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Abstract: 

We demonstrate applications of Quantitative Structure Property Relationship (QSPR) 

modeling to supplement first-principles computations in materials design. We have here 

focused on the design of polymers with specific electronic properties. We first show that 

common materials properties such as the glass transition temperature (Tg) can be effectively 

modeled by QSPR, to generate highly predictive models that relate polymer repeat unit 

structure to Tg. Next, QSPR modeling is shown to supplement and guide first-principles DFT 

computations in the design of polymers with specific dielectric properties, thereby 

leveraging the power of first-principles computations by providing high-throughput 

capability. Our approach consists of multiple rounds of validated MQSPR modeling and DFT 

computations to optimize the polymer skeleton as well as functional group substitutions 

thereof. Rigorous model validation protocols ensure that the statistical models are able to 

make valid predictions on molecules outside the training set. Future work with inverse 

QSPRs have the potential to further reduce the time to optimize materials properties. 
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I. Introduction 

Discerning and exploiting patterns in chemical data is at the heart of any 
systematic program for materials design. MQSPR refers to the application of the 
science of Quantitative Structure-Property Relationship modeling to materials 
informatics. The existence of quantitative relationships between chemical 
structure and the properties of materials was first discerned through the study of 
linear free energy relationships [1-4] early in the last century. These studies 
quantified the effect of a substituent group on equilibrium or rate constants. In 
recent years, the tools of statistical learning and pattern recognition have been 
employed to discover more complex relationships hidden in the wealth of data 
produced by high-throughput experimentation and robotic assays. Such statistical 
methods typically use an array of computed structural descriptors and/or process 
parameters as input to a model that can be trained to predict the value of an 
experimental quantity. When employed instead to predict a computed rather than 
an experimental quantity, statistical modeling can also serve to complement and 
leverage the results from first-principles computations, such as those using ab 

initio quantum chemistry and density functional theory (DFT), thereby enabling 
quantitative predictions on many more systems than would be possible in the 
same time span with first-principles computations alone.  

This paper deals with applications of MQSPR modeling to supplement first-
principles DFT computations in the design of polymers with specific electronic 
properties, such as high dielectric constant and band gap for capacitors, or a 
specific range of glass transition temperatures. Our approach consisted of multiple 
rounds of validated MQSPR modeling and DFT computations to optimize the 
polymer skeleton as well as functional group substitutions thereof. Model 
validation ensures that a statistical model is able to make valid predictions on 
molecules outside the training set, rather simply producing post facto correlations 
on the training data. It is equally important to assess the domain of applicability of 
a model, i.e. to know if a model is capable of predicting materials properties with 
useful levels of accuracy in a particular part of chemistry space. Methods for 
model validation and applicability domain assessment are discussed more fully 
elsewhere [5-8]. 

II. Background 

A. Glass Transition Temperatures Tg 

The performance of polymers may be best understood by considering their 
thermal transitions. Among these, the glass transition temperature (Tg) is one of 
the most important and widely studied thermal characteristics. When an 
amorphous polymer undergoes the glass transition, almost all of the properties 
that relate to its processing, such as heat capacity, coefficient of thermal 
expansion and viscosity, change dramatically. This temperature represents the 
ease of long-range motion for polymer chains, which is reflected in several 
physical properties of polymers.  At temperature below Tg, the motion of polymer 
chains is restricted to local vibration and thus polymers appear hard and glassy. At 
temperature above Tg, polymers become soft and rubber-like because of the 
increase of polymer chain mobility.  
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Glass transition behavior is characteristics of the fundamental dynamics of 
polymer chains. Though research on glass transition behavior has been an active 
subject over the past decades, the physics behind this phenomenon is still not fully 
understood.  The glass transition temperatures of polymers may vary widely 
depending on various factors, such as the molecular weight and chemical structure 
of the polymer.  Based on “free-volume” theory, low molecular weight polymers 
have lower Tg values, because low molecular weight polymer chains have more 
ends per unit volume than long chains, and hence more freedom of motion and 
higher free volume [9,10].  In general, polymers with flexible backbones and 
small side groups have lower Tg than polymers with rigid backbones, such as 
polymers containing main-chain aromatic groups.  Furthermore, cross-linking, 
crystallization and co-polymerization all affect the glass transition temperatures of 
polymers. 

