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Abstract. For 2-D simulation of curvilinear flow field, use of momentum equations involves 

flow dispersion stress terms. Dispersion Stress terms take into account the effect of secondary 

flow variation arisen due to integration of the product of discrepancy between depth averaged 

velocity and the true velocity distributions. The objective of this paper is to present empirical 

mathematical functions to evaluate these terms. These terms can be incorporated in the 2D 

depth averaged flow equations as an additional source/sink term. In this work, the derivation is 

done to get revised set of empirical relations are later used in development of enhanced 2D 

numerical model. When compared with earlier investigations, the proposed formulations are 

simplified and numerically compatible. It is expected that modified formulation for flow 

dispersion stress tensor will lead to more realistic and improved simulation of flow field in 

curved flow domain. 

1.  Introduction 

The empirical relations for dispersion stress terms in 2D curvilinear flow field have been given by 

numerous researchers. Towards this, Engelund and Skovaard [1] and Shimizu and Itakura [2] 

predicted the transverse velocity, however it was valid only near the bed. Lien et al. (1) used 

orthogonal curvilinear coordinate system and incorporated the dispersion terms derived from stream-

wise and transverse velocity profile [4]. Duan [5] employed the Cartesian Co-ordinate to facilitate 

model application in meandering and non-meandering channels. Duan [5] found that in meandering 

channel, mass diffusion coefficient is much larger than turbulent diffusion coefficient. Mathematical 

expressions for components of dispersion coefficient tensor have been deduced by integrating the 

product of discrepancy between the depth averaged and actual velocity. Duan [5] deduced the 

dispersion terms with the assumption that the stream-wise velocity satisfies the logarithmic law. It 
seems that integration by Duan [5] ignored the role of boundary sub-layer formation at the bed. 

However, this assumption may not always hold well in many situations. For example, for very mild 

bed gradient with highly sub-critical flow zones in alluvial river flow case, the boundary sub-layer is 

rationally assumed to be intact to satisfy logarithmic law of velocity distribution. This paper attempts 

to deal with the derivation of flow dispersion tensor in general curved channels which are common 

features in braided and dynamic alluvial streams. The objective of this paper is to derive the 

appropriate set of mathematical expressions for dispersion stress terms for depth averaged 2D model 

to be used for complex non-orthogonal curvilinear flow domain with mild bed slope. 

2.  Governing Equations  

The governing equations for flow simulation are (Reynold’s Averaged Navier Stokes) RANS equations 

with depth averaged approximation of continuity and momentum equation [Eqs.(1), (2) and (3)] in 

Cartesian coordinate system. 
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Where  𝑈" and 𝑈#= depth-averaged velocity components in x and y directions; t=time; 𝜌=density 

of water (kg/m3); H=water surface elevation; h=depth of the flow; g=acceleration of gravity; 
Cd=frictional stress coefficient (for friction shear stress at the bottom in x and y directions); and equals 

𝑛&𝜌𝑔
ℎ)*+   with  n=Manning’s roughness coefficient; 𝜈-=eddy viscosity;  

2.1.  Dispersion stress tensor 

Components of dispersion stress terms in Cartesian Coordinate which can be included in momentum 

transport equations are𝐷"", 𝐷"# and 𝐷## . These terms can be expressed as follows, [5]; 

 
Where z0=zero velocity level. 

For open channel free surface gravity flow, cohesive terms are non-significant and can be 

neglected. The depth averaged parabolic eddy viscosity model (Zero equation model) is adopted for 

the turbulence term. The depth averaged eddy viscosity is computed as given in Eq.(5) [6][11].  

 
Where 𝜅	=  Von Karman’ coefficient and  

U*= Shear velocity  =		1𝐶3 	4𝑈"& + 𝑈#&67
8 &9 . 

