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Abstract— Hyperspectral sensors record radiances in a large
number of wavelengths of the electromagnetic spectrum and can
be used to distinguish different tree species based on their charac-
teristic reflectance signatures. Reflectance spectra were measured
from airborne hyperspectral AISA Eagle/Hawk imagery in order
to identify different Mediterranean tree species at a coastal
test site in Portugal. A spectral range from 400 to 2450 nm
was recorded at 2-m spatial resolution. The hyperspectral data
are divided into five spectral data ranges. The chosen ranges
for segmentation are based on statistical properties as well as
on their wavelengths, as radiances of a particular wavelength
may overlap with neighboring wavelengths. Principal component
analysis (PCA) is applied individually to each spectral range.
The first three principal components (PCs) of each range are
chosen and are fused into a new data segment of reduced
dimensionality. The resulting 15 PCs contain 99.42% of the
information content of the original hyperspectral image. These
PCs were used for a maximum likelihood classification (MLC).
Spectral signatures were also analyzed for the hyperspectral
data, and were validated with ground data collected in the field
by a handheld spectro-radiometer. Different RGB combinations
of PC bands of segmented PC image provide distinct feature
identification. A comparison with other classification approaches
(spectral angle mapper and MLC of the original hyperspectral
imagery) shows that the MLC of the segmented PCA achieves
the highest accuracy, due to its ability to reduce the Hughes
phenomenon.

Index Terms— Hyperspectral remote sensing, segmented prin-
cipal component analysis, maximum likelihood classification,
spectral angle mapper, forest mapping, ground data, coastal
vegetation.

I. INTRODUCTION

HYPERSPECTRAL images provide the potential for more

accurate and detailed spectral information extraction

compared to other types of remotely sensed data, due to their

large number of spectral bands. Researchers have successfully
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used hyperspectral imagery to map vegetation species [1],

invasive species [2], above-ground biomass [3], environmental

parameters [4] and vegetation stress and disease [5]. Previous

studies show that multi-sensor approaches have been used

to discriminate tree species for forest management using

techniques such as spectral reflectance [6], Support Vector

Machines (SVM) [7], MLC and SAM [8]. Over the past

decades, different classification techniques have been devel-

oped for hyperspectral data [9]. They were compared for

applications to land use / land cover mapping and other

remote sensing purposes and MLC has been considered as

superior to other classifier approaches [10]–[12]. MLC is

based on the class probability density functions assuming

a multivariate normal distribution and often achieves more

accurate results than other methods [13]. MLC is available

in most software packages like ENVI©, Arc GIS�, ERDAS

Imagine� [14], [15].

The high spectral resolution and large number of spectral

bands of hyperspectral images enable a better identification of

land use / land cover types [16], [17] as well as other features

like vegetation type, crop type and soils [15], [18]. Hyper-

spectral imaging enables an effective mapping of vegetation

in diverse environments like estuaries [19], marshland [20]

and tropical rainforest [21]. However, the high data volume

and dimensionality of hyperspectral data is a constraint for

information extraction due to long processing times [22].

This needs to be resolved using compression techniques to

reduce the dimensionality of the data while retaining enough

of the original spectral information [22]–[24]. In digital image

processing, PCA is commonly used for image compression.

It performs a multidimensional coordinate system rotation

to convert the original inter-correlated bands into a new set

of uncorrelated PCs where a small number of PCs contains

most of the variation. Karathanassi [25] described PCA as a

mathematically rigorous technique where the original spectral

information is retained. Segmented PCA was developed to

reduce the ‘Hughes phenomenon’, which means that by adding

more spectral bands to a standard MLC the classification

result eventually becomes less accurate [22], [26]. Too many

input bands can thus lead to a degradation of the classified

map. Bellman [27] investigated the relationship between the

number of bands and the number of training samples for

image classification and termed it the ‘curse of dimension-

ality’ due to the rapid increase in required training samples

for density estimation. As dimensionality increases with the

number of bands, the number of training samples needed for
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Fig. 1. Location map of the study site. The yellow circles shown in the study
site were the few ground points collected with GPS during field survey.

a classifier should increase exponentially [28], [29]. Thus, in

the classifier design it leads to ambiguity in the classification,

where the classification accuracy increases and then declines

with an increasing number of bands, while keeping the training

samples constant [28]–[31]. The ‘Hughes phenomenon’ cannot

be prevented unless providing a sufficiently large number of

samples. Thus bringing high order dimensionality to a lower

order will reduce the ‘Hughes phenomenon’ [32] by applying

the PCA technique [33]. Here, a segmented PCA was applied

to reduce the ‘Hughes phenomenon’, which computes the

maximum data variance and generates uncorrelated bands.

II. STUDY AREA

The study site is located in the western part of Portugal.