Recently, the use of quantitative structure property relationship (QSPR) has 
emerged as a valuable means of predicting physical properties of polymeric 
materials [11].  Consequently, it would be advantageous to produce robust QSPR 
models that could predict Tg values for new polymeric materials.  In the process of 
developing new materials, such models could be used as high throughput 
screening tools given a list of possible polymer candidates, and to exclude ones 
that do not fall in the desired Tg range.  A substantial savings in time and money 
can be achieved by focusing on only those materials with appropriate Tg values. 

Numerous models have been reported for predicting the Tg of amorphous 
polymeric materials. Generally these studies involved the use of small data sets, 
so the range of Tg values is quite limited. Perhaps the most widely referenced 
model is one generated by Bicerano [12]. This study used a data set including 320 
polymer compounds, and the QSPR model utilized connectivity indices of the 
topology of the repeat unit of a polymer as the principal descriptors.  A linear 
regression procedure was used to build a model with a standard deviation of 24.65 
K and a correlation coefficient of 0.975 (R2 of 0.95). However, no external data 
set compounds were withheld to validate this model. There is thus a need for a 
model that allows prediction of Tg for polymers spanning a large variety of 
structures. The goal of the present study was to produce robust QSPR models that 
can predict Tg values for a diverse set of polymers.  

B. Dielectric Properties 

The primary objective of this part of the study is the navigation of the polymer 
chemical space to screen polymers appropriate for high energy density capacitor 
dielectrics with an attractive combination of high dielectric constant, fast response 
and low loss. Thus the first objective is to scan the polymer chemical landscape 
rapidly in order to identify systems with a large dielectric constant and band gap 
adequate to provide reasonable insulating properties. We use the normalized 
polarizability as an indicator of the dielectric constant ε. The polarizability may be 
normalized either on a per volume basis (X) or on a per mass basis (Φ). Larger 
values of X and Φ lead to larger dielectric constant (ε) on account of the Clausius-
Mossotti equation: 
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where ε is the relative permittivity (i.e., the dielectric constant) of the medium 
made up of polarizable units; α and V are, respectively, the polarizability (in units 
of volume) and the volume occupied by the polarizable units. The polarizabilities 
X and Φ are related through the relation: 

฀
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    (2), 

where A, M and ρ are the Avogadro number, molecular weight and density, 
respectively. X is a dimensionless quantity, whereas Φ has units of volume/mass. 

The polarizability α, being the change in the dipole moment μ in response to an 
applied electric field E, is a tensor. The quantity used for modeling is the trace: Trace(α) = ∂μX/∂EX + ∂μY/∂EY + ∂μZ/∂EZ  (3). 

The total polarizability may be thought of as consisting of two main contributions: 
an electronic contribution, arising from the polarization of the electron density by 
the field (with the nuclei staying fixed), and the other an ionic contribution, 
arising from the reorientation of the molecular scaffold. The ionic contribution is 
often small in comparison to the electronic component, except in cases where 
there is significant flexibility of the molecular scaffold and a large permanent 
dipole moment. These are the most interesting systems from the point of view of 
polymer design. 

One approach to the optimization of polymer dielectric properties is to identify 
highly polar, highly polarizable and highly rotatable functional groups to 
manipulate the dielectric response. This line of investigation is described in 
Section III.B. Another approach, described in Section III.C, is to optimize the 
polymer backbone to identify elemental substitutions favorable for high dielectric 
properties. The basic idea in either case is to collect enough information on the 
relationship between composition and configuration on the one hand, and 
dielectric properties on the other. The ultimate goal of the study is to use this 
knowledge to solve the “inverse problem”, namely, identification of classes of 
polymers with an attractive set of dielectric properties. 