2.2.  Transformed Governing Equations with dispersion stress tensor 

The transformed depth averaged governing equations in generalized curvilinear coordinate system 

(ξ,η,τ)  from continuity and momentum equation [Eqs.(1),(2) and (3)] are derived as follows. 
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Where 𝜉" = 𝜕𝜉
𝜕𝑥9  ,   𝜂" = 𝜕𝜂

𝜕𝑥9  , 𝜉# = 𝜕𝜉
𝜕𝑦9  ,	𝜂# = 𝜕𝜂

𝜕𝑦9  , , ,

,  , 

In Eqs.(6b)  to (8b) , 𝑢AB  (m=ξ, η) are the velocity components in the curvilinear coordinate (𝜉, 𝜂, 𝜏) 

which relate to Ux , Uy  as  

 

3.   Derivation of dispersion stress terms in Momentum Equation 

The dispersion terms resulting from the integration of the product of the discrepancy between the 

mean velocity and actual vertical velocity distribution were included in the momentum equations to 

take into account the effect of secondary current. Free surface flow in natural rivers is generally 

classified as turbulent-subcritical within the ranges of corresponding values of Reynolds numbers and 

Froude numbers. One of the important aspects of the free surface flow is shear velocity parameter 

which causes variation in velocity in different layers of fluid flow. So from the literature, one can 

readily assume that the stream wise velocity profile satisfies the logarithmic distribution law, i. e. 

 
Where z=vertical coordinate level (See Fig.  1), us=velocity in stream-wise direction and z0 is 

calculated according to flow Reynolds number as follows, 
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Ideally, at the bed boundary, u (stream-wise actual velocity) is zero; but for developing numerical 

scheme, value of base velocity should judiciously be taken non-zero value to ensure feasible solutions. 

Hence, it is well justified to exclude boundary sub-layer thickness (depth up to which boundary sub-

layer is formed) and assign non-zero base velocity to achieve numerical solution close to experimental 

results. In other words, solid physical boundary is replaced with fluvial boundary and corresponding 

fluvial boundary condition has to be taken into consideration when analyzing the velocity profile 

vertically.   

3.1.  Modified approach with respect to Duan’s [5] approach 

Depth averaged stream wise velocity can be expressed as, 

 

Assuming velocity profile to be logarithmic. For the simplifying the derivation to obtain the 

analytical solution, one can assume  

For     zo<<h 

 
In the first step, Duan(2004) apparently integrated the denominator without any approximation in 

Eq.(12) as follows. 

 
Then she approximated 𝒛𝟎 + 𝒉 ≅ 𝒉 for simplifying the derivation for arriving the analytical 

solution as follows, 

                    
In this way Duan [5] approximated to 𝒛𝟎 + 𝒉 ≅ 𝒉 in the numerator only, however, in denominator 

she included zo in the upper bound of the integral in Eq.(12). 

Here modification can be proposed through computing the depth averaged stream wise velocity 

through approximating upper bound of the integral both in the numerator and the denominator of Eq 

(12) through considering 𝒛𝟎 + 𝒉 ≅ 𝒉 to obtain a consistent solution with mathematically symmetric 

approximation. Using this, one can simplify considerably in mathematical representation for 

dispersion stress tensor to be used in momentum transport equations in Eqs. (7) and (8). The derivation 

of modified approach and comparison with Duan’s approach is discussed in detail in subsequent 

sections. Putting the value of the expression in Eq.(13) in Eq.(12),  one can have, 

 

Integrating the logarithmic velocity profile along the depth, from Eq.(10), one can finally deduce 

an expression as follows.  
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Let   𝜂I = 𝑧I ℎ9  , combining Eq.(10) and Eq.(17), one  gets  the following expression, 

 
Dividing Eq. (18e) with Eq. (10), one obtains, 

 
Rearranging the above expression, one has 

 
or, 

 

As 1 − 𝜂I ≅ 1, one assumes this  term as 1 in the second term of the numerator for the ease and 

simplification, i.e., 

 
or, 

 

The transverse velocity profile is assumed to be linear. As proposed by Odgaard [7][8], following 
relation is adopted for this model. 