It is a long coastal strip of 3 km × 5 km at St. André,

in Setubal, Portugal (Figure 1). The study area has a spatial

extent between 8°49’38.79"W and 8°51’2.14"W and between

37°59’12.46"N and 37°59’35.02"N. This coastal strip has a

diverse topography with protected forests, freshwater lagoons,

and dry sand dune vegetation. Portuguese forests are charac-

teristic for the Mediterranean climate, and they represent high

species richness and unique native species [34]. Mediterranean

forests typically have broadleaved trees such as Oak (evergreen

and deciduous Quercus species) and Eucalyptus globulus with

frequent conifers like Pinus pinea, Pinus pinaster etc. Alien

species like Acacia longifolia (also called Sydney Golden

Wattle), which was introduced to stabilize the sand dunes, can

become dominant due to its invasive nature.

Mediterranean forests are characterized by hot and dry sum-

mers and mild, rainy winters, with nearly all rainfall occurring

in the winter and spring. They occur in five Mediterranean

climate zones on the west coast of continents in the mid-

latitudes (30°-45°N or S) and occupy less than 5% of the

Earth’s surface [35]. Mediterranean forests are found in low-

lying plains along the coastal regions. The typical vegetation

is influenced by the Mediterranean climate but also affected

by altitude [34]. Summer weather often leads to conditions

favorable to forest fires. Thus, forest mapping plays a very

important role in forest management and tree species protec-

tion, as well as deforestation and afforestation monitoring.

III. DATA AND METHODOLOGY USED

The data were acquired by NERC (National Environment

Research Council- EUFAR11/06 project) for the European

Facility for Airborne Research (EUFAR). The flight cam-

paign was in April 2011 in mid-day. Hyperspectral data were

captured using AISA (Airborne Imaging Spectrometer for

Applications), Hawk and Eagle sensors by Specim. AISA has

dual sensors for acquiring data while Eagle has a wavelength

range from 400 nm to 970 nm and Hawk from 970 nm to

2450 nm. These latter two sensor systems collected data in

492 narrow spectral bands simultaneously [36]. During the

acquisition of the hyperspectral images, airborne Lidar data

were also collected. Lidar data were used for the generation of

a digital elevation model (DEM) in combination with ASTER

data for geometric correction with the apl software suite. The

apl software contains three components – apl corr, apl tran

and apl map which generate calibrated, geo referenced, roll,

pitch and yaw corrected hyperspectral imagery. apl corr was

designed for calibration from level 1 to level 2b with a DEM

(generated using Lidar and Aster data). Level 2b can be geo-

corrected with apl tran and mapped to a regular grid for level

3b using apl map.

Topographic maps of scale 1:25,000 and digital photographs

were used as auxiliary tools in the definition of training classes

and in the validation. The collection of spatial information on

land cover classes, roads and ground control points (GCP)

was performed by GPS during a field visit to the study site

in September 2012. A total of 70 points of tree species

including Pinus pinea, Pinus pinaster, Eucalyptus globulus,

Acacia longifolia and other classes were recorded. Of these,

35 points were used for training of the classification and

the other 35 for validation of the results. The GCPs were

collected at intersecting corners of visible land cover parcel

boundaries and other features that can be identified reliably in

the images [37].

A. Data Processing Steps

The conceptual framework of the research followed 6 main

steps: geometric correction, atmospheric correction, image

enhancement, image transformation (segmented PCA), clas-

sification and interpretation and validation of the results.

Image processing and analysis were carried out with apl and

ENVI 4.7 and GIS analysis with ArcGIS 10. The hyperspectral

data were delivered as radiometrically calibrated Level 1b

products and were processed to level 3b using the NERC-

ARSF apl software [38]. A schematic diagram showing the

data pre-processing chain is given in Figure 2.

The Level 1b Eagle imagery required geo-correction in

order to geometrically rectify and geo-locate the imagery to

the UTM projection (zone 29 N) using the WGS84 Earth

ellipsoid model. The level 1b images were processed using the

FLAASH (Fast Line-of-sight Atmospheric Analysis of Spec-

tral Hypercubes) tool of ENVI 4.7 for atmospheric correction.

The FLAASH model utilizes different parameters for

atmospheric correction including aerosol content, sensor alti-

tude, ground elevation, pixel size, field of view, atmospheric

model, water retrieval, wavelength calibration, zenith angle,
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Fig. 2. Main pre processing steps for the hyperspectral imagery (a) level
1b image strips were (b) atmospherically corrected using FLAASH module,
(c) geo-corrected, mapped and then (d) mosaicked and stacked together to
generate a single seamless image of the study area.

azimuth angle, etc FLAASH accurately compensates for

atmospheric effects such as the amount of water vapor,

aerosols, and scene visibility. As direct measurements of

these atmospheric effects are rarely available, FLAASH infers

them from their imprints on the hyperspectral radiance data.

