρε

ρµστMστ , (A4)

and thus express the unified field tensor

Mµν = nµξν − nνξµ − εµνρσXρnσ. (A5)

We remind the reader that the generalized magnetic field
and the generalized vorticity are essentially synonymous.
Using the definition of the unified field tensor Mµν , the
expressions of 3D generalized electric and magnetic field
turn out to be



10

~ξ = ~E − m

q
(1 + λfm(R)− λRFm(R))~∇(αGΓ)

− m

q
λFm(R)~∇(αGRΓ)

− m

q
(1 + λfm(R))

[
2σ · (GΓ~v) +

2

3
ΘGΓ~v

]
− m

qα
(1 + λfm(R)− λRFm(R))

(
Lt(GΓ~v)− L~β(GΓ~v)

)
− m

qα
λFm(R)

(
Lt(GRΓ~v)− L~β(GRΓ~v)

)
; (A6)

~X = ~B +
m

q
(1 + λfm(R)− λRFm(R))~∇× (GΓ~v)

+λFm(R)
m

q
~∇× (RGΓ~v), (A7)

where σ = σνµ and Θ are, respectively, the shear
and expansion of the congruence, defined as σαβ =
γµαγ

ν
β∇(µnν) − 1

3θγµν and Θ = ∇µnµ. We have also used

the relation ∇µnν = −aνnµ+σαβ+ 1
3θγµν to derive (A6).
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