 

Where un , Un, and  vs are transverse velocity, depth averaged transverse velocity and the transverse 

velocity at the water surface. Engelund and Skovgaard [1] derived the deviation angle of the bottom 

shear as follows 

, 

Where r = radius of channel curvature and the secondary flow at the surface and the bottom are 

equal. Therefore Eq. (20) is used to express transverse velocity at the surface. Thus, 
(vs) b= 7.0(h/r)(us)b 

or,  

( )[ ] ( )[ ]00

0

00

0

0

0

0

0

00

0

0

0

0

0

0

0000

0

0000

0

00

ln1
)1(

1
1ln

)1(

1
or,

,ln1
)1(

1
1ln

)1(

1

or,

,lnln
)1(

1

or,

,ln
)1(

1

or,

,ln
)1(

1

0

0

hh
hk

zh
hk

zkhk

hk

hk

hk

--
-

=+--
-

=

ú
û

ù
ê
ë

é
÷÷
ø

ö
çç
è

æ
+-

-
=ú

û

ù
ê
ë

é
+-÷÷

ø

ö
çç
è

æ

-
=

ú
û

ù
ê
ë

é
+÷÷
ø

ö
çç
è

æ
--÷÷

ø

ö
çç
è

æ

-
=

ú
û

ù
ê
ë

é
-÷÷
ø

ö
çç
è

æ

-
=

÷÷
ø

ö
çç
è

æ

-
=

*

*

*

*

* ò

U

U

z

h

h

z

h

z

z

h

U

U

z

z

z

z

z

z

z

h

z

h

z

h

h

z

U

U

z

z

z

z

z

z

h

z

U

U

dz
z

z

hU

U

s

s

s

h

z

s

h

z

s

( )
( )
00

0

0

ln1

ln

1
hh

h
--

÷÷
ø

ö
çç
è

æ

-=
z

z

U

u

s

s

( )

( )
00

00

0

0

ln1

ln1ln1

1
hh

hh
h

h

--

++-÷÷
ø

ö
çç
è

æ
-

=-
h

z

U

u

s

s

( )

( )00

00000

ln1

ln1ln)1(ln1

hh

hhhhh

--

++---÷
ø

ö
ç
è

æ-
=

- h

z

U

Uu

s

ss

( )
( ) ÷

ø

ö
ç
è

æ
+-÷

ø

ö
ç
è

æ-
--

=- 1ln1
ln1

00

00

hh
hh h

zU
Uu
ss

( )
÷
ø

ö
ç
è

æ
+÷
ø

ö
ç
è

æ
--
-

=- 1ln
ln1

)1(

00

0

h

zU
Uu

s

ss hh
h

÷
ø

ö
ç
è

æ
-+=
2

1
2

h

z
vUu
snn

r

h

u

u

bs

n

bs

n
0.7=÷÷

ø

ö
çç
è

æ
»÷÷

ø

ö
çç
è

æ

t

t

(18d) 

(18a) 

(18e) 

(24) 

(18b) 

(18c) 

(21b) 

(22) 

(19) 

(20a) 

(20b) 

(21a) 

(23) 



SV-TDFS -2018

IOP Conf. Series: Materials Science and Engineering 594 (2019) 012040

IOP Publishing

doi:10.1088/1757-899X/594/1/012040

6

 

 

 

 

 

 

(26) 

Substituting Eq.(21) in Eq.(19), one obtains (same as Duan’s approach), 

 

Let us define  

                                     

Substituting Eq.(26),  Eq. (21b) and Eq. (25) convert to ; 

 

 

3.2.  Expressions for Dispersion stress Tensors 
The dispersion stress terms at the stream-wise and transverse directions can be expressed as. 

 
In Eqs. (28a), (28b) and (28c) 𝐷""M  ,	𝐷"#M   and  𝐷##M  are dispersion stress terms in curvilinear 

coordinate system. Substituting Eqs.(27a, b) in Eqs.(28a,b and c), one can deduce dispersion stress 

tensor presented in following steps.  

