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Multivariable Sub-Hardy Hilbert Spaces

Invariant under the action of n-tuple of

Finite Blaschke factors

Sneh Lata, Sushant Pokhriyal and Dinesh Singh

Abstract. This paper deals with representing in concrete fashion those
Hilbert spaces that are vector subspaces of the Hardy spacesHp(Dn) (1 ≤

p ≤ ∞) that remain invariant under the action of coordinate wise
multiplication by an n-tuple (TB1

, . . . , TBn) of operators where each
Bi, 1 ≤ i ≤ n, is a finite Blaschke factor on the open unit disc. The
critical point to be noted is that these TBi are assumed to be weaker
than isometries as operators. Thus our main theorems extends the prin-
cipal result of [10] in the following three directions: (i) from one to
several variables; (ii) from multiplication with the coordinate function
z to an n-tuple of multiplication by finite Blaschke factors Bi, 1 ≤ i ≤ n;
(iii) from vector subspaces of H2(D) to the case of vector subspaces of
Hp(Dn), 1 ≤ p ≤ ∞. We further derive a generalization of Slocinski’s
well known Wold type decomposition of a pair of doubly commuting
isometries to the case of n-tuple of doubly commuting operators whose
actions are weaker than isometries.

Mathematics Subject Classification (2010). Primary 47A15; Sec-
ondary 32A35, 47B38.

Keywords. de Branges spaces, Beurling’s theorem, Wold decomposi-
tion, invariant subspaces, finite Blaschke, sub-Hardy Hilbert spaces.

1. Introduction

One of the cornerstones of several approaches to describing the structure of
invariant subspaces of some well known operators relies on the device first
used fruitfully by Halmos while describing the invariant subspaces of the
shift operator of infinite multiplicity. This was essentially the use of what is
now referred to as the Wold decomposition. We refer to [4, 5]. The theory
has evolved way beyond the classical Wold decomposition and has used to
great advantage the central idea of a wandering subspace. This has led to
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breakthroughs-using deep technical arguments which have since been simpli-
fied a fair amount-in describing the invariant subspaces of the operator of
multiplication by the coordinate function z on the Bergman space and the
Dirichlet space of analytic functions on the open unit disc D, see [1, 2, 12].

The thrust behind the use of wandering subspace stems from relying on
conditions on the operator of multiplication by z that are far more general
than requiring the operator to be an isometry. Some authors such as Izuchi [7]
and Shimorin [16] have produced a decomposition of Hilbert spaces where the
operator of multiplication by z satisfies certain conditions which encompass
the requirement of being an isometry.

The first and the third authors of this paper adopted an approach in
[10] that also resulted in a description of Hilbert spaces that are vector sub-
spaces of the classical Hardy space H2(D) and on which the operator of
multiplication by the coordinate function z satisfies certain conditions that
also encompass the requirement of being an isometry. These conditions are
independent of the conditions of Shimorin in [16]. Indeed, in [10] we give an
example of a periodic weighted shift which satisfies our conditions as enunci-
ated in [10] but does not satisfy the conditions of [16]. In fact, we also have
an example of an operator that does not satisfy our condition as given in [10]
but satisfies the conditions from [16]. We give details of these examples in
Section 2 where we define a near-isometry which is simply an operator that
satisfies the conditions of [10]. The additional advantage of our result in [10]
is that it generalizes some well known results such as the scalar case of de
Branges’ generalization of Beurling’s invariant subspace theorem [3] and also
the main result of [19]. Interested readers can see [13] and [19] for simpler
poofs of de Branges theorem for the scalar case.

In this paper by overcoming some redoubtable technical obstacles, we
have managed to adopt an approach along the lines of [10] to characterize
a class of Hilbert spaces on Dn (n ≥ 1) that are invariant under the ac-
tion of multiplication by multivariable versions of finite Blaschke products.
The conditions imposed on these operators are far weaker than the classical
assumptions of being isometric.

Our main features in this work below claim novelty on four counts:

(i) We generalize-in Theorem 3.1-the main theorem of [10] to a multivari-
able situation where the action of multiplication by the coordinate func-
tion z as in [10] is replaced by us in our Theorems 4.6 and Theorem 4.8
to multiplication by a multivariable version of a finite Blaschke product
acting by an n-tuple of finite Blaschke products acting on the Hardy
spaces over Dn.

(ii) In the simplest case of n = 1, our Theorem 4.6 and Theorem 4.8 are
generalizations of the main theorem of [10] since the operator of mul-
tiplication by z is replaced with multiplication by an arbitrary finite
Blaschke product.

(iii) In addition, we have demonstrated our results to be valid across all
Hardy spaces Hp(Dn) for 1 ≤ p ≤ ∞ and not just H2(Dn).
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(iv) Finally, we have derive a multivariable generalization of the Slocinski’s
two variable Wold decomposition for doubly commuting tuple of isome-
tries [17] under much weaker assumptions than the requirement of iso-
metricity.

The organization of the paper is as follows. We first introduce the con-
cept of a “near-isometry”. We then produce a decomposition (Theorem 3.3)
for a near-isometry which reduces to the classical Wold decomposition when
the near-isometry is actually an isometry. We note here that our decomposi-
tion is outside the purview of Shimorin’s decomposition [16] which is also a
generalization of the Wold decomposition.

Proceeding in the same vein we produce a generalization of Slocinski’s
well known two variable Wold decomposition for doubly commuting tuples of
isometries [17] to the class of doubly commuting n-tuples of near-isometries
(Theorem 3.4). Indeed, our decomposition generalizes the n-variable exten-
sion [14, Theorem 3.1] of Slocinski’s decomposition. This decomposition is of
interest in its own right and at the same time it allows us to extend The-
orem 3.1 from [10] and Theorem 4.1 from [20] in a far reaching manner to
give representation of all Hilbert spaces that are algebraically (boundedly)
contained in Hp(Dn), p ≥ 2 (1 ≤ p < 2) on which an n−tuple of the opera-
tors of multiplication by finite Blaschke factors doubly commute and act as
near-isometries (Theorem 4.6 and 4.8).

We want to remind the reader that Theorem 3.1 from [10] and Theorem
4.1 from [20] do not assume any topological condition between the sub-Hardy
Hilbert space and the Hardy space H2(D), whereas our Theorem 4.6, as
mentioned above, assumes bounded containment of the sub-Hardy Hilbert
space in Hp(Dn) when 1 ≤ p < 2. However, as we record in Remark 4.7, this
containment condition in our result is redundant for all p in the one-variable
case, that is, n = 1. Thus, Theorem 4.6 and Theorem 4.8 for n = 1 generalize
Theorem 3.1 from [10] and Theorem 4.1 from [20] without adding any extra
hypothesis. Further, as mentioned in Remark 4.7, when p = 2, the bounded
containment condition in Theorem 4.6 is redundant for all n. Hence, we would
like to record here that we have, in the spirit of [18], [19], and [20] dropped
any topological connections between the sub-Hardy Hilbert space and the
one-variable Hardy space Hp(D) for any 1 ≤ p ≤ ∞, and the multivariable
Hardy spaces Hp(Dn) for all p ≥ 2.

2. Notations and preparatory results

For n ≥ 1, let Dn be the open unit polydisc in Cn, Tn be the n-torus, and
let m be the normalized n-dimensional Lebesgue measure on Tn. Further, let
Lp(Tn) and Hp(Tn), 1 ≤ p ≤ ∞, denote the familiar Lebesgue spaces on Tn.

It is well known that using the Poisson kernel for the polydisc Dn, Hp(Tn) can
be identified with the Hardy space Hp(Dn). Henceforth, whenever required,
we will considerHp(Dn) as a closed subspace of Lp(Tn) without any mention.
Recall that for 1 ≤ p < ∞, Hp(Dn) is a Banach space consisting of analytic
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functions on Dn with norm

||f ||p =

(
sup

0≤r<1

∫

Tn

|f(reiθ1 , . . . , reθn)|pdm
)1/p

< ∞ (2.1)

and H∞(Dn) is a Banach algebra consisting of bounded analytic functions
on Dn with the supremum norm. In fact, H2(Dn) is a Hilbert space with the
above-mentioned norm.

