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Abstract

By using the point canonical transformation approach in a manner distinct from
previous ones, we generate some new exactly solvable or quasi-exactly solvable poten-
tials for the one-dimensional Schrödinger equation with a position-dependent effective
mass. In the latter case, SUSYQM techniques provide us with some additional new
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1 Introduction

In recent years, quantum mechanical systems with a position-dependent effective mass

(PDEM) have attracted a lot of attention due to their relevance in describing the physics

of many microstructures of current interest, such as compositionally graded crystals [1],

quantum dots [2], 3He clusters [3], quantum liquids [4], metal clusters [5], etc.

As in the constant-mass case, exact solutions play an important role because they

may provide both a conceptual understanding of some physical phenomena and a test-

ing ground for some approximation schemes. Many recent developments have been devoted

to constructing exactly solvable (ES), quasi-exactly solvable (QES) or conditionally-exactly

solvable potentials for the PDEM Schrödinger equation [6]–[17] by using point canonical

transformations (PCT), Lie algebraic techniques or supersymmetric quantum mechanical

(SUSYQM) methods.

In this Letter, we will show that new ES or QES potentials in a PDEM background

may be generated by using the PCT approach in a manner distinct from previous ones. We

will then combine such results with SUSYQM methods to produce some additional QES

potentials.

2 PCT approach in a PDEM context

As is well known (see, e.g., [14]), the general Hermitian PDEM Hamiltonian, initially

proposed by von Roos [18] in terms of three ambiguity parameters α, β, γ such that

α + β + γ = −1, gives rise to the (time-independent) Schrödinger equation

Hψ(x) ≡
[

− d

dx

1

M(x)

d

dx
+ Veff(x)

]

ψ(x) = Eψ(x), (1)

where the effective potential

Veff(x) = V (x) +
1

2
(β + 1)

M ′′

M2
− [α(α + β + 1) + β + 1]

M ′2

M3
(2)

depends on some mass terms. Here a prime denotes derivative with respect to x, M(x) is

the dimensionless form of the mass function m(x) = m0M(x) and we have set ~ = 2m0 = 1.
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Let us look for solutions of Eq. (1) of the form

ψ(x) = f(x)F (g(x)), (3)

where f(x), g(x) are two so far undetermined functions and F (g) satisfies a second-order

differential equation

F̈ +Q(g)Ḟ +R(g)F = 0, (4)

where a dot denotes derivative with respect to g. Since in this Letter we shall be interested

in bound-state wavefunctions, we shall actually restrict ourselves to polynomial solutions

of Eq. (4).

On inserting Eq. (3) in Eq. (1) and comparing the result with Eq. (4), we arrive at two

expressions for Q(g(x)) and R(g(x)) in terms of E − Veff(x) and of M(x), f(x), g(x) and

their derivatives. The former allows us to calculate f(x), which is given by

f(x) ∝
(

M

g′

)1/2

exp

(

1

2

∫ g(x)

Q(u) du

)

, (5)

while the latter leads to the equation

E − Veff(x) =
g′′′

2Mg′
− 3

4M

(

g′′

g′

)2

+
g′2

M

(

R− 1

2
Q̇− 1

4
Q2
)

− M ′′

2M2
+

3M ′2

4M3
. (6)

It is clear that we need to find some functions M(x), g(x) ensuring the presence of a

constant term on the right-hand side of Eq. (6) to compensate E on its left-hand side and

giving rise to an effective potential Veff(x) with well-behaved wavefunctions.

In the constant-mass case, i.e., for M(x) = 1, this procedure has been thoroughly

investigated [19, 20]. A similar study in the PDEM context looks more involved for two

reasons: (i) there are now two unknown functions instead of only one and (ii) the usual

square-integrability condition for bound-state wavefunctions has to be completed by the

additional restriction |ψ(x)|2/
√

M(x) → 0 at the end points of the definition interval of

V (x) to ensure the Hermiticity of H in the Hilbert space spanned by its eigenfunctions [17].