3.2.1.  The First Dispersion Term  Dxx
c. Substituting Eq.(24a) in Eq.(25a), one can get,  

 
Now consider z/h=m, then, dz=h.dm, m1=z0/h=η0 lower integral bound, m2=h/h=1 upper integral 

bound. With these substitution Eq.(29) becomes 
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One gets the final expression as, 

 

3.2.2.  The Second Dispersion Term Dxy
c. Similar to the above, one can get expression for the Second 

Dispersion Stress Term 

 
or,  

÷
ø

ö
ç
è

æ
-+=
2

1
0.7

h

z
U
r

h
Uu

snn

( )
( )

g
hh

h
º

--

-

00

0

ln1

1

÷
ø

ö
ç
è

æ
+÷
ø

ö
ç
è

æ
=- 1ln

h

z
UUu
sss

g

÷
ø

ö
ç
è

æ
-=-
2

1
0.7

h

z
U
r

h
Uu

snn

( )

( )( )

( )ò

ò

ò

+

+

+

-=

--=

-=

0

0

0

0

0

0

2

2

zh

z

nnyy
c

zh

z

nnssxy
c

zh

z

ssxx
c

dzUuD

dzUuUuD

dzUuD

r

r

r

dz
h

z
UUD

h

z

ss

c

xx

2

2

0

1lnò ÷
ø

ö
ç
è

æ
+÷
ø

ö
ç
è

æ
= g

( )( ) ( )
ú
ú
û

ù

ê
ê
ë

é
-++= ò ò

1 1

0

22

0 0

)1(ln2ln
h h

hg dzmmdmmhUUD
ss

c

xx

( )( )
( ) ( ) ú

ú
û

ù

ê
ê
ë

é

-+-+

+-
=

0

1

12

2

1ln2

2ln2ln

0

0

h
g

h

h

mmm

mmmmm
hUUD
ss

c

xx

( )

( ) ú
ú

û

ù

ê
ê

ë

é

-++--+

-+-
=

0000

000

2

00
2

1ln12

2ln2ln2

hhhh

hhhhh
g hUUD

ss

c

xx

( )[ ]1ln
0

2

00

2 +--= hhhrg hUUD
ss

c

xx

dz
h

z
U
r

h

h

z
UD s

h

z

s

c

xy ÷
ø

ö
ç
è

æ -´÷÷
ø

ö
çç
è

æ
+÷
ø

ö
ç
è

æ
= ò

2

1
0.71ln

0

g

(28a) 

(30c) 

(28b) 

(29) 

(30a) 

(30b) 

(30d) 

(25) 

(28c) 

(27a) 

(27b) 

(31a) 



SV-TDFS -2018

IOP Conf. Series: Materials Science and Engineering 594 (2019) 012040

IOP Publishing

doi:10.1088/1757-899X/594/1/012040

7

 

 

 

 

 

 

(33b) 

(34b) 

 
or, 

 

Again taking m=z/h and integrating and transforming the upper and lower bound as done earlier, 

and  taking h common, one has , 
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3.2.3.  The Third Dispersion Term Dyy
c. Using the similar procedure as above, one can obtain the 

expression for Dc
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or,  finally one may obtain, 

 

The relation between depth averaged velocities in curvilinear coordinates and Cartesian coordinate 

can be given as [5] 

 

Where θs and θn are angles between stream-wise, transverse directions pointing outward and 

positive x-axis respectively. Similarly the dispersion terms in Cartesian coordinates can be related to 

that in curvilinear coordinates as follows[5]. 

  

The dispersion stress terms finally obtained in Eqs.(30d, 32f and 34d) can be transformed by 

Eqs.(32) and Eqs.(33) to get modified dispersion stress tensor in Cartesian coordinate system. 

4.  Results and Discussion 

The correlations by Duan [5] for dispersion stress tensor in curvilinear coordinate system are as 

follows.  

For the statistical comparison, theoretical data for a wide rectangular channel is analysed. A 

qualitative comparison of variations of dispersion stresses for varying sinuosity with the modified 

formulation (Eqs.30d, 32f and 34d)  and Duan’s formulations (Eqs. 37 a, 37b and 37c) have been 

compared. Four configurations (Curvature 0.34, 0.72, 1.00 and 1.05) were chosen to cover low, 
moderate, high and very high sinuosity curved channels[9]. The width ratio (β=B/h, where h=water 

depth, B=channel width) were chosen as 10, 15, and 20. Longitudinal slope is kept as 0.001 and 0.025 

for creating sub-critical and supercritical condition, respectively.  Average velocities are estimated 

using Manning’s equation (Manning’n is kept 0.025).  z0 is taken as D50/30 ( Roughness height (ks) is 

kept  equal to D50 =0.44 mm).  