III. Materials and Methods 

A. Modeling the Glass Transition Temperatures of homopolymers with 

TAE descriptors 
Transferable Atom Equivalent (TAE) RECON descriptors [13-15], which are 
based on Bader’s Atoms in Molecules formalism [16] have been used for the 
prediction of glass transition temperatures of homopolymers [17,18]. The 
computational bottleneck associated with the generation of molecular descriptors 
from ab initio quantum calculations in circumvented by pre-computing a library 
of transferable atomic fragment densities and density-derived atomic fragment 
properties (the TAE library) from ab initio wave functions. The RECON 
algorithm [14,15] exploits the fact that atomic fragments constructed as in Bader’s 
theory of Atoms-In-Molecules possess properties that are approximately additive 
and transferable between molecules, to enable rapid, high throughput computation 
of molecular electronic properties from the atomic charge density fragments 
stored in the TAE library. TAE descriptors encode the distributions of electron 



5 

density-based molecular properties, which are much more sensitive indicators of 
the local chemical environment than is the density itself. The electron density-
derived descriptors employed in this study are listed in Table 1. Surface extrema, 
surface integral averages and histogram bins derived from surface distributions for 
each property were used in this study.  

Table 1: Transferable Atom Equivalent Electron density-derived properties 

Surface electronic properties: surface extrema, surface integral averages and histogram bins 
derived from surface distributions are available for each property. 
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Integrated atomic 
properties 

Energy, Integrated electron population, Volume, Surface area 

Rot (Topological) Total number of rotatable single bonds in the repeat unit 

RRot (Topological) Ratio of the number of rotatable single bonds in the side chain to that in 
the main chain of the repeat unit 

Some of the most commonly employed electron density-derived descriptors are 
the molecular electrostatic potential and Politzer’s local average ionization 
potential [19-22]. Quantitative correlations of the values of electrostatic potential 
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minima with the carcinogenic activities of molecules[23] have shown the promise 
of this descriptor for biological and environmental applications, leading to its 
extensive use in QSAR and drug design [24]. Maxima of the local average 
ionization potential identify regions in the molecule that do not give up electrons 
readily, while electron-donor or hydrogen bond acceptor regions correspond to 
minima of this function. 

In this study, the polymer repeat unit was used as representative of the polymeric 
material.  The repeat unit structures end-capped with monomers were used to 
construct the appropriate atom type environments for descriptor generation in the 
quantitative structure-property relationships (QSPR) investigation. This study also 
utilizes an external prediction set which validates models based on their ability to 
predict properties of polymeric materials that were not used in the training. The 
size and diversity of the external prediction set is much larger than those 
considered in most earlier studies. 

The 300 polymer compounds used in this study came from Bicerano [12] and are 
listed in Table S1 of the Supplementary Information.  This data set contains 
non-cross-linked polymers with a large variety of compositions and structural 
features, Tg values range from 130 K to 685 K.  Polymer repeat units for 300 
polymers were represented in SMILES format. The RECON algorithm uses the 
SMILES format for the repeat units as input, determines atom types and 
environments, assigns the closest match to each atom from a library of atom types 
(TAE library) and combines the densities and properties of the atomic fragments 
to compute the TAE QSPR descriptors. Polymer TAE descriptors are constructed 
by summing the respective atomic descriptors stored in the data files that 
constitute the TAE library. In addition to TAE descriptors, two new polymer 
descriptors, Rot and RRot, describing polymer flexibility, were imployed: Rot is 
the total number of rotatable single bonds in the repeat unit, RRot is the ratio of 
the number of rotatable single bonds in the side chain to that in the main chain of 
the repeat unit.  A training set consisting of 214 polymer compounds was selected 
from the 300 polymers; the remaining 86 compounds were used as an external 
prediction set. 