In most applications of PCT that have been carried out so far in the PDEM context,

the choice M = λg′2 or g(x) = (1/λ)
∫ x
√

M(u) du + ν (where λ, ν are some constants)

has been made (see, e.g., [12, 13, 14]). In the next two sections, we will explore the new

possibilities offered by two other options, namely M = λg′ and M = λ/g′ or, equivalently,

g(x) = (1/λ)
∫ xM(u) du+ ν and g(x) = (1/λ)

∫ x[M(u)]−1 du+ ν.
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3 Generation of ES potentials in the M = λg′ case

Substituting M = λg′ into Eq. (6) leads to

E − Veff(x) =
1

λ
g′
(

R − 1

2
Q̇− 1

4
Q2
)

. (7)

Some simple and interesting results can be derived from this relation by assuming that F (g)

is either a Jacobi or a generalized Laguerre polynomial [21].

For Fn(g) ∝ P (a,b)
n (g), n = 0, 1, 2, . . . , a, b > −1, we obtain

R− 1

2
Q̇− 1

4
Q2 =

n(n+ a + b+ 1)

1− g2
+

1

(1− g2)2

[

1

2
(a+ b+ 2)− 1

4
(b− a)2

]

+
g

(1− g2)2
1

2
(b− a)(b+ a)− g2

(1− g2)2
1

4
(a+ b)(a + b+ 2). (8)

A constant term can therefore be generated on the right-hand side of Eq. (7) by assuming

g′/[λ(1− g2)] = C, where C must be restricted to positive values in order to get increasing

energy eigenvalues for successive n values. The solution of this first-order differential equa-

tion for g(x) leading to a positive mass function reads g(x) = tanh qx, where q = λC > 0.

Without loss of generality, we may set C = q2 so that λ = 1/q. Hence we get

g(x) = tanh qx, M(x) = sech2 qx, −∞ < x < +∞. (9)

Equations (5), (7), (8) and (9) then yield

En = q2
(

n+
a+ b

2

)(

n+
a + b+ 2

2

)

+ V0, (10)

Veff(x) = q2
{[

1

2
(a2 + b2)− 1

]

cosh2 qx+
1

2
(a− b)(a + b) sinh qx cosh qx

}

+ V0

=
1

4
q2
[

(a2 − 1)e2qx + (b2 − 1)e−2qx + a2 + b2 − 2
]

+ V0, (11)

ψn(x) ∝ (1− tanh qx)(a+1)/2(1 + tanh qx)(b+1)/2P (a,b)
n (tanh qx), (12)

where n = 0, 1, 2, . . . , V0 denotes some constant and we have to assume a, b > −1/2 in

order to satisfy the conditions on bound-state wavefunctions in a PDEM context (observe

that the square-integrability condition alone does not impose any restriction on a, b!).
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By proceeding similarly for Fn(g) ∝ L(a)
n (g), n = 0, 1, 2, . . . , a > −1, from the

relation [21]

R− 1

2
Q̇− 1

4
Q2 =

2n+ a + 1

2g
− (a+ 1)(a− 1)

4g2
− 1

4
(13)

and the condition g′/(λg) = C > 0, we obtain the results

g(x) = e−qx, M(x) = e−qx, −∞ < x < +∞, (14)

where we have set C = q2 (hence λ = −1/q) and where without loss of generality we may

assume q > 0. Furthermore

En = q2
(

n+
a+ 1

2

)

+ V0, (15)

Veff(x) =
1

4
q2
[

(a2 − 1)eqx + e−qx
]

+ V0, (16)

ψn(x) ∝ exp
{

−1

2

[

(a+ 1)qx+ e−qx
]

}

L(a)
n

(

e−qx
)

, (17)

where the PDEM background imposes an additional restriction a > −1/2 on the wavefunc-

tions again.

Turning now to the initial potential V (x), we find from Eq. (2) that V (x) = Veff(x) +

q2[f(α, β) cosh2 qx − g(α, β)] and V (x) = Veff(x) +
1
4
q2f(α, β)eqx, with f(α, β) ≡ (2α +

1)(2α+2β+2)−2α, g(α, β) ≡ (2α+1)2+β(4α+1), for the Jacobi and generalized Laguerre

polynomials, respectively. Hence, in both cases, for the choice of ambiguity parameters

made by BenDaniel and Duke (α = 0, β = −1) [22], there is no distinction between

V (x) and Veff(x). Furthermore, when the Jacobi polynomials reduce to Legendre ones,

i.e., for a = b = 0, and the ambiguity parameters are those selected by Zhu and Kroemer

(α = −1/2, β = 0) [23], V (x) becomes a constant potential V0. Our results (10) and

(12) then describe the generation of an infinite number of bound states for a free-particle

potential in a sech2-mass environment [14]. For nonvanishing a, b values, Eqs. (10)–(12)

may therefore be seen as a generalization of this interesting property.