FLAASH uses these properties to estimate land surface

reflectance using highly accurate models of atmospheric radi-

ation transfer [39].

The input data for FLAASH requires its units to be in

µW/cm2*nm*sr. The scale factor for this conversion is:

(Integer Radiance image/Scale f actor)

= Floating point radiance image [µW/cm2
∗ nm ∗ sr ]

The scale factor should be constant for all bands. Other

factors used as input for the atmospheric correction were

latitude/longitude, sensor altitude, ground elevation, pixel

size, flight date, flight time (GMT), aerosol model, water

retrieval, atmospheric model (based on latitudinal and seasonal

dependence), initial visibility etc. The aerosol model used in

the present study was the maritime aerosol model and the

atmospheric model was mid-latitude summer model.

The Level 2 files were geo-corrected for roll, pitch and

yaw with the apl corr software to produce Level 2b imagery.

Utilizing the appended aircraft navigation information from the

navigation file and a 4 m DEM generated from the LiDAR first

returns, apl tran was used to determine the geographic location

of every pixel on the ground and then apl map to resample

the pixels using the nearest-neighbor algorithm to generate a

2 m raster image (.bil format) for each flight-line. The Eagle

imagery (level 1) has 255 bands with wavelength 399 nm to

1098 nm, but the first and last bands (399nm/1098nm) were

removed during processing due to noise. Band 1 and Band 255

were removed from the dataset as these are severely affected

by atmospheric scattering [40]. The Hawk image does not have

any bad bands. Therefore, any subsequent pre-processing steps

Fig. 3. Flowchart of the data processing methodology.

Fig. 4. Flowchart of segmented PC generation.

were only applied to Eagle bands 2–254. Each strip of Eagle

data was mosaicked pixel by pixel to generate a final seamless

image composite. Similarly, the Hawk data were processed to

the same geometry and stacked with the Eagle imagery.

B. PCA and Segmented PCA

Before image classification, a segmented PCA was per-

formed. It uses the attributes of the image histograms and
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Fig. 5. Different red, blue, green channel combinations of the 15 fused segmented PCs (for A1, A2, A3, B1 etc. refer to Table I).

TABLE I

SEGMENTATION OF HYPERSPECTRAL DATA FROM PCA WITHIN FIVE SPECTRAL DATA SEGMENTS

wavelengths as illustrated in Figure 4. The segmented PCA

approach is utilized to calculate a dataset of reduced dimen-

sionality as input for the maximum likelihood classifier. In

order to increase the classification performance, the segmented

PCA technique is used to remove redundant bands without

losing significant information. A PCA was applied to the 5

different segments of the hyperspectral bands. The first 3 PCs

of each of the 5 segments were combined to generate an image

with 15 PC bands as shown in Figure 5. The 15 segmented

PC bands contain most of the variability of the original

253 Eagle bands and 256 Hawk bands. Thus, almost all of

the hyperspectral information is retained and band redundancy

and data volume are reduced.

The different PCs are shown in Figure 5 as RGB channel

combinations which clearly show the retention of the spectral

information as well as visually distinct feature classes. The

spectrally segmented PCA results for the 5 different spectral

segments are shown in Table I. The higher orders PCs were

discarded because they contain mostly noise (eigenvalue < 1).

By combining the first 3 PCs from each of the 5 segmented

datasets, 15 PC bands contain most of the spectral information

TABLE II

EIGENVALUES FOR THE FIRST THREE PCS DERIVED FROM THE

SEGMENTED PCA OF THE HYPERSPECTRAL IMAGE

of the original hyperspectral data (Figure 4). In the segmented

PCA, the hyperspectral bands are subdivided into spectral

segments based on band histogram statistics and wavelengths

as shown in Table I. On each segment of hyperspectral data

bands, a PCA is performed to generate the same number of

PCs as the number of input bands (Table I and Figure 4). The

first 3 PCs with the highest eigenvalues within each segment

(A1, A2, A3, B1, B2, B3…) are fused together to generate the

segmented PC datasets. The first 3 PCs were chosen from each

segment and fused together to generate the segmented PCs

dataset which represent 99.42% of the information content.

Different RGB combinations of the segmented PCs are shown
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TABLE III

OVERALL ACCURACY AND KAPPA COEFFICIENT FOR MLC, SAM FOR HYPERSPECTRAL IMAGE AND

MLC OBTAINED FOR THE CLASSIFIED SEGMENTED PCA IMAGES

Fig. 6. Classification maps generated using three different classifier
techniques. (a) Spectral angle mapper. (b) Maximum likelihood classi-
fier performed on hyperspectral image. (c) Maximum likelihood classifier
performed on segmented fused PCs.

in Figure 5, which clearly enhances the visual interpretation

and distinguishes different features. Thereafter, MLC was

applied to the 15 segmented PCs. A schematic flowchart of

the methodology is shown in Figure 3.

C. Classification Steps

Two classification approaches (Maximum Likelihood clas-

sification [41] and Spectral Angle Mapper [42]) were applied

to have a baseline comparison for the segmented PCA results.

The original mosaicked hyperspectral Eagle and Hawk images

were used in the MLC approach. With the aid of training

samples, a supervised MLC was performed. In addition, the

spectral signatures and a priori knowledge of tree species

another classified map was produced using SAM.

Fig. 7. Graph showing the classification accuracy of the SAM, MLC, and
MLC on segmented PCA.

IV. RESULTS

The classification results for the hyperspectral dataset are

shown in Figure 6. The statistical accuracy analysis results of

the classifications are given in Table III and Figure 6. The

overall accuracy of the MLC of the segmented PC images is

significantly higher than for the SAM and MLC approaches

applied to the hyperspectral data (Table III). The SAM clas-

sification is reliant on spectral image characteristics which

can be influenced by the ‘Hughes phenomenon’ for high-

dimensional data. The MLC performed on the segmented

PCA bands reduces the ‘Hughes phenomenon’. The MLC and

SAM classification accuracies for the datasets are presented

in Table II. User’s and producer’s accuracy for different

tree species and feature classes were presented in Figure 7.
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The accuracy of the MLC based on the segmented PCA is

96.38%, which is much higher than for the MLC classification

of the original hyperspectral data (89.67%) and SAM (67.5%).

The κ coefficient confirms the superior performance of the

MLC on the segmented PC image over the SAM and MLC

classifications of the hyperspectral data. The κ coefficient for

the three classification approaches gives the same order of

classification performance of the three classifier techniques

(Table III). The results of the 3 different classification tech-

niques are shown in Figure 6, Figure 7 and Table III.

The PCs of the segmented PC image were uncorrelated

containing more than 99% of the information of the original

hyperspectral image. Different PC combinations of the seg-

mented PC image were used for visual display using three

bands displayed as the red, green and blue channels (RGB

channels in Figure 5). The various RGB combinations of

the segmented PC images provide visual distinctions between

land cover and forest types and other features. This process

enhances the color contrast by providing visual clarity for

image interpretation, thus helping in selecting the training sam-

ples used during classification. These distinctive features in the

RGB images were not visible in different band combinations

of the original hyperspectral images.

V. DISCUSSION AND CONCLUSION

Tree species classification from hyperspectral imagery is of

limited accuracy if the data dimensionality is not reduced,

because the ‘Hughes phenomenon’ leads to a loss of accuracy

if too many bands are added. This study explores the clas-

sification accuracy achievable from hyperspectral data using

the segmented PCA approach. It compares this approach to

the SAM and MLC methods of the original hyperspectral

data. The classification accuracy and κ coefficient are much

higher for the segmented PCA (>96%; κ = 0.95) than for the

other methods when validated with ground control points. The

conclusions from this study are:

• Segmented PCA based on data normalization using

histogram attributes reduces the dimensionality of the

hyperspectral imagery while increasing the classification

accuracy.

• The MLC of the segmented PCA produces much more

accurate tree species maps than the MLC and SAM

classifiers.

• 15 bands of the first 3 PCs of the 5 segments from the

full hyperspectral dataset contained >99% of the original

spectral variance.

• Compression techniques like segmented PCA to reduce

the hyperspectral image dimensionality lead to much

improved information content by reducing redundancy of

very similar spectral bands.

Some authors have shown conventional parametric classifi-

cation approaches, i.e. MLC as being limited in their ability

to classify high dimensionality data [43], [44]. Although this

makes MLC unsuitable for raw hyperspectral data, this study

shows that MLC can be used after reducing the dimensions

of the hyperspectral imagery. The segmented PCA method

enhances the contrast of the imagery and provides better visual

clarity for image interpretation, thus helping in selecting the

training samples used during MLC. Thus, it provides better

training samples and better accuracy [10]–[12]. MLC was

chosen in the present study as a classifier after reducing the

dimensionality of the hyperspectral data using the segmented

PCA approach.

Finally, the segmented PCA approach used in the present

study will be helpful for hyperspectral analysis by reducing

the multidimensional data to smaller dimensionality for image

processing while retaining most of the information. This image

compression technique can be used with other classifica-

tion algorithms to achieve accurate tree species identification

results by reducing data dimensionality and data volume. This

classification approach can be used for other applications like

urban mapping, land cover mapping, plant stress detection due

to its visual enhancement, fire scar mapping etc.
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