
Linear-Time Approximation Schemes for Clustering Problems in

any Dimensions∗

Amit Kumar

Dept of Comp Sc & Engg

Indian Institute of

Technology

New Delhi-110016, India

amitk@cse.iitd.ernet.in

Yogish Sabharwal

IBM Research - India

Plot 4, Block C,

Vasant Kunj Inst. Area

New Delhi-110070, India

ysabharwal@in.ibm.com

Sandeep Sen

Dept of Comp Sc & Engg

Indian Institute of

Technology

New Delhi-110016, India

ssen@cse.iitd.ernet.in

September 23, 2009

Abstract

We present a general approach for designing approximation algorithms for a fundamental
class of geometric clustering problems in arbitrary dimensions. More specifically, our approach
leads to simple randomized algorithms for the k-means, k-median and discrete k-means problems

that yield (1 + ε) approximations with probability ≥ 1/2 and running times of O(2(k/ε)O(1)

dn).
These are the first algorithms for these problems whose running times are linear in the size of
the input (nd for n points in d dimensions) assuming k and ε are fixed. Our method is general
enough to be applicable to clustering problems satisfying certain simple properties and is likely
to have further applications.

1 Introduction

The problem of clustering a group of data items into similar groups is one of the most widely studied
problems in computer science. Clustering has applications in a variety of areas, for example, data
mining, information retrieval, image processing, and web search ([5, 9, 22, 11]). Given the wide
range of applications, many different definitions of clustering exist in the literature ([10, 4]). Most of
these definitions begin by defining a notion of distance (similarity) between two data items and then
try to form clusters so that data items with small distance between them get clustered together.

Often, clustering problems arise in a geometric setting, i.e., the data items are points in a high
dimensional Euclidean space. In such settings, it is natural to define the distance between two
points as the Euclidean distance between them. Two of the most popular definitions of clustering
are the k-means clustering problem and the k-median clustering problem. Given a set of points
P , the k-means clustering problems seeks to find a set K of k centers, such that

∑
p∈P d(p,K)2 is

minimized, whereas the k-median clustering problems seeks to find a set K of k centers, such that∑
p∈P d(p,K) is minimized. Note that the points in K can be arbitrary points in the Euclidean

space. Here d(p,K) refers to the distance between p and the closest center in K. We can think
of this as each point in P gets assigned to the closest center. The points that get assigned to the
same center form a cluster. These problems are NP-hard for even k = 2 (when dimension is not

∗Preliminary versions of the results have appeared earlier in IEEE Symposium on Foundations of Computer
Science, 2004[17] and International Colloquium on Automata, Languages and Programming, 2005[18].

1

2

fixed) [7]. Interestingly, the center in the optimal solution to the 1-mean problem is the same as
the center of mass of the points. However, in the case of the 1-median problem, also known as the
Fermat-Weber problem, no such closed form is known. We show that despite the lack of such a
closed form, we can obtain an approximation to the optimal 1-median in O(1) time (independent of
the number of points). There are many useful variations to these clustering problems, for example,
in the discrete versions of these problems, the centers that we seek should belong to the input set
of points.

1.1 Related work

A lot of research has been devoted to solving these problems exactly (see [14] and the references
therein). Even the best known algorithms for the k-median and the k-means problem take at
least Ω(nd) time. Recently, more attention has been devoted to finding (1 + ε)-approximation
algorithm for these problems, where ε can be an arbitrarily small constant. This has resulted in
algorithms with substantially improved running times. Further, if we look at the applications of
these problems, they often involve mapping subjective features to points in the Euclidean space.
Since there is an error inherent in this mapping, finding a (1 + ε)-approximate solution is within
acceptable limits for the actual applications.

The fastest exact algorithm for the k-means clustering problem was proposed by Inaba et al.
[14]. They observed that the number of Voronoi partitions of k points in ℜd is O(nkd) and so the
optimal k-means clustering could be determined exactly in time O(nkd+1). They also proposed a
randomized (1+ ε)-approximation algorithm for the 2-means clustering problem with running time
O(n/εd). Matoušek [19] proposed a deterministic (1 + ε)-approximation algorithm for the k-means
problem with running time O(nε−2k2dlogkn).

By generalizing the technique of Arora [1], Arora et al. [2] presented a O(nO(1/ε)+1) time
(1 + ε)-approximation algorithm for the k-median problem where points lie in the plane. This was
significantly improved by Kolliopoulos et al. [16] who proposed an algorithm with a running time
of O(̺nlognlogk) for the discrete version of the problem, where the medians must belong to the
input set and ̺ = exp[O((1 + log1/ε)/ε)d−1].