Faced with this large pool of potentially useful polymer descriptors, objective 
feature selection was performed to remove descriptors that contain identical 
information or that are highly correlated with other descriptors (“cousin” 
descriptors). All descriptors with zero variance were removed. Pairwise 
correlations were examined to remove descriptors that are highly correlated with 
other descriptors. If two descriptors were highly correlated, one was randomly 
removed from the descriptor pool.  By eliminating redundant and low-
information-content descriptors, high-quality data for use in modeling analysis is 
obtained. The reduction of the descriptor pool is also done to ensure that the ratio 
of descriptors to training set observations does not exceed 0.6, thereby reducing 
the risk of chance correlations during model development [25].  Partial Least 
Square (PLS) regression and Kernel Partial Least Squares (KPLS) regression were 
used to generate linear or nonlinear models after objective feature selection. The 
ultimate goal of the QSPR models is to predict Tg values for unknown polymeric 
materials with a useful level of accuracy.  To test the robustness of the final model 
for extrapolative predictions, the full data set was divided into a training set and a 
validation set, which were together used to build a learning model, and an external 
prediction set, which was used only for model evaluation. The most unbiased 
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method of building models is to employ the external prediction set only after the 
model is trained.  In this study, a training set consisting 214 polymer compounds 
was selected from the 300 polymers; the remaining 86 polymers were used as an 
external test set to assess the predictive ability of the derived models. 149 polymer 
descriptors were generated, including 147 TAE descriptors from RECON and two 
rotatable bond descriptors. After objective feature selection, one constant feature 
and 65 cousin features were eliminated. QSPR models were generated using the 
remaining 83 features and different machine learning methods, such as Bootstrap 
PLS and Bootstrap KPLS.   

Bootstrap PLS 

The PLS method used in this study transforms the original variables into a few 
orthogonal “latent” variables, which are linear combinations of the original 
variables. PLS calculates one latent variable at a time and stops when the added 
information becomes insignificant, as determined by a bootstrap procedure 
(Figure 1). In such a procedure, 10% of the training set was randomly selected as 
a validation set and removed from the training set; the remaining compounds in 
the training set were used to develop each model. The compounds left out were 
then predicted from the developed model.  Such a process was repeated 100 times, 
each time a different validation set was selected randomly and then predicted from 
each model developed. The sum of the squared differences between the predicted 
property and the experimental property for the compounds left out (predictive 
residual sum of squares: PRESS) was computed.  The number of latent variables 
giving the smallest computed PRESS value was used. In this study, the optimal 
number (9) of latent variables was determined using 100 bootstraps. Once the 
optimal number of latent variables was determined, a PLS model was built on the 
whole training set including 214 polymer compounds. The external prediction set, 
which was set aside during the model development stages, was predicted to assess 
the predictive ability of the model (Figures 2 and 3).     
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Figure 1: Example 3-Round, 3-Fold Cross-validation Procedure. 

 

Figure 2: Bootstrap PLS Model for Tg (Training Set) 
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Figure 3: Bootstrap PLS Model for Tg (Test Set) 

 

 

Bootstrap KPLS 

As traditionally implemented, PLS is a linear modeling technique. However, it is 
possible to construct a nonlinear extension of this method using a nonlinear 
kernel. The general idea of K-PLS is to apply a kernel matrix in the process of 
modeling, which can be considered as a nonlinear transformation of the input 
data. Various K-PLS methods use different choices of the kernel, such as a 
polynomial kernel or a radial basis function. In this work, a Gaussian kernel, 
which is a widely used radial basis function, was employed.  In a similar manner 
to PLS, the best exponent sigma for the Gaussian kernel and the number of latent 
variables were determined using 50 bootstraps. In this study, the optimal number 
of latent variables was 9 and sigma for the Gaussian kernel was 10.  Figures 4 and 
5 give the KPLS modeling results on the training set and the external prediction 
set separately. 
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Figure 4: Bootstrap KPLS Model for Tg (Training Set) 

 

Figure 5: Bootstrap KPLS Model for Tg (Test Set) 

In accordance with cheminformatics best practices, we performed cross-validation 
and used external test sets to determine model performance. In addition, y-
scrambling was employed as a test of susceptibility of the method to over-fitting 
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[26,27]. In this technique, the response vector is shuffled multiple times, and 
“fake” QSPR models are built using the original, unscrambled chemical 
descriptors with shuffled responses, which are then compared to the real model. If 
many or all of the scrambled QSPR models built using a specific set of descriptors 
and a given machine learning method appear to have relatively high performance, 
it implies that QSPR models based on the given modeling method and descriptors 
demonstrate many plausible hypotheses and a lack of differentiation between 
them. This may be due to model overfitting, and less overall confidence should be 
placed in these models. Y-scrambling results on the model are shown in Figures 6. 