4 Generation of QES potentials in the M = λ/g′ case

Whenever M = λ/g′, Eq. (6) becomes

E − Veff(x) =
g′′′

λ
− g′′2

λg′
+
g′3

λ

(

R− 1

2
Q̇− 1

4
Q2
)

. (18)
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In such a case, we shall take for F (g) some polynomials of nonhypergeometric type satisfying

the equation

F̈ +
a(g2 − ξ2)

g3
Ḟ +

bg + c

g3
F = 0, (19)

where we assume a, b, c, ξ real, a 6= 0, b 6= 0 and ξ > 0. As shown elsewhere [24], this second-

order differential equation has kth-degree polynomial solutions provided b = −k(a+ k− 1)

and there exist k + 1 such solutions Fn(g), n = 0, 1, . . . , k, associated with k + 1 distinct

values cn of c, if a is appropriately chosen.

Substituting

R− 1

2
Q̇− 1

4
Q2 = −(2k + a− 2)(2k + a)

4g2
+
cn
g3

+
a(a− 3)ξ2

2g4
− a2ξ4

4g6
(20)

in Eq. (18), we find a constant term on the right-hand side of the transformed equation by

choosing g′3/(λg3) = C. Then with C = q2 and λ = q > 0, we obtain

g(x) = eqx, M(x) = e−qx, −∞ < x < +∞. (21)

Hence

En = q2cn + V0, (22)

Veff(x) = q2
[

1

4
(2k + a− 2)(2k + a)eqx − 1

2
a(a− 3)ξ2e−qx +

1

4
a2ξ4e−3qx

]

+ V0, (23)

ψn(x) ∝ exp
[

1

2
(a− 2)qx+

1

4
aξ2e−2qx

]

Fn (e
qx) , (24)

where n = 0, 1, . . . , k.

The functions (24) turn out to be physically acceptable as bound-state wavefunctions

provided a is restricted to the range a < −2k+ 3
2
. We conclude that for such values and for

the PDEM given in (21), the effective potentials (23) corresponding to k = 1, 2, 3, . . . , are

QES with k + 1 known eigenvalues and eigenfunctions. For k = 1 and k = 2, for instance,

we find

c0
1
= ±aξ, F0

1
(g) ∝ g ± ξ, if a < −1

2
, (25)

and

c0
2

= ∓∆ξ, c1 = 0, F0

2
(g) ∝ g2 ∓ ∆

a+ 2
ξg +

a

a+ 2
ξ2,

F1(g) ∝ g2 − a

a + 1
ξ2, ∆ ≡

√

2a(2a+ 3), if a < −5

2
, (26)
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respectively. Observe on these two examples that for the values taken by a, ξ and g(x),

ψn(x) has n zeros on the real line, so that ψ0(x) is the ground-state wavefunction, while

ψn(x), n = 1, 2, . . . , k, correspond to the nth excited states.

The results presented here could be easily extended to more general polynomials. For

instance, if instead of g2− ξ2 in (19), we had considered (g− g3)(g− g4) with g3 and g4 real

but g4 6= −g3, we would have obtained effective potentials containing an additional term

proportional to e−2qx.

Finally, it should be noticed that the PDEM being the same as that chosen for general-

ized Laguerre polynomials in Sec. 3, the relation between V (x) and Veff(x) is also similar.

5 SUSYQM approach

Let us consider the intertwining relationship ηH = H1η, whereH is the Hamiltonian defined

in Eq. (1),H1 has the same kinetic energy term but an associated effective potential V1,eff(x),

and η is a first-order intertwining operator η = A(x) d
dx

+ B(x). As shown in [14], such a

relationship leads to the restrictions A(x) =M−1/2 and

Veff(x) = ǫ+B2 −
(

B√
M

)

′

, V1,eff(x) = Veff +
2B′

√
M

+
M ′′

2M2
− 3M ′2

4M3
, (27)

with ǫ denoting some arbitrary constant.