Recently, Badoiu et al. [3] proposed a (1 + ε)-approximation algorithm for k-median clustering

with a running time of O(2(k/ε)O(1)
dO(1)nlogO(k)n). Their algorithm can be extended to k-means

with some modifications. de la Vega et al. [8] proposed a (1 + ε)-approximation algorithm for
the k-means problem which works well for points in high dimensions. The running time of this
algorithm is O(g(k, ε)nlogkn) where g(k, ε) = exp[(k3/ε8)(ln(k/ε)lnk].

Recently, Har-Peled and Mazumdar [13] proposed (1 + ε)-approximation algorithms for the
k-median, discrete k-median and the k-means clustering in low dimensions. They obtained a
running time of O(n + ̺kO(1)logO(1)n) for the k-median problem, O(n + ̺kO(1)logO(1)n) for the
discrete k-median problem and O(n + kk+2ε−(2d+1)k logk+1nlogk 1

ε) for the k-means problem. For
approximating the 1-median of a set of points, Indyk [15] proposed an algorithm that finds a (1+ε)
approximate 1-median in time O(n/ε2) with constant probability.

Table 1.1 summarizes the recent results for the problems, in the context of (1+ε)-approximation
algorithms. Some of these algorithms are randomized with the expected ruining time holding good
for any input.

1.2 Our results and techniques

The general algorithm we present solves a large class of clustering problems satisfying a set of
conditions (cf. Section 3). We show that the k-means problem, k-median problem and the discrete

3

Problem Result Reference

1-median O(n/ε2) Indyk [15]

k-median O(nO(1/ε)+1) for d = 2 Arora [1]
O(̺nlognlogk) (discrete only) Kolliopoulos et al. [16]

O(2(k/ε)O(1)
dO(1)n logk n) Badoiu et al. [3]

O(n + ̺kO(1)logO(1)n) (discrete also) Har-Peled et al. [13]
where ̺ = exp[O((1 + log1/ε)/ε)d−1]

k-means O(nε−2k2dlogkn) Matoušek [19]

O(g(k, ε)nlogkn) de la Vega et al. [8]
g(k, ε) = exp[(k3/ε8)(ln(k/ε)lnk]

O(n + kk+2ε−(2d+1)k logk+1nlogk 1
ε) (discrete also) Har-Peled et al. [13]

Figure 1: Summary of previous results on k-means and k-median clustering.

k-means problem, all satisfy the required conditions and therefore belong to this class of clustering
problems. One important condition that the clustering problems must satisfy is the existence of
an algorithm to generate a candidate set of points such that at least one of these points is a close
approximation to the optimal center for k = 1 (one cluster). Further, the running time of this
algorithm as well as the size of this candidate set should be independent of n. Based on such a
subroutine, we show how to approximate all the centers in the optimal solution in an iterative
manner.

The running times of O(2(k/ε)O(1)
nd) of our algorithms are better than the previously known

algorithms for these problems, specially when d is very large. In fact, these are the first algorithms
for the k-means, k-median and the discrete k-means clustering problems that have running time
linear in the size of the input for fixed k and ε. The algorithms in this paper have the additional
advantage of simplicity as the only technique involved is random sampling. Our method is based
on using random sampling to identify a small set of candidate centers. In contrast, an alternate
strategy [13] involves identifying significantly small sets of points, called coresets, such that solving
the clustering problem on the coresets yields a solution for the original set of points. In a subsequent
work [6], further improvements were obtained using a clever combination of the two techniques (cf.
Section 8).

The main drawback of our algorithm is that the running time has exponential dependence on(
k
ε

)O(1)
. We would however like to note that Guruswamy and Indyk [12] showed that it is NP-hard

to obtain a PTAS for the k-median problem for arbitrary k and d ≥ Ω(log n). Since we avoid
exponential dependence on d, this implies that the exponential dependence on k is inherent. An
algorithm that avoids exponential dependence on k, like Arora et al.[2] has doubly exponential
dependence on d which is arguably worse in most situations.

We also present a randomized (1+ ε)-approximation algorithm for the 1-median problem which

runs in time O(21/εO(1)

d), assuming that the points are stored in a suitable data structure such as
an array, where a point can be randomly sampled in constant time. All our algorithms yield the
desired result with constant probability (which can be made as close to 1 as we wish by a constant
number of repetitions).

The remaining paper is organized as follows. In Section 2, we define clustering problems. In
Section 3 we present a simplified algorithm for the 2-means clustering problem. In Section 4,
we describe a general approach for solving clustering problems efficiently. In subsequent sections
we give applications of the general method by showing that this class of problems includes the

4

k-means, k-median and discrete k-means problems. In Section 5.3, we also describe an efficient
approximation algorithm for the 1-median problem. In Section 7, we extend our algorithms for
efficiently handling weighted point sets. We conclude by stating some open problems and some
interesting developments subsequent to the publication of earlier versions of this work in Section 8.

2 Clustering Problems

In this section, we give a general definition of clustering problems.
We shall define a clustering problem by two parameters – an integer k and a real-valued cost

function f(Q,x), where Q is a set of points