 
Figure 6: Y-Scrambling KPLS Results for Tg 

B. Modeling the Electronic Polarizability contributions of Functional Groups 

with MOE descriptors 

In an effort to design high dielectric constant polymers with moderately high band 
gaps, we constructed QSPR models for HOMO-LUMO gaps and electronic 
polarizabilities of polymer fragments with a variety of side-chain 
functionalization. The models were trained on and validated with electronic 
polarizabilities from ab initio DFT computations and HOMO-LUMO gaps from 
ab initio Hartree-Fock computations. Validated QSPR models [5,28] were 
constructed for HOMO-LUMO gaps and the trace of the electronic component of 
the polarizability tensor for polyethylene (PE) functionalized with various groups, 
employing constitutional and topological descriptors from Molecular Operating 
Environment [29] and Transferable Atom Equivalent (TAE) [15] descriptors. The 
functional groups used are shown in Table S2 of the Supplementary Information. 
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The models were trained on HOMO-LUMO gaps and polarizabilities computed 
from DFT (using Gaussian '03) [30] for polymer fragments of varying lengths. 
Model building was wrapped by 10 rounds of 10-fold cross-validation [31-33,5], 
where multiple data points were successively withheld for evaluation, as shown in 
Figure 1.  

Optimum model parameters were chosen via multiple rounds of Leave-N-Out 
cross-validation and a grid parameter search, as shown in Figure 7. PLS latent 
variable selection was performed with 20 rounds of 4-fold cross-validation. All 
parameters were set via a default grid search so as to optimize cross-validated 
model R2. Feature selection [34] was employed based on correlation and 
sensitivity analysis to select relevant descriptors and generate robust models, 
together with model validation protocols. 

 

Figure 7: Model parameter selection through cross-validation and grid search.  In this 

figure, a 3-fold cross-validation is performed. 

Our studies indicated that the sum of the atomic polarizabilities (apol) from the 
CRC Handbook of Chemistry and Physics [35], from the MOE 2-D set [29], 
provides a good approximation to determine functional group contributions to 
electronic polarizabilities. Almost all the deviation arises from groups with Li, Na 
and K atoms. When these systems are removed, one obtains a much better 
regression, with a correlation coefficient of 0.98. 

Functional group contributions with polyethylene (PE), polyacetylene (PA) and 
polysilene backbones exhibit similar trends, showing that apol may be used to 
determine additive contributions to the electronic polarizability in each case. The 
only major deviations were the groups with alkali atoms, indicating poor 
parameterization for these atoms. A 5-descriptor model, including apol and bpol 
(the sum of the absolute values of the difference between atomic polarizabilities 
of all bonded atoms in the molecule taken from the CRC Handbook of Chemistry 
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and Physics [29]), produces a good cross-validated regression for the electronic 
component of the polarizability tensor, even for systems containing alkali groups. 

Since the apol descriptor (sum of the atomic polarizabilities) was found to provide 
a good approximation to determine functional group contributions to electronic 
polarizabilities in most cases, and semi-empirical AM1 computations gave a 
reasonable estimate of Hartree-Fock HOMO-LUMO gaps, these descriptors were 
then used to screen a large fragment library of 13,300 functional groups from the 
MOE [Labute, 2000] fragment library, and 150 of the most promising functional 
groups with high apol per van der Waals volume and high HOMO-LUMO gap 
(shown as red circles in Figure 8) were identified for further analysis. The 
functional groups were neutralized (deprotonated) and DFT (PBE/6-31G* [36,37] 
computations, with full geometry optimization, were performed on polymer 
fragments with these 150 groups. Since the computational bottleneck is geometry 
optimization, which grows with length of the backbone chain, a very short two-
carbon PE chain was employed to represent the polymer backbone in the ab initio 
computations. 

 

Figure 8: Library view of 13,300 functional groups.  Shown highlighted are the 150 most 

promising compounds, in terms of high apol per van der Waals volume and high HOMO-

LUMO gap. 