It can be seen that expressions of dispersion stress terms as obtained in the present work are not in 

complete agreement of Duan’s formulations as given in Eq. (37a). From Eq.(37b), it is apparent that 

any comparison between the two approaches, the value of ‘C’ should have been available. However, in 

their paper [10]  there is no C in Eq. (37b) .Thus, there is lack of enough insight into the adoption of 

any appropriate value of C. However, in view of Duan and Julien [10], the value of ‘C’ is taken unity 

for comparative purposes only.  

Assuming C as one, an attempt is made to relate Eq.(37b) with Eq. (32f), developed in the present 

work. Following empirical relation is obtained.  

Dc
xy=A0 +A1×Dc

xy(Duan)  (R-Square=0.9854; Adjusted R-Square=0.9847)  
Where A0=-3.147 and A1=-103.676 

To appreciate the difference between the two expressions for two approaches of dispersion terms 

(as given in Eqs.30d, 32f, 34d and 37), certain computations are done for a variety of conditions 

(Table 1).   

The differences do appear in the formulations of the first term (Dc
xx) and second terms (Dc

xy). The 

formulation for Dc
xx are different for the present approach and Duan’s approach yet computed values of 
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this term is similar and close valued, as shown in Table 1. However, the modified model (Eq. 30d) has 

much simpler mathematical representation than Duan’s model (Eq. 37a). 

Table 1 Computations of dispersion stress tensor by modified and Duan’s (2004) expressions 
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V
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(m
/s

) 

F
ro

u
d
e 

N
u
m

b
er

 Modified Terms   Duan(2004)-Terms 

Dc
xx Dc

xy Dc
yy Dc

xx Dc
xy Dc

yy 

1 

M
il

d
  

0.34 10 0.001 0.57 0.3304 1.204 1.90 4.00 1.204 -0.0182 4.00 
2 0.34 15 0.001 0.43 0.2522 0.512 0.52 0.69 0.512 -0.0068 0.69 

3 0.34 20 0.001 0.36 0.2082 0.280 0.20 0.20 0.280 -0.0034 0.20 
4 0.34 10 0.025 2.83 1.6521 30.098 47.56 99.88 30.101 -0.4540 99.88 

5 0.34 15 0.025 2.16 1.2608 12.800 12.89 17.23 12.802 -0.1697 17.23 

6 0.34 20 0.025 1.79 1.0408 6.994 5.11 4.95 6.996 -0.0844 4.95 
7 

M
ed

iu
m

 

0.72 10 0.001 0.57 0.3304 1.204 4.06 18.24 1.204 -0.0388 18.24 

8 0.72 15 0.001 0.43 0.2522 0.512 1.10 3.15 0.512 -0.0145 3.15 
9 0.72 20 0.001 0.36 0.2082 0.280 0.44 0.90 0.280 -0.0072 0.90 

10 0.72 10 0.025 2.83 1.6521 30.098 101.61 455.88 30.101 -0.9699 455.88 

11 0.72 15 0.025 2.16 1.2608 12.800 27.54 78.66 12.802 -0.3626 78.66 
12 0.72 20 0.025 1.79 1.0408 6.994 10.92 22.61 6.996 -0.1802 22.61 

13 

H
ig

h
 

1.00 10 0.001 0.57 0.3304 1.204 5.69 35.70 1.204 -0.0543 35.70 
14 1.00 15 0.001 0.43 0.2522 0.512 1.54 6.16 0.512 -0.0203 6.16 

15 1.00 20 0.001 0.36 0.2082 0.280 0.61 1.77 0.280 -0.0101 1.77 

16 1.00 10 0.025 2.83 1.6521 30.098 142.16 892.42 30.101 -1.3570 892.42 
17 1.00 15 0.025 2.16 1.2608 12.800 38.53 153.98 12.802 -0.5073 153.98 

18 1.00 20 0.025 1.79 1.0408 6.994 15.28 44.26 6.996 -0.2522 44.26 

19 

v
er

y
 h

ig
h
  

1.05 10 0.001 0.57 0.3304 1.204 5.95 39.09 1.204 -0.0568 39.09 
20 1.05 15 0.001 0.43 0.2522 0.512 1.61 6.74 0.512 -0.0212 6.74 