A k-tuple T = (T1, . . . , Tk) of commuting operators on a Hilbert space
H is said to be doubly commuting if TiT

∗
j = T ∗

j Ti whenever i 6= j, and a sub-
space M is said to be joint T-invariant(reducing) if M is invariant(reduces)
under each Ti. Let T = (T1, . . . , Tk) be a doubly commuting tuple of oper-
ators on a Hilbert space H. For an integer m ∈ {1, . . . , k}, we define Im =
{1, . . . ,m}, and for A = {i1, . . . , il} ⊆ Im, we define TA = (Ti1 , . . . , Til) and
NA

0 = N0×· · ·×N0 (|A| copies of N0 = N∪{0}). For k = (ki1 , . . . , kil) ∈ NA
0 ,

we denote Tk
A = T k1

i1
· · ·T kl

il
. Further, we define Wi = H ⊖ TiH = Ker(T ∗

i )
and WA =

⋂
i∈A

Wi. In case A = ∅, we take WA = H.

Definition 2.1. Let H be a Hilbert space. An operator T ∈ B(H) is said to
be a near-isometry if it satisfies the following two conditions:

(i) There exists a constant δ > 0 such that δ||x|| ≤ ||Tx|| ≤ ||x|| for all
x ∈ H.

(ii) For each k ≥ 1, T ∗kT k+1H ⊆ TH.

We note that the conditions imposed on the operator of multiplication
with z in [10] are precisely the conditions for being a near-isometry. In [16],
Shimorin produced a decomposition of Hilbert spaces H connected with op-
erators T that satisfy one of the following two conditions:

||T 2x||2 + ||x||2 ≤ 2||Tx||2 for any x ∈ H

or

||Tx+ y||2 ≤ 2
(
||x||2 + ||Ty||2

)
for any x, y ∈ H

As we promised in the introduction, we will now give examples to es-
tablish that our conditions as written in the definition of a near-isometry
are independent of Shimorin’s conditions. Let βn = 1

2
n
2

when n is even, and

βn = 1

2
n−1
2

when n is odd. Then Tz, multiplication by z, on the weighted

Hardy space H2(β) is clearly a near-isometry, but it does not satisfy any of
the two above-stated conditions of Shimorin. We will now give an example of
an operator that is not a near-isometry, but satisfy one of the Shimorin’s con-
ditions. We have taken it from [8, Example 4.4] where the author constructed
it to study hyperexpansive composition operators.

Let X = {(n,m) ∈ Z × Z : n ≤ m} and let {an}n∈Z be a sequence of
natural numbers such that an = 1 if n ≥ 1 and an = 2 if n ≤ 0. Further, let
µ be measure on the power set of X defined as µ({(n, n)}) = 1 for n ∈ Z and
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µ({(n,m)}) = an for n < m. Set

ei,j =

{ 1√
ai
χ{(i,j)} if i < j

χ{(i,j)} if i = j

Then {ei,j : (i, j) ∈ X} is an orthonormal basis for L2(X,µ) and

T (ei,j) =

{
ei,j+1 if i < j

ei+1,i+1 +
√
aiei,i+1 if i = j.

defines a bounded linear operator on L2(X,µ). Simple computations yield

||T 2f ||2 + ||f ||2 ≤ 2||Tf ||2

for all f ∈ L2(X,µ) and hence T satisfies one of the Shimorin’s conditions.
We will now show that T is not a near-isometry. For this, we will show that
there exists a natural number k such that T ∗kT k+1(L2) * T (L2) which is

equivalent to showing that T k(N) 6⊥ T k+1(L2), where N = L2 ⊖ T (L2). Let
f = e1,2 − e2,2. Then f ∈ N and T (f) = e1,3 − e3,3 − e2,3 ∈ T (N). If we
now take g = e1,1 ∈ L2, then T 2(g) = e3,3 + e2,3 + e1,3 ∈ T 2(L2). Clearly,
T (f) 6⊥ T 2(g) which shows that T (N) 6⊥ T 2(L2). Thus, T ∗T 2(L2) * T (L2).
Hence, T is not a near-isometry.

Proposition 2.2. Let (T1, . . . , Tk) be a k-tuple of doubly commuting near-
isometries, and let A be a subset of Ik. Then for each j ∈ Ik \A
(i) WA reduces Tj ,

(ii) WA ⊖ TjWA = WA

⋂
Wj ,

(iii) Tj is a near-isometry on WA.

Proof. Fix j ∈ Ik \ A. To show that WA is invariant under Tj, let x ∈ WA.

Then x ∈ Wi for each i ∈ A which implies that T ∗
i (x) = 0 for each i ∈ A.

Thus, T ∗
i (Tjx) = Tj (T

∗
i x) = 0 for each i ∈ A. Therefore, Tj(x) ∈ WA which

shows that WA is invariant under Tj. By using similar arguments and the
fact that each Ti commutes with Tj, we deduce that WA is invariant under
T ∗
j . Hence, WA reduces Tj .

To prove (ii), let x ∈ WA

⋂
Wj . Then T ∗

j (x) = 0 which implies, 〈T ∗
j x, h〉 =

〈x, Tjh〉 = 0 for all h ∈ WA which proves that x ∈ WA⊖TjWA. To prove the
other containment, let x ∈ WA ⊖TjWA. Then 〈T ∗

j x, h〉 = 〈x, Tjh〉 = 0 for all
h ∈ WA. This implies that T ∗

j x ⊥ WA. But T
∗
j (x) ∈ WA, as WA is invariant

under T ∗
j . Therefore, T

∗
j (x) = 0 which establishes that x ∈ WA ∩ Wj , and

thereby completes the proof of (ii).
To prove (iii), we first note that Tj is clearly a contraction and bounded

below on WA. Now, using the facts that WA reduces Tj and Tj is a near-

isometry on H, we conclude that T ∗m
j Tm+1

j (WA) ⊆ Tj(WA) for all m ≥ 0.

Lastly, since WA reduces Tj, therefore T ∗m
j Tm+1

j (WA) ⊆ Tj(WA) for all
m ≥ 0 even when we consider Tj as an operator on WA. Hence, Tj is a
near-isometry on WA. �

The following simple observations from operator theory are extremely
handy for our proof of Theorem 3.4.
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Lemma 2.3. Let T1 ∈ B(H) be a bounded below operator. Suppose W is a
closed subspace of H and T2 ∈ B(H) is an injective operator such that

(i) T1T2 = T2T1,

(ii) T1(W) ⊆ W ,

(iii) T k
2 (W ) ⊥ Tm

2 (H) whenever 0 ≤ k < m.

Then the following equalities hold:

(i) T1

( ∞⊕
m=0

Tm
2 W⊕ ∞⋂

m=0
Tm
2 H

)
=

∞⊕
m=0

T1T
m
2 W⊕ ∞⋂

m=0
T1T

m
2 H,

(ii) T1

( ∞⋂
m=0

Tm
2 R

)
=

∞⋂
m=0

T1T
m
2 R for any subspace R of H,

(iii)
∞⋂

m1=0
Tm1

1

( ∞⊕
m2=0

Tm2

2 W
)

=
∞⊕

m2=0
Tm2

2

( ∞⋂
m1=0

Tm1

1 W
)

3. Wold decomposition for doubly commuting tuples of

near-isometries

A closed subspace W of a Hilbert space H is said to be a wandering subspace
for a bounded linear operator T on H if T kW ⊥ T lW whenever k 6= l.

Further, an operator T ∈ B(H) is said to be a shift on H if there exists a
wandering subspace W of T such that

H =

∞⊕

k=0

T kW .