Dipole moments and total polarizabilities were computed using DFT with the 

PBE functional [36,37] and 6-31G* basis in Gaussian’03 [30]. Comparing the 

total versus electronic polarizabilities identifies the functional groups with high 

ionic polarizabilities (shown as red circles in figure 9, with structures in figure 

10). The functional groups were then ranked by their ionic polarizabilities, as 

determined from ab initio DFT computations, and by other criteria such as the 

total dipole moment and the number of rotatable bonds. 
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Figure 9: Total polarizability vs. electronic polarizability for the most promising functional 

groups. 
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Figure 10: Most promising functional groups selected in terms of high ionic polarizability. 

C. Modeling the HOMO-LUMO Gaps and Electronic Polarizabilities of 

block copolymers 

Modification of the polymer backbone is another potential approach to optimize 

polymer dielectric properties. Thus we constructed validated QSPR models for the 

HOMO-LUMO gaps and electronic polarizabilities of representative carbon-, 

silicon- and germanium-containing block copolymers. The polymer fragments 

employed are shown in Table S3 of the Supplementary Information. The HOMO-

LUMO gaps and electronic polarizabilities were computed [38] using DFT with 

van der Waals-augmented functionals. Partial least squares models for their 

HOMO-LUMO gaps are shown in Figures 11(a) and (b). 
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Figure 11: HOMO-LUMO gap models.  Shown in (A) on the left is the performance of the 

model training data. Shown in (B) is the performance of the model applied to previously 

withheld test data. 

By performing sensitivity analysis (shown in Figure S1 in the Supporting 

Information) on the model, we find the most important descriptors, in decreasing 

order of sensitivity, to be: the relative negative partial charge, the bond stretch 

potential energy, the Carbon valence connectivity index of order 0, the first shape 

moment with respect to the closest atom to the molecular centroid, the fractional 

positive van der Waals surface area, the second bin of GCUT descriptors 

calculated from the eigenvalues of a modified graph distance adjacency matrix, 

and the sum of the accessible van der Waals surface areas for atoms with partial 

charges falling in the first bin. The results of y-scrambling validation are shown in 

Figures 12 (a) – (d). 



17 

 
Figure 12: Y-scrambling validations of PLS models for the HOMO-LUMO gap. (a) R2, (b) 

root mean squared error - RMSE. (c) Scrambled Model with the highest R2, (d) Scrambled 

Model with the lowest RMSE. 

Partial least squares models for the electronic polarizability of block copolymers 

are shown in Figures 13 (a) and (b). 

 
Figure 13: PLS models for the electronic polarizability of block copolymers (a) Training 

data, (b) Test set. 

The most important descriptors used in the model, in decreasing order of 

sensitivity (shown in Figure S2 in the Supporting Information), are: the molecular 

mass density, the total atom information content calculated from the entropy of the 
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element distribution in the molecule, the number of violations of Oprea's lead-like 

test, the molecular weight including implicit hydrogens, the energy of the Highest 

Occupied Molecular Orbital calculated using the AM1 Hamiltonian, BCUT 

descriptors using atomic contribution to molar refractivity, and the sum of the 

accessible van der Waals surface areas for atoms with partial charges falling in the 

first bin. The results of y-scrambling validation are shown in Figures 14 (a) – (d). 

 
Figure 14: Y-scrambling validations of PLS models for the electronic polarizability of block 

copolymers. (a) R2, (b) RMSE. (c) Scrambled Model with the highest R2, (d) Scrambled 

Model with the lowest RMSE. 

These PLS models were then employed to make blind predictions on new 

polymers. 

IV. Discussion and Summary 
From the results of the cross-validated models and external test set data presented 
above, molecular descriptors derived from the repeat unit structure produced 
models that quantitatively predicted Tg. 

For all models generated, a wide separation was noted between scrambled and real 
models (Figures 6, 12 and 14), and even the highest reported models generated 
with fake data showed little ability to predict the scrambled responses. This 
information, in concert with the excellent performance of the models on test set 
data indicate that robust QSPR models have been generated. Going forward, these 
models will be used to shape synthetic decisions in the quest for high-energy 
materials. MQSPR modeling can thus leverage the power of first-principles DFT 
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computations in the design of polymers with specific electronic properties, by 
providing high-throughput capability. 