A solution for B(x), which at the same time ensures that η annihilates the ground-

state wavefunction of H , is provided by B(x) = −ψ′

0/(
√
Mψ0) together with ǫ = E0.

In this (PDEM-extended) unbroken SUSYQM framework [25], the eigenvalues of H1 are

E1,n = En+1, n = 0, 1, 2, . . . , with the corresponding wavefunctions given by ψ1,n ∝ ηψn+1.

For the wavefunctions considered in Eq. (3), ψ′

0/ψ0 in general contains two terms:

ψ′

0/ψ0 = f ′/f + g′Ḟ0/F0. In the ES potential case reviewed in Sec. 3, however, the second

term vanishes since F0(g) = 1, so that we obtain simple results for B(x), namely

B(x) =
1

2
q[(a− b) cosh qx+ (a+ b+ 2) sinh qx] (28)

and

B(x) =
1

2
q[(a+ 1)eqx/2 − e−qx/2] (29)
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for the Jacobi and generalized Laguerre polynomials, respectively. Substituting such func-

tions in (27), we arrive at SUSY partners V1,eff(x), which have the same shape as Veff(x)

and differ only in the parameters (a1 = a + 1, b1 = b + 1, V0,1 = V0 and a1 = a + 1,

V0,1 = V0 +
1
2
q2, respectively). We conclude that the potentials Veff(x) are shape invariant.

The QES potential case reviewed in Sec. 4 looks more interesting because F0(g) being

now a kth-degree polynomial in g, the second term in ψ′

0/ψ0 does not vanish anymore. As

a consequence, the functions B(x) and V1,eff(x) become k-dependent and given by

B(x) = q

[

−1

2
(a− 2)eqx/2 +

1

2
aξ2e−3qx/2 − e3qx/2

Ḟ0

F0

]

, (30)

V1,eff(x) = Veff − q2
[

1

2

(

a− 3

2

)

eqx +
3

2
aξ2e−qx + 3e2qx

Ḟ0

F0
+ 2e3qx

(

F̈0

F0
− Ḟ 2

0

F 2
0

)]

. (31)

The SUSY partners V1,eff(x) therefore contain some terms which are rational functions in

eqx. For k = 1 and k = 2, for instance, we obtain

V1,eff(x) = q2
[

1

4
(a− 1)(a+ 1)eqx − 1

2
a2ξ2e−qx +

1

4
a2ξ4e−3qx

+
3ξ2

eqx + ξ
− 2ξ3

(eqx + ξ)2

]

+V0 − q2ξ (32)

and

V1,eff(x) = q2
[

1

4
(a+ 1)(a+ 3)eqx − 1

2
a2ξ2e−qx +

1

4
a2ξ4e−3qx

+
aξ2

(a + 2)3
Z1(x)−

4a2ξ4

(a+ 2)4
Z2(x)

]

+V0 + q2
∆ξ

a+ 2
,

Z1(x) ≡ 6(a+ 2)(a+ 1)eqx − (a+ 6)∆ξ

e2qx − ∆
a+2

ξeqx + a
a+2

ξ2
,

Z2(x) ≡ (3a+ 4)eqx −∆ξ
(

e2qx − ∆
a+2

ξeqx + a
a+2

ξ2
)2 , (33)

respectively. Such effective potentials provide us with some new examples of QES potentials

in a PDEM environment with k known eigenvalues and eigenfunctions.

6 Conclusion

In this Letter, we have investigated the problem of the one-dimensional Schrödinger equa-

tion in a PDEM background from several viewpoints. By using first the PCT approach and
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assuming a relation between the new variable g = g(x) and the massM(x) that differs from

the usual one, we have constructed some new ES or QES potentials. The former are asso-

ciated with either Jacobi or generalized Laguerre polynomials, while the latter correspond

to some kth-degree polynomials of nonhypergeometric type.

We have then considered an equivalent intertwining-operator approach and shown that

while our ES potentials are shape invariant, the SUSY partners of our QES potentials are

new. In the latter case, iterating the procedure would lead us to a hierarchy of SUSY

partners with an increasingly complicated form.

The method described here could be used to generate other classes of masses and po-

tentials providing exact solutions of the PDEM Schrödinger equation.
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[11] R. Koç, M. Koca, E. Körcük, J. Phys. A 35 (2002) L527;
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