Theorem 3.1. (Wold decomposition theorem)[6, Page 109] Let T be an
isometry on a Hilbert space H. Then we can decompose H into two reducing
subspaces for T as H = Hs ⊕ Hu such that T |Hs

is a shift and T |Hu
is a

unitary. Moreover,

Hs =

∞⊕

k=0

T kW and Hu =

∞⋂

k=0

T kH

where W = H⊖ TH

The Wold decomposition theorem plays a vital role in may areas of op-
erator theory and operator algebras, in particular, invariant subspace prob-
lem for Hilbert spaces of holomorphic functions. It has greatly simplified the
proofs of many classical results, like Beurling’s theorem, its generalization due
to de Branges, and many of their generalizations; thereby it has generated a
new perspective to the area.

In [17], Slocinski gave a Wold type decomposition for pairs of doubly
commuting isometries which facilitated a de Branges theorem for the bidisc
[18, 11]. Recently, Sarkar [14] generalized Slocinski’s decomposition to several
variables and used it in [15] to obtain a vector-valued version of Beurling’s
theorem for the polydisc.
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Theorem 3.2. [14, Theorem 3.1] Let V = (V1, . . . , Vl) be an l-tuple (l ≥ 2)
of doubly commuting isometries on a Hilbert space H. Then for every m ∈
{2, . . . , l}, there exist 2m joint (V1, . . . , Vm)−reducing subspaces {HA : A ⊆
Im} such that

H =
⊕

A⊆Im

HA.

Moreover, for each A ⊆ Im

HA =
⊕

k∈NA
0

V k
A




⋂

j∈N
Im\A
0

V
j

Im\AWA


 ,

and whenever HA 6= {0}, Vi|HA
is a shift for i ∈ A and unitary for i ∈ Im\A.

In this paper, we work with near-isometries which may not necessarily
be isometries, and so we do not have the Wold decomposition or it’s above-
mentioned extensions at our disposal. Interestingly, we establish an analogue
(Theorem 3.3) of Wold decomposition for near-isometries. Furthermore, fol-
lowing the ideas of Sarkar [14], we extend this decomposition to doubly com-
muting tuples of near-isometries (Theorem 3.4) which, in fact, generalizes the
above-mentioned Sarkar’s decomposition (Theorem 3.2) to our setting.

The first and the third authors proved the following analogue of the
Wold decomposition for near-isometries implicitly in the proof of their main
theorem in [10]. We would like to state and prove it here as an independent
result as apart from being interesting in its own right it also acts as a foun-
dation for our analogue of the Wold decomposition for doubly commuting
tuples of near-isometries.

Theorem 3.3. Let T ∈ B(H) be a near-isometry. Then H can be decomposed
into two reducing subspaces of T as

H = H0 ⊕H1

such that T is a shift on H0 and invertible on H1. Moreover,

H0 =

∞⊕

m=0

TmW , H1 =

∞⋂

m=0

TmH.

where W = H⊖ TH
Proof. Let W = H ⊖ TH. We are given that T is a near-isometry, therefore
T ∗mTm+1H ⊆ TH for all m ≥ 0 which imply that TmW ⊥ Tm+1H for
all m ≥ 0. Thus, TmW ⊥ T kW whenever m 6= k. Also, T is bounded

below, so each TmW is a closed subspace of H. Let H0 =
∞⊕

m=0
TmW and

H1 =
∞⋂

m=0
TmH. We will show H⊥

0 = H1.

Since TmW ⊥ Tm+1H for all m ≥ 0, therefore H0 ⊥ H1 which implies
that H1 ⊆ H⊥

0 . For the other containment, observe that TmW ⊥ Tm+1H
for all m ≥ 0 which implies that TmH = TmW ⊕ Tm+1H for every m ≥ 0.
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Thus, if x ⊥ TmW for all m ≥ 0, then x ∈ TmH for all m ≥ 0. Therefore,
H⊥

0 = H1.

Lastly, by definition, H0 and H1 are both T -invariant, T is a shift on
H0, and invertible on H1. This completes the proof. �

Theorem 3.4. Let (T1, . . . , Tk) be a doubly commuting k-tuple of near-
isometries on a Hilbert space H. Then for any m, 2 ≤ m ≤ k, there exist 2m

joint (T1, . . . , Tm)- reducing subspaces {HA : A ⊆ Im} such that

H =
⊕

A⊆Im

HA

where for a non-empty A ⊆ Im,

HA =
⊕

r∈NA
0

T r
A




⋂

j∈N
Im\A
0

T
j

Im\AWA


 , (3.1)

and for A = ∅,

HA =
⋂

r∈N
Im
0

T r
ImH. (3.2)

Furthermore, for each A ⊆ Im, Ti|HA
is a shift if i ∈ A and is invertible if

i ∈ Im \A.

Proof. We will prove the result by induction on m, and for this, we first
prove the result for m = 2. Since T1 is a near-isometry on H, therefore using
Theorem 3.3, we decompose H as

H =

∞⊕

m1=0

Tm1

1 W1

⊕ ∞⋂

m1=0

Tm1

1 H, (3.3)

where W1 = H ⊖ T1H, T1|⊕∞
m1=0

T
m1
1

W is a shift, and T1|⋂∞
m1=1

T
m1
1

H is

invertible. By Proposition 2.2, T2W1 ⊆ W1 and T2 is a near-isometry on W1,

therefore applying Theorem 3.3 for W1 we can write

W1 =

∞⊕

m2=0

Tm2

2 (W1 ⊖ T2W1)
⊕ ∞⋂

m2=0

Tm2

2 W1

=

∞⊕

m2=0

Tm2

2 (W1 ∩W2)
⊕ ∞⋂

m2=0

Tm2

2 W1 (3.4)

Using the decomposition of W1 from equation (3.4) in equation(3.3), we
obtain
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H =

∞⊕

m1=0

Tm1

1

( ∞⊕

m2=0

Tm2

2 (W1 ∩W2)
⊕ ∞⋂

m2=0

Tm2

2 W1

)⊕ ∞⋂

m1=0

Tm1

1 H

=

∞⊕

m1,m2=0

Tm1

1 Tm2

2 (W1 ∩W2)
⊕( ∞⊕

m1=0

Tm1

1

( ∞⋂

m2=0

Tm2

2 W1

))

⊕ ∞⋂

m1=0

Tm1

1 H (3.5)

The second equality above follows using Lemma 2.3. Note that T2 is also a
near-isometry on H, therefore using Theorem 3.3 again, we can decompose
H as

H =

∞⊕

m2=0

Tm2

2 W2

⊕ ∞⋂

m2=0

Tm2

2 H

Then, using Lemma 2.3, we get

Tm1

1 H =

∞⊕

m2=0

Tm1

1 Tm2

2 W2

⊕ ∞⋂

m2=0

Tm1

1 Tm2

2 H.

This yields

∞⋂

m1=0

Tm1

1 H =

∞⋂

m1=0

( ∞⊕

m2=0

Tm1

1 Tm2

2 W2

)⊕ ∞⋂

m1=0

( ∞⋂

m2=0

Tm1

1 Tm2

2 H
)

=

∞⊕

m2=0

Tm2

2

( ∞⋂

m1=0

Tm1

1 W2

)⊕ ∞⋂

m1,m2=0

Tm1

1 Tm2

2 H (3.6)

Using equation (3.6) in equation (3.5), we get

H =

∞⊕

m1,m2=0

Tm1

1 Tm2

2 (W1 ∩W2)
⊕( ∞⊕

m1=0

Tm1

1

( ∞⋂

m2=0

Tm2

2 W1

))

⊕( ∞⊕

m2=0

Tm2

2

( ∞⋂

m1=0

Tm1

1 W2

))⊕ ∞⋂

m1,m2=0

Tm1

1 Tm2

2 H

Thus, for m = 2, H is represented as a direct sum of closed subspaces
where the summands in the above decomposition of H are precisely the same
as the the ones written in equations (3.1) and (3.2).

Clearly, each summand HA in the above decomposition of H is invariant
under T1 as well as T2. Thus, each summand reduces T1 as well as T2. Now

for A = I2, HA =
∞⊕

m1,m2=0
Tm1

1 Tm2

2 (W1 ∩W2).
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But,

∞⊕

m1,m2=0

Tm1

1 Tm2

2 (W1 ∩W2) =

∞⊕

m1=0

Tm1

1

( ∞⊕

m2=0

Tm2

2 (W1 ∩W2)

)

=

∞⊕

m2=0

Tm2

2

( ∞⊕

m1=0

Tm2

1 (W1 ∩W2)

)

Therefore, T1 and T2 both are shifts on HA.

Now consider A = {1}. Then HA =
∞⊕

m1=0

Tm1

1

( ∞⋂
m2=0

Tm2

2 W1

)
. Then

clearly T1 is a shift on HA. We already have that HA is invariant under T2

and T2 is one-to-one. Also, T2

( ∞⋂
m2=0

Tm2

2 W1

)
=

∞⋂
m2=0

Tm2

2 W1 which implies

that T2(HA) = HA. Thus, T2 is invertible on HA.

Similarly when A = {2}, T1 is invertible and T2 is a shift on HA =
∞⊕

m2=0

Tm2

2

( ∞⋂
m1=0

Tm1

1 W2

)
.

Lastly, when A is empty, HA =
∞⋂

m1,m2=0
Tm1

1 Tm2

2 H in which case, using

the arguments similar as above, it can be easily seen that T1 and T2 are both
invertible on HA.

Hence, the result is true for m = 2. Now suppose the result is true for
m = r where r + 1 ≤ k. Then

H =
⊕

A⊆Ir

HA, (3.7)

where for each non-empty A ⊆ Ir,

HA =
⊕

l∈NA
0

T l
A




⋂

j∈N
Ir\A
0

T
j

Ir\AWA


 (3.8)

and for A = ∅

HA =
⋂

l∈Nr
0

T l
Ir(H). (3.9)

Let A be a non-empty subset of Ir. Since Tr+1 is a near-isometry on WA,

therefore using Theorem 3.3, we can write

WA =

∞⊕

mr+1=0

T
mr+1

r+1 (WA ∩Wr+1)
⊕ ∞⋂

mr+1=0

T
mr+1

r+1 WA
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Using this representation of WA in equation (3.8) and Lemma 2.3, we get

HA =
⊕

l∈NA
0
,mr+1∈N0

T l
AT

mr+1

r+1




⋂

j∈N
Ir\A
0

T
j

Ir\A


 ⋂

i∈A∪{r+1}
Wi







⊕


⊕

l∈NA
0

T l
A




⋂

j∈N
Ir\A
0

∞⋂

mr+1=0

T
j

Ir\AT
mr+1

r+1 WA





 . (3.10)

Further, when A = ∅,

HA =
⋂

l∈Nr
0

T l
IrH (3.11)

Now applying Theorem 3.3 for the near-isometry Tr+1 on H, we have

H =
∞⊕

mr+1=0

T
mr+1

r+1 Wr+1

⊕ ∞⋂

mr+1=0

H

Using this representation of H in equation (3.11), we get

HA =
⋂

l∈Nr
0

T l
Ir




∞⊕

mr+1=0

T
mr+1

r+1 Wr+1

⊕ ∞⋂

mr+1=0

H




=
⋂

l∈Nr
0




∞⊕

mr+1=0

T l
IrT

mr+1

r+1 Wr+1

⊕ ∞⋂

mr+1=0

T l
IrT

mr+1

r+1 H




=
∞⊕

mr+1=0

T
mr+1

r+1


 ⋂

l∈Nr
0

T l
IrWr+1


⊕ ⋂

l∈N
Ir+1

0

T l
Ir+1

H (3.12)

Using equations (3.10) and (3.12) in equation (3.7), we see that H =⊕
A⊆Ir+1

HA, where the summands HA are same as in equations (3.1) and (3.2)

for each subset A of Ir+1. Also, by similar arguments as were used in the case
for m = 2, it can be seen that Ti|HA

is shift whenever i ∈ A and is invertible
whenever i ∈ Ir+1 \A. This completes the proof. �

Remark 3.5. If the operators T1, . . . , Tk in Theorem 3.4 are assumed to be
isometries, then Theorem 3.4 reduces to Theorem 3.2. Hence, Sarkar’s de-
composition (Theorem 3.2) is a special case of our decomposition; thereby
Slocinski’s decomposition [17] also turns out to be a special case of our de-
composition.
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4. de Branges’ theorem for doubly commuting n-tuples

of near-isometries

In this section, we give a representation of sub-Hardy Hilbert spaces over
the polydisc Dn which are invariant under any k-tuple of operators of multi-
plication with finite Blaschke products that are near-isometries and doubly
commute on the sub-Hardy Hilbert space. We first get a representation when
the involved multiplication operators are assumed to be isometries, and later
use it to work with the general case.

Let B1, . . . , Bn be finite Blaschke products with degrees r1, . . . , rn, re-
spectively. We know from [20] that each finite Blaschke product give rise to
an orthonormal basis for H2(D). We first recall this construction of basis for
H2(D) generated using the finite Blaschke Bi. Let

Bi(z) =

ri∏

l=1

z − αi
l

1− αi
lz

For 1 ≤ j ≤ ri, define

kij(z) =
1

1− αi
jz

, k̂ij(z) =

√
1− |αi

j |2

1− αi
jz

, and Bi
j(z) =

j∏

l=1

z − αi
l

1− αi
lz
.

Further, define

eijm = k̂ij+1B
i
jB

m
i , (4.1)

for 0 ≤ j ≤ ri − 1 and m ≥ 0, where Bi
0(z) = 1

Then {eijm : 0 ≤ j ≤ ri− 1, m ≥ 0} forms an orthonormal set in H2(D)
which becomes an orthonormal basis for H2(D) if we assume αi

1 = 0.

From this point onwards, B1, . . . , Bn are fixed finite Blaschke products
with r1, . . . , rn factors, respectively. For each i, let TBi

: Hp(Dn) → Hp(Dn)
denote the isometry

TBi
f(z1, . . . , zn) = Bi(zi)f(z1, . . . , zn).

For any automorphism φ of unit disc and any fixed 1 ≤ i ≤ n, if we let
φi : Dn → Dn denote the map φi(z1, . . . , zn) = (z1, . . . , zi−1, φ(zi), zi+1, . . . , zn),
then the composition operator induced by φi on the Hardy spaceHp(Dn), 1 ≤
p ≤ ∞ is well-defined and one-to-one. Therefore, in our investigation of rep-
resentation of a Hilbert space that is a vector subspaces of a Hardy space
Hp(Dn) on which the tuple (TB1

, . . . , TBn
) doubly commute and each TBi

is
a well-defined near-isometry, we can without loss of any generality assume
that αi

1 = 0 for each 1 ≤ i ≤ n.

Then, for every Blaschke product Bi, the set {eijm : 0 ≤ j ≤ ri −
1, m ≥ 0} is an orthonormal basis for H2(D). Now for j = (j1, . . . , jn) with
0 ≤ ji ≤ ri − 1 and m = (m1, . . . ,mn) ∈ Nn

0 , define

ejm(z1, · · · , zn) = e1j1m1
(z1) · · · enjnmn

(zn).
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Then, using the identification of H2(Dn) with H2(D)⊗ · · · ⊗H2(D), {ejm :
0 ≤ ji ≤ ri − 1,m ∈ Nn

0} forms an orthonormal basis for H2(Dn) and

H2(Dn) =

r1−1,...,rn−1⊕

j1,...,jn=0

e1j10 · · · enjn0H2(B1, · · ·Bn) (4.2)

where H2(B1, . . . , Bn) is the closed linear span of {Bm1

1 · · ·Bmn
n : mi ≥

0} in H2(Dn). Following the terminology of [20], we call a scalar αjm the
(j,m)th B−Fourier coefficient of f ∈ H2(Dn) if αjm = 〈f, ejm〉.
Lemma 4.1. Let φ ∈ H∞(Dn). Then each φi ∈ H∞(Dn), where φ′

is are
unique functions in H2(B1, · · · , Bn) such that

φ =

r1−1,··· ,rn−1∑

i=(i1,··· ,in)
i1,··· ,in=0

e1i10 · · · enin0φi.

Proof. To prove the result, it is enough to show that each φi multiplies
H2(B1, . . . , Bn) into H2(Dn). For this, we take f ∈ H2(B1, . . . , Bn), and let

f =
∞∑

i1,...,in=0

αi1···inB
i1
1 · · ·Bin

n . Suppose fk1...kn
=

k1,··· ,kn∑
i1,...,in=0

αi1···inB
i1
1 · · ·Bin

n .

Then fk1...kn
converges to f in H2(Dn). Now consider,

||φifk1...kn
||2 ≤

r1−1,...,rn−1∑

j=(j1,...,jn)
j1,...,jn=0

||φjfk1...kn
||2

=

r1−1,...,rn−1∑

j=(j1,...,jn)
j1,...,jn=0

||e1j10 · · · enjn0φjfk1...kn
||2

= ‖φfk1...kn
‖2 (4.3)

Since {fk1...kn
} is Cauchy in H2(Dn) and φ ∈ H∞(Dn), {φfk1...kn

} is
also Cauchy in H2(Dn). This, using inequality (4.3), implies that {φifk1...kn

}
is Cauchy, hence converges to some h ∈ H2(Dn). But, convergence in H2(Dn)
implies pointwise convergence; therefore φif = h. Thus, we conclude that φi

multiplies H2(B1, . . . , Bn) into H2(Dn). This, using equation (4.2) together
with the fact that each e1j10 · · · enjn0 is in H∞(Dn), establishes that φi multi-

plies the entire H2(Dn) into itself. Hence, φi belongs to H∞(Dn.) �

From this point onwards, we will work with the n-tuple (TB1
, . . . , TBn

)
only and, for notational convenience, we will use Ti in place of TBi

in all our
results. The following is an extension of Theorem 4.1 from [20].

Theorem 4.2. Let M be a non-zero Hilbert space that is a vector subspace
of Hp(Dn) for some 1 ≤ p ≤ 2, and let M be boundedly contained in Hp(Dn)
whenever 1 ≤ p < 2. Suppose the operators T1, . . . , Tn satisfy the following
conditions on M:

(i) Tj(M) ⊆ M for each j = 1, . . . , n;
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(ii) Tj is an isometry on M for each j = 1, . . . , n;
(iii) TjT

∗
m = T ∗

mTj for every j 6= m, where the adjoint is with respect the
inner product on M.

Then there exits an orthonormal set {φ1, . . . , φr} in M with r ≤ r1 · · · rn
consisting of H

2p
2−p (Dn) functions ( 2p

2−p means ∞ when p = 2) such that

M = φ1H
2(B1, . . . , Bn)⊕ · · · ⊕ φrH

2(B1, . . . , Bn) (4.4)

and

||φ1f1 + · · ·+ φrfr||2M = ||f1||22 + · · ·+ ||fr||22 (4.5)

whenever f1, . . . , fr ∈ H2(B1, . . . , Bn).

The following two lemmas are essentially part of the proof of Theorem
4.2, but we are proving them separately for reader’s convenience. We note
in advance that the idea of the proof of Lemma 4.3 for the case p = 2 is
same as Lemma 4.2 from [20]. Also, the proof of Lemma 4.4 is essentially
a careful extension of the basic idea used in the proof of Lemma 4.3 from
[20] to the several variable situation. We still present these proofs below for
completeness.

Lemma 4.3. Let M be a non-zero Hilbert space. Suppose M and the oper-
ators T1, . . . , Tn satisfy the conditions of Theorem 4.2. If φ ∈ M such that
{φBm1

1 · · ·Bmn
n : m1, . . . ,mn ≥ 0} is an orthonormal set in M, then

(i) φH2(B1, . . . , Bn) ⊆ M;

(ii) φ ∈ H
2p

2−p (Dn), where 2p
2−p means ∞ for p = 2;

(iii) ||φf ||M = ||f ||2 for all f ∈ H2(B1, . . . , Bn).

Proof. To prove (i), let f ∈ H2(B1, . . . , Bn) and f =
∞∑

i1,...,in=0

αi1···inB
i1
1 · · ·Bin

n .

Suppose fk1...kn
=

k1,...,kn∑
i1,...,in≥0

αi1···inB
i1
1 · · ·Bin

n . Then fk1...kn
converges to f in

H2(Dn). Now consider

||φfk1···kn
||2M = ||

k1···kn∑

i1,...,in=0

αi1···inφB
i1
1 · · ·Bin

n ||2M

=

k1···kn∑

i1,...,in=0

||αi1···inφB
i1
1 · · ·Bin

n ||2M

=

k1···kn∑

i1,...,in=0

|αi1···in |2

= ||fk1···kn
||22 (4.6)

Thus, {φfk1···kn
} is a Cauchy sequence in M and hence converges to some

h ∈ M. We divide the rest of the proof of part (i) in the following two case.
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Case: p=2 For any fixed k = (k1, . . . , kn) ∈ Nn
0 , we can write

h =

k1,...,kn∑

j=(j1,...,jn)
j1,...,jn=0

αjφB
j1
1 · · ·Bjn

n +Bk1+1
1 h1 + · · ·+Bkn+1

n hn

= φfk1...kn
+Bk1+1

1 h1 + · · ·+Bkn+1
n hn

for some h1, . . . , hn ∈ M. Let φ =
r1−1,··· ,rn−1∑
i=(i1,··· ,in)
i1,··· ,in=0

e1i10 · · · enin0φi for some φi ∈

H2(B1, . . . , Bn). Then the coefficient of eik in h is given by

〈h, eik〉 = 〈φfk1...kn
, eik〉

= 〈φifk1...kn
, Bk1

1 · · ·Bkn
n 〉

This shows that φif ∈ H2(B1, . . . , Bn) which implies that φf ∈ H2(Dn).
We also get 〈φf, eik〉 = 〈h, eik〉 which implies h = φf. Thus, φH2(B1, . . . , Bn) ⊆
M.

Case: 1 ≤ p < 2 Since M is boundedly contained in Hp(Dn) and φfk1···kn

converges to h in M, therefore φfk1···kn
converges to h in the p-norm. Also,

fk1···kn
converges to f in 2-norm. Now using the fact that convergence in

p-norm as well as the convergence in 2-norm implies pointwise convergence
on Dn, we conclude h = φf. Hence, φf ∈ M.

Thus, from the above two cases, we conclude that φH2(B1, . . . , Bn) ⊆
M. This establishes (i).

Now using (i) and equation (4.2) together with the fact that each
e1i10 · · · enin0 is in H∞(Dn), we readily conclude that φH2(Dn) ⊆ Hp(Dn).

Hence φ ∈ H∞(Dn) when M ⊆ H2(Dn) and φ ∈ H
2p

2−p (Dn) when M ⊆
Hp(Dn) for 1 ≤ p < 2. Lastly, (iii) can be deduced easily from equation
(4.6). �

Lemma 4.4. Let M be a non-zero Hilbert space that is a vector subspace of
H2(Dn). Suppose M and the operators TB1

, . . . , TBn
satisfy the hypotheses

of Theorem 4.2. If φ1, . . . , φr are non-zero functions in H∞(Dn) such that

(i) φiH
2(B1, . . . , Bn) ⊆ M for each i = 1, . . . , r,

(ii) φiH
2(B1, . . . , Bn) ⊥ φjH

2(B1, . . . , Bn) in M whenever i 6= j.

Then r ≤ r1 · · · rn.

Proof. To understand the proof better we assume that each Bi has 2 factors,
that is, r1 = · · · = rn = 2. The proof for the general case is identical.

Suppose there are r1 · · · rn+1 = 2n+1 non-zero functions φ1, . . . , φ2n+1

in M which satisfy the hypotheses (i) and (ii) given in the statement of the
lemma. Using the decomposition of H2(Dn) given by equation (4.2), we can
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write

φj =

1,...,1∑

i1,...,in=0
i=(i1,...,in)

e1i10 · · · enin0φ
j
i , 1 ≤ j ≤ 2n + 1. (4.7)

Let t1, · · · , t2n be the enumeration of the set {i = (i1, . . . , in) : 0 ≤ ij ≤ 1}
such that t1 < · · · < t2n (dictionary order) and define

A1 =




φ1 φ2 · · · φ2n+1

φ1
t1

φ2
t1

· · · φ2n+1
t1

...
...

. . .
...

φ1
t2n

φ2
t2n

. . . φ2n+1
t2n


 ,

Then, using equation (4.7), det(A1) = 0. Note that each φj ∈ H∞(Dn), there-

fore, using Lemma 4.1 , each φ
j
ti

∈ H∞(Dn). Also, φj
ti

∈ H2(B1, . . . , Bn).

Therefore, the minor of each φj is a well-defined element of H2(B1, . . . , Bn).
Let λ1

j denote the minor of φj . Then

det(A1) =

2n+1∑

j=1

(−1)j−1φjλ
1
j = 0.

Therefore 〈
2n+1∑

j=1

(−1)j−1φjλ
1
j , φkλ

1
k

〉

M

= 0

for every 1 ≤ k ≤ 2n+1.Now using the hypothesis (ii), we get 〈φkλ
1
k, φkλ

1
k〉M =

0 which implies λ1
k = 0 for every 1 ≤ k ≤ 2n+1.

For the next step, take any 2n elements p1, . . . , p2n ⊆ {1, . . . , 2n+1} such
that p1 < p2 < · · · < p2n (usual order) and 2n − 1 elements q1, . . . , q2n−1 ⊆
{i = (i1, . . . , in) : 0 ≤ ij ≤ 1} such that q1 < q2 < · · ·q2n−1 (dictionary
order) and form the 2n × 2n matrix

A2 =




φp1
φp2

· · · φp2n

φp1
q1

φp2
q1

· · · φ
pn
2

q1

...
...

. . .
...

φp1
q2n−1

φp2
q2n−1

. . . φpn
q2n−1




,

By using the expansion of φpj
as written in equation (4.7), we obtain that

det(A2) is equal to a scalar (either 1 or -1) multiple of λ1
k for some 1 ≤ k ≤

2n + 1, hence must be zero.
Again, as explained above, the minor of each φpj

is a well-defined ele-

ment of H2(B1, . . . , Bn), let us denote it by λ2
j . Then,

det(A2) =

2n∑

i=1

(−1)j−1φpj
λ2
j = 0. (4.8)

Now using equation (4.8), hypothesis (ii), and following the similar ar-
guments as above, we obtain that λ2

pj
= 0 for 1 ≤ j ≤ 2n. We repeat this
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process for all choices of {p1, . . . , p2n} ⊆ {1, . . . , 2n+1} and {q1, . . . , q2n−1} ⊆
{i = (i1, . . . , in) : 0 ≤ ij ≤ 1}.

After 2n − 2 iterations, we form a 3× 3 matrix

A2n−1 =




φp1
φp2

φp3

φp1
q1

φp2
q1

φp3
q1

φp1
q2

φp2
q2

φp3
q2




for some p1, p2, p3 ∈ {1, . . . , 2n + 1} with p1 < p2 < p3 (usual order) and
q1, q2 ∈ {i = (i1, . . . , in) : 0 ≤ ij ≤ 1} with q1 < q2 (dictionary order).
Then, as done before, using a minor from the (2n − 2)th step we obtain that

det(A2n−1) = 0. Let λ2n−1
i denote the minor of φpi

which is a well-defined
element of H2(B1, . . . , Bn) because of Lemma 4.1 and equation (4.7). Now
using the hypothesis φiH

2(B1, . . . Bn) ⊥ φjH
2(B1, . . . , Bn) whenever i 6= j

one more time, we obtain that φpi
q1
φ
pj

q2
− φ

pj

q1
φpi
q2

= 0 for i 6= j, i, j = 1, 2, 3.
By repeating this for all possible choices of p1, p2, p3 and q1, q2, we obtain

φl
jφ

m
k = φl

kφ
m
j (4.9)

for any l,m ∈ {1, . . . 2m+1} with l 6= m and j,k ∈ {i = (i1, . . . , in) : 0 ≤ il ≤
1} with j 6= k.

Lastly, for any fixed choice of p1, p2 ∈ {1, . . . , 2n + 1} with p1 < p2 and
q ∈ {i = (i1, . . . , in) : 0 ≤ ij ≤ 1} form the matrix

A2n =

(
φp1

φp2

φp1
q φp2

q

)

Then det(A2n) =
1,...,1∑

i=(i1,...,in)
i6=q

i1 ...,in=0

e1i10 · · · enin0(φ
p1

i φp2
q −φp1

q φ
p2

i ) = 0, using equation

(4.9). Thus, φp1
φp2
q = φp2

φp1
q = 0. But φp1

H2(B1, . . . , Bn) ⊥ φp2
H2(B1, . . . , Bn).

Therefore φp1
φp2
q = 0 = φp2

φp1
q which implies that φp1

q = φp2
q = 0. Repeat-

ing the process for choices of p1 and q, we conclude that φj
q = 0 for all

1 ≤ j ≤ 2n + 1 and q ∈ {i = (i1, . . . , in) : 0 ≤ ij ≤ 1} which implies that
φj = 0 for all j, but each φj is non zero. Hence we arrive at a contradiction
which establishes that we can’t have more than 2n functions in H∞(Dn) that
satisfy the hypotheses (i) and (ii). This completes the proof. �

Before giving the proof of Theorem 4.2, we note that it’s proof for the
Case p = 2, is essentially Lemmas 4.3 and 4.4; therefore, it is indeed a careful
extension of ideas from [20] to several variables situation. But, we would like
to mention that the ideas used for the Case 1 ≤ p < 2 are new and original.

Proof of Theorem 4.2 Since T1, . . . , Tn acts as isometries on M and dou-
bly commute as operators on M, therefore using Theorem 3.4, we can de-
compose M as

M =
⊕

A⊆In

MA, (4.10)



18 Sneh Lata, Sushant Pokhriyal and Dinesh Singh

where

MA =
⊕

r∈NA
0

T r
A




⋂

j∈N
In\A
0

T
j

In\A(WA)


 when ∅ 6= A ⊆ In

and MA =
⋂

r∈N
In
0

T r
InM when A = ∅

with WA =
⋂

i∈A Wi, Wi = ker(T ∗
i ). Note that elements of M are analytic

functions on Dn and Bi(0) = 0 for all 1 ≤ i ≤ n, therefore MA = {0}
whenever In \A 6= ∅. So, equation (4.10) reduces to

M =
⊕

r∈In

T r
InWIn (4.11)

We will now show that the dimension of WIn can at be most r1 · · · rn.
For this we will work with cases p = 2 and 1 ≤ p < 2 separately.

Case p = 2 : M ⊆ H2(Dn) Let {φ1, . . . , φr} be an orthonormal set in WIn .

Then, for each i, {φiB
m1

1 · · ·Bmn
n : m1, . . . ,mn ≥ 0} is an orthonormal set

in M. Thus, using Lemma 4.3, we obtain that

(i) φiH
2(B1, . . . , Bn) ⊆ M for each i;

(ii) φi ∈ H∞(Dn) for each i;
(iii) ||φif ||M = ||f ||2 for every f ∈ H2(B1, . . . , Bn).

Also, φiH
2(B1, . . . , Bn) ⊥ φjH

2(B1, . . . , Bn) whenever i 6= j. Then,
using Lemma 4.4 we conclude, r ≤ r1 · · · rn. Hence the dimension of WIn in
this case can at be most be r1 · · · rn.
Case: 1 ≤ p < 2 Using equation (4.11) and Lemma 4.3, we get that WIn ⊆
H

2p
2−p (Dn) ⊆ H2(Dn) which implies M∩H2(Dn) 6= ∅.

Set X = M∩H2(Dn). Then we can easily check that

||x||2 = ||x||2M + ||x||22
defines a norm on X and it becomes a Hilbert space with this norm. Note
that X ⊆ H2(Dn) and each Ti is an isometry on X . Hence using Case p = 2,
we get

X =
⊕

m1,...,mn≥0

Tm1

1 · · ·Tmn
n N

where N = X1 ∩ · · · ∩ Xn with Xi = ker(T ∗
i ) and dim(N ) can at most be

r1 · · · rn. We will show that dim(WIn) ≤ dim(N ). For this, let {f1, . . . , fk}
be a linearly independent set in WIn . Note that, using Proposition 2.2, we
can decompose X in terms of X1, . . . ,Xn−1 as follows:

X = T1(X ) ⊕ T2(X1)⊕ T3(X1 ∩ X2)⊕ · · · ⊕ Tn

(
n−1⋂

i=1

Xi

)
⊕
(

n⋂

i=1

Xi

)
.

Since WIn ⊆ X, we can represent each fi as

fi = T1(a
1
i ) + T2(a

2
i ) + T3(a

3
i ) + · · ·+ Tn(a

n
i ) + bi,
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where a1i ∈ X , bi ∈ X1∩· · ·∩Xn = N and a
j
i ∈ X1∩· · ·∩Xj−1 for 2 ≤ j ≤ n.

We claim that {b1, . . . , bk} is a linearly independent set. Suppose
k∑

i=1

αibi = 0.

Then,
k∑

i=1

αifi =

k∑

i=1

n∑

j=1

αiTj(a
j
i ) =

n∑

j=1

Tj

(
k∑

i=1

αia
j
i

)
. (4.12)

Note that the right hand side of equation (4.12) has an element of
∑n

i=1 Ti(X ) ⊆∑n
i=1 Ti(M) ⊆ W⊥

In
, whereas left hand side is an element of WIn . Therefore,∑k

i=1 αifi = 0 which implies that each αi = 0. This proves that {b1, . . . , bk}
is a linearly independent subset of N . Hence k can at be most r1 · · · rn, since
dim(N ) ≤ r1 · · · rn. This implies that dim(WIn) ≤ r1 · · · rn.

From the above two cases, we conclude that dim(WIn) ≤ r1 · · · rn, WIn ⊆
H∞(Dn) when M is a vector subspace of H2(Dn), and WIn ⊆ H

2p
2−p (Dn)

when M is boundedly contained in Hp(Dn). Now equation (4.4) follows from
equation (4.11) by taking an orthonormal basis for WIn . Lastly, equation
(4.5) follows from equation (4.4) together with the fact ||φf ||M = ||f ||2 for
every φ ∈ M with ||φ||M and f ∈ H2(B1, . . . , Bn). This completes the proof.
�

Lemma 4.5. Let Y be a Hilbert space space consisting of analytic functions
over Dn. Suppose {φ1, . . . , φr} is a linearly independent set in Y such that

(i) for each 1 ≤ j ≤ r, φjf ∈ Y whenever f ∈ H2(B1, . . . , Bn) and φjf =
∞∑

m=(m1,...,mn)
m1,...,mn=0

αmφjB
m1

1 · · ·Bmn
n for f =

∞∑
m=(m1,...,mn)
m1,...,mn=0

αmBm1

1 · · ·Bmn
n ;

(ii) φjB
l1
1 · · ·Bln

n ⊥ φkB
m1

1 · · ·Bmn
n in Y for every 1 ≤ j, k ≤ r whenever

(l1, . . . , ln) 6= (m1, . . . ,mn).

Then φ1f1 + · · · + φrfr = 0 for f1, . . . , fr ∈ H2(B1, . . . , Bn) if and only if
each fi = 0.

Proof. Suppose f1, . . . , fr ∈ H2(B1, . . . , Bn) such that φ1f1+ · · ·+φrfr = 0.
Then, for any fixed m = (m1, . . . ,mn) and 1 ≤ j ≤ r,

〈φ1f1 + · · ·+ φrfr, φjB
m1

1 · · ·Bmn
n 〉 = 0.

Let fi =
∞∑

k=(k1,...,kn)
k1,...,kn=0

αi
kB

k1

1 · · ·Bkn
n for 1 ≤ i ≤ r. Then

〈
α1
mBm1

1 · · ·Bmn
n φ1 + · · ·+ αr

mφrB
m1

1 · · ·Bmn
n , φjB

m1

1 · · ·Bmn
n

〉
= 0.

Thus, ∥∥(α1
mφ1 + · · ·+ αr

mφr)B
m1

1 · · ·Bmn
n

∥∥2 = 0

which implies α1
mφ1 + · · · + αr

mφr = 0. Now φ1, . . . , φr are linearly inde-
pendent, therefore α1

m = · · · = αr
m = 0. By repeating this process for all

m = (m1, . . . ,mn), we get αj
m = 0 for every m and every 1 ≤ j ≤ r. Hence,

each fj = 0. This completes the proof. �
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Theorem 4.6. Let M be a non-zero Hilbert space that is a vector subspace
of Hp(Dn) for some 1 ≤ p ≤ 2. Suppose M is boundedly contained in Hp(Dn)
when 1 ≤ p < 2. Further, suppose the operators T1, . . . , Tn satisfy the follow-
ing conditions on M :

(i) TjM ⊆ M for each j;
(ii) each Tj is a near-isometry on M;
(iii) the tuple (T1, . . . , Tn) doubly commute on M.

Then there exists an orthonormal set {φ1, . . . , φr} in M with r ≤ r1 . . . rn
such that

M = φ1H2(B1, . . . , Bn)⊕ · · · ⊕ φrH2(B1, . . . , Bn)

where the closure is in the norm on M and

(a) each φi ∈ H
2p

2−p (Dn) with the understanding that 2p
2−p means ∞ when

p = 2,
(b) ||φif ||M ≤ ||f ||M for each f ∈ H2(B1, . . . , Bn) and 1 ≤ i ≤ r,
(c) the direct sum is an algebraic direct sum.

Proof. Since the tuple (T1, . . . , Tn) doubly commute and each Ti is a near-
isometry on M, using Theorem 3.4, we decompose M as

M =
⊕

A⊆In

MA, (4.13)

where

MA =
⊕

k∈NA
0

T k
A




⋂

j∈N
In\A
0

T
j

In\A(WA)


 when ∅ 6= A ⊆ In and

MA =
⋂

k∈N
In
0

T k
InM when A = ∅

with WA =
⋂

i∈A Wi, Wi = ker(T ∗
i ). Notice that elements of M are analytic

functions on Dn and Bi(0) = 0 for all 1 ≤ i ≤ n, therefore MA = {0}
whenever In \A 6= ∅. So, equation (4.13) reduces to

M =
⊕

k∈In

T k
InWIn (4.14)

We will first show that WIn ⊆ H
2p

2−p (Dn). For this, take φ ∈ WIn with
||φ||M = 1. Then {φBm1

1 · · ·Bmn
n : m1, . . . ,mn ≥ 0} is an orthonormal set

in M. Suppose f ∈ H2(B1, . . . , Bn) with f =
∞∑

j=(j1,...,jn)
j1,...,jn=0

αjB
j1
1 · · ·Bjn

n . Set

fk1···kn
=

k1,...,kn∑
j=(j1,...,jn)
j1,...,jn=0

αjB
j1
1 · · ·Bjn

n , then the sequence {fk1···kn
} converges to
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f in H2(Dn). Now consider

||φfk1...kn
||2M =

k1,...,kn∑

j=(j1,...,jn)
j1,...,jn=0

||αjφB
j1
1 · · ·Bjn

n ||2

≤
k1,...,kn∑

j=(j1,...,jn)
j1,...,jn=0

|αj |2

= ||fk1···kn
||22 (4.15)

This yields that {φfk1···kn
} is a Cauchy sequence in M, hence con-

verges to some h in M. For p = 2, we deduce φf = h by calculating the
(i,k)th B-Fourier coefficient of h using exactly the same arguments as we
used in Case p = 2 of Lemma 4.3. When 1 ≤ p < 2, M is boundedly con-
tained in Hp(Dn) which implies that {φfk1...kn

} converges to h in Hp(Dn).
Also, fk1...kn

converges to f in H2(Dn). Thus φf = h, since convergence
in p-norm and 2−norm implies pointwise convergence. Therefore, φf = h

irrespective of the value of p.
Hence, φH2(B1, . . . , Bn) ⊆ M ⊆ Hp(Dn) for 1 ≤ p ≤ 2. This, as

we noted earlier as well, readily establishes that φH2(Dn) ⊆ Hp(Dn). Con-
sequently, WIn ⊆ H2p/2−p(Dn), where 2p

2−p means infinity when p = 2.

Also, equation (4.15) yields ||φf ||M ≤ ||φ||M||f ||2 whenever φ ∈ WIn and
f ∈ H2(B1, . . . , Bn).

We will now show that the dimension of WIn can at most be r1 · · · rn.
To this end, let {φ1, . . . , φr} be an orthonormal set in WIn . Then,

X = φ1H
2(B1, . . . , Bn) + · · ·+ φrH

2(B1, . . . , Bn)

is a vector subspace of Hp(Dn). Note that the set {φ1, . . . , φr} ⊆ M satisfies
the hypotheses of Lemma 4.5, therefore, φ1f1+ · · ·+φrfr = 0 for f1, . . . , fr ∈
H2(B1, . . . , Bn) if and only if f1 = · · · = fr = 0. As a result,

||
r∑

i=1

φifi||2X =

r∑

i=1

||fi||22

defines a well-defined norm on X . In fact, X is a Hilbert space with respect
to this norm.

Further, for any f1, . . . , fr ∈ H2(B1, . . . , Bn)

||φ1f1 + · · ·+ φrfr||p ≤ ||φ1f1||p + · · ·+ ||φrfr||p
≤ ||φ1|| 2p

2−p
||f1||2 + · · ·+ ||φr|| 2p

2−p
||fr||2

Hence, X is a Hilbert space that is boundedly contained inHp(Dn). Also, each
Ti is an isometry on X . Therefore, using Theorem 4.2, dim(X1∩· · ·∩Xn) can
at most be r1 · · · rn, where Xi = X ⊖TiX . We can easily see that {φ1, . . . , φr}
is an orthonormal set in X . Consequently, to show that r ≤ r1 · · · rn, it is
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enough to show that each φi ∈
⋂n

j=1 Xj . Fix any 1 ≤ j ≤ n, and let f ∈ TjX .

Set f = Tj(
∑r

i=1 φifi) for some f1, . . . , fr ∈ H2(B1, . . . , Bn). Then,

〈φi, Tjf〉X = 〈φi, φ1Bjf1 + · · ·+ φrBjfr〉X = 〈1, Bjfi〉2 = 0

as Bj(0) = 0. Thus, φi ⊥ TjX which means φi ∈ Xj . Thus, {φ1, . . . , φr}
is an orthonormal set in

⋂n
j=1 Xj which implies that r ≤ r1 · · · rn. Hence,

dimension of WIn can at most be r1 · · · rn.
Lastly, let {φ1, · · · , φr} be an orthonormal basis of Wn. Then, using

equation (4.14), we get that

φ1H
2(B1, . . . , Bn) + · · ·+ φrH

2(B1, . . . , Bn) (4.16)

is dense in M. Furthermore, using Lemma 4.5 again, we conclude that the
sum on the right hand side of equation (4.16) is in fact an algebraic direct
sum. Hence,

M = φ1H2(B1, . . . , Bn)⊕ · · · ⊕ φrH2(B1, . . . , Bn).

Finally, we note that the assertions (a) and (b) from the statements of the
theorem have already been shown to hold true for any unit vector in WIn , in
particular, they are true for φ′

is. This completes the proof. �

Remark 4.7. In Theorem 4.6, the bounded containment of the sub-Hardy
Hilbert space M in Hp(Dn) for 1 ≤ p < 2 is used only to show that the

subspace WIn is a subset of H
2p

2−p (Dn). We could work without this condition
for p = 2 case because of equation (4.2) which is a decomposition of H2(Dn)
in terms of H2(B1, . . . , Bn). A similar decomposition exists for Hp(D), 1 ≤
p ≤ ∞ which for p = 2 is indeed equation (4.2) with n = 1. We brief it
here for reader’s convenience. Suppose B is a finite Blaschke product with
k factors and ei0, 1 ≤ i ≤ k − 1 are functions defined by equation (4.1)
corresponding to B. Then [9] proves that

Hp(D) = e00H
p(B)⊕ · · · ⊕ e(k−1)0H

p(B),

where Hp(B) is the closed linear span of {Bj : j ≥ 0} in Hp(D) and the
sum is an algebraic direct sum for p 6= 2. It is not difficult to check that
Hp(B) = {f ◦B : f ∈ Hp(D)}. Now, by using this decomposition and the fact
that elements of Hp(D) are power series on the unit disk we can easily show
that elements of WI1 multiplies H2(B) into M without assuming a bounded
containment of M into Hp(D). Therefore, the bounded containment condition
is redundant for one variable case in Theorem 4.6.

Theorem 4.8. Let M be a Hilbert space which is a vector subspace of
Hp(Dn) for some p > 2. Suppose the tuple (T1, . . . , Tn) satisfies the con-
ditions (i), (ii), and (iii) of Theorem 4.6. Then M = {0}.
Proof. Since p > 2, M is a vector subspace of H2(Dn) as well. Thus, using
the same arguments as we used in Theorem 4.6 for Case p = 2, we get

M =
⊕

r∈In

T r
InWIn
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and functions in WIn multiplies H2(B1, . . . , Bn) into M ⊆ Hp(Dn). This im-
plies that functions in WIn multiplies H2(Dn) into Hp(Dn) ⊆ H2(Dn), hence
WIn ⊆ H∞(Dn). But no non-zero function in H∞(Dn) can multiply H2(Dn)
into Hp(Dn). Hence WIn = {0} which implies M = {0}. This completes the
proof. �

Corollary 4.9. [10, Theorem 3.1] Let M be a Hilbert space which is a vector
subspace of H2(D). Suppose the operator of multiplication with the coordinate
function z is well-defined on M and is a near-isometry on M. Then there
exists a function φ ∈ M∩H∞(D) with ||φ||M = 1 such that

M = φH2(D) (closure is in the norm on M)

and ||φf ||M ≤ ||f ||2 for all f ∈ H2(D).

Proof. This is simply the one-variable case of Theorem 4.6 for p = 2 where
the Blaschke product is the coordinate function z. �

Corollary 4.10. [20, Theorem 4.1] Let M be a Hilbert space such that

(i) M is algebraically contained in H2(D);
(ii) M is invariant under TB, the operator of multiplication with a finite

Blaschke product B with m factors;
(iii) TB is an isometry on B.

Then
M = φ1H

2(B)⊕ · · · ⊕ φrH
2(B)

where each φj ∈ H∞, 1 ≤ j ≤ r, and r ≤ m. Further,

||φ1f1 + · · ·+ φrfr||2M = ||f1||22 + · · ·+ ||fr||22, fj ∈ H2(B)

for each f = φ1f1 + · · ·+ φrfr in M.

Proof. Every isometry is a near-isometry and hence the result follows form
Theorem 4.6 by taking n = 1 and p = 2. �
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