While the atom-based apol descriptor was adequate in modeling the electronic 
polarizability contributions of organic functional groups, this single descriptor 
was less useful in cases of systems containing atoms that are less well-
parameterized, such as the alkali metals. Nevertheless it was possible to develop 
well-validated models for the electronic polarizability with a broader domain of 
applicability using a small pool of descriptors, both for functional group 
substitutions and for homo- and block co-polymers with heteroatom backbones. 
Topological connectivity descriptors as well as partial charge based surface area 
descriptors were found to be important in modeling the HOMO-LUMO gaps of 
polymers.  

An existing general criticism about QSPR is that even with model interpretation 
through multiple means, there is limited-to-no guidance provided towards future 
studies. While it is important to characterize and understand existing chemical or 
material spaces, a far more potent position would be to leverage that knowledge to 
make informed decisions on future experiments. In other words, given the existing 
data including responses, what chemical structures would have corresponding 
targeted, or optimized responses? Solving this inverse QSPR problem has long 
been sought after [39], but as the problem space is large and typically nonlinear 
and the chemical descriptors used in modeling are often un-interpretable, many 
non-optimal candidates may be identified [40,41]. Potential solutions should exist 
on a Pareto front [42] (Fig.18) consisting of those solutions that satisfy the desired 
outcome, but that cannot be differentiated from each other except on the basis of 
additional criteria. However, if one restricts attention to this much-reduced space, 
the process of deciding how to proceed is greatly simplified. 
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Fig.15: Potential solutions to an optimization problem may be thought to exist on a Pareto 

front, consisting of all solutions that satisfy the desired outcome. A solution on the Pareto 

front (A) is more optimal than another (B) that is not on the front. 

Starting from the existing data points, it is possible to systematically alter data 
points so as to create a design of experiments (DOE) around each data point.  To 
be effective, the DOE must take into consideration the distribution of the original 
data[43-45] as well as the model confidences in the original data[5].  The 
objective would be to create a very large virtual library of experiments, to 
evaluate predictions and their confidences in the context of model domain of 
applicability[46], so as to identify cases near the Pareto front. Classification or 
ranking of predictions could occur by estimated prediction reliability, as well as 
other criteria: total material cost, physical considerations, etc. Additionally, this 
inverse QSPR problem is vastly simplified when considering manufacturing 
process parameters as materials informatics descriptors, where changes in process 
parameters have a directly observable impact on material performance, and are 
thus interpretable. Future work will be focused on closing the loop between 
MQSPRs and process manufacturing, with the goal of intelligent and semi-
automatic process optimization. 

V. Conclusions  

We have demonstrated the use of QSPR in materials design across several 
domains by first demonstrating that common materials properties such as the glass 
transition temperature can be effectively modeled using statistical learning models 
and appropriate descriptors. In this study, highly predictive QSPR models were 
developed which relate polymer repeat unit structure to the property of interest 
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(Tg).  It was also demonstrated that the repeat unit structure, end-capped with 
monomers, can be used to represent the polymeric material effectively. Polymer 
TAE descriptors and rotatable bond descriptors calculated on the repeat unit 
structure can be fruitfully employed with PLS and KPLS to develop QSPR 
models of high predictive ability for the polymer glass transition temperature Tg. 
This work employed a data set displaying a wide structural diversity, leading to a 
general method for predicting glass transition temperatures Tg of non-cross-linked 
polymer materials. 

Next, MQSPR modeling was shown to be capable of supplementing and guiding 
first-principles DFT computations in the design of polymers with specific 
electronic properties. Model validation ensured that statistical models were able to 
make valid predictions on molecules outside the training set, thereby enabling 
quick prioritization and quantitative predictions of many more systems than would 
be possible in the same time span with first-principles computations alone.  Future 
work with inverse QSPRs may further reduce the time to optimize materials 
properties. 
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