21 1.05 20 0.001 0.36 0.2082 0.280 0.64 1.94 0.280 -0.0106 1.94 
22 1.05 10 0.025 2.83 1.6521 30.098 148.76 977.22 30.101 -1.4200 977.22 

23 1.05 15 0.025 2.16 1.2608 12.800 40.32 168.62 12.802 -0.5309 168.62 

24 1.05 20 0.025 1.79 1.0408 6.994 15.99 48.47 6.996 -0.2639 48.47 

 

The variability of Dc
xy for both approaches are shown in Fig.  1. The trend of the variation is closely 

related (R-square=0.985), but values of Dc
xy differs considerably. Plot of Dc

xy against width ratio (β) for 

both approaches for variety of conditions are shown in Fig.  1. 

The third term Dc
yy is identical in both cases as in present formulation and Duan’s work. The trend 

of second terms is statistically similar with very low difference in mean and standard deviation (With 

using statistically determined ‘C’ value). R-square (0.99 for Dc
xx and Dc

yy, 0.98 for Dc
xy) and Standard 

Error suggests high degree of goodness of fit for both models (For Eqs. 32f, and 37b). The 

inconsistency in the values of dispersion stress terms from Duan’s model for different hydraulic 

conditions is evident in the Table 1. For example, in modified model’s   Dc
xx, Dc

xy, and Dc
yy is are varying 

consistently for different width ratio (β). Whereas, same terms show inconsistent variations with 

different β for Duan’s Model. These models are developed for sub- critical flow condition; however, 

their trends are also analyzed for super critical flow condition. Plots of variation of different terms 

with width ratio for sub critical and super critical conditions are shown in Fig. s 2 and 3.  

Fig.  3 shows that Dc
xx remains nearly constant with varying sinuosity and β. Dc

yy increases sharply 

with increasing sinuosity and reducing width ratio. For wider channels, variations are low. But for 
narrow bends transverse deviations in velocity is quite high. The trend remains same in case of 

supercritical flow condition (Fig.  3) except higher magnitude of three components of flow dispersion 

tensor. This is caused due to enhanced transverse mixing of the flow at high turbulence.   
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Fig. 1. Variation of Dc

xy with width ratio (β) for two approaches. 

Fig. 2 Variation of Dc 
xx, and Dc 

yy with width ratio (β) for sub- critical flow condition 
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Fig. 3 Variation of Dc

xx, and Dc
yy with width ratio (β) for super-critical flow condition 

 

5.  Conclusions 

New expressions for dispersion stress tensor are proposed. A comparison between these terms and 

one given by Duan, indicates the conditions in which there is a good agreement between the two. An 

insight is provided to estimate one of the unknown parameters in the Duan’s dispersion stress tensor. 

Compared to Duan’s model, two of the three components of dispersion stress tensor namely Dc
xx, Dc

xy 

are considerably simplified in the mathematical representation. 

Notation 

β = width ratio; Cd =frictional stress coefficient; 𝐷""M  ,	𝐷"#M   and 𝐷##M =components of dispersion 

coefficient tensor in curvilinear coordinates;𝐷"", 𝐷"# and 𝐷##  =components of dispersion coefficient 

tensor in Cartesian coordinates; g =acceleration of gravity; H =water surface elevation; h =flow depth; 

𝜅N =roughness height; n =Manning’s roughness coefficient; 𝜂I=dimensionless zero bed elevation; 

ξ=stream-wise direction; η=transverse direction; θs ,θn=angles between the stream-wise and transverse 

directions towards outer bank and the positive x axis; κ = Von Karman’s constant; ν=kinetic viscosity; 

νt =eddy viscosity; ρ=density of flow; r=radius of curvature; t=time; 𝑢AB  =depth averaged velocity in 

curvilinear coordinate system; U =magnitude of depth averaged velocity; 𝑈⋇= shear velocity; Ux, Uy 

=depth averaged velocities in Cartesian coordinates; un, Un=transverse actual and depth averaged 

velocities; us, Us= Stream-wise actual and depth averaged velocities; x, y = horizontal Cartesian 

coordinate; z=vertical coordinate; z0=zero velocity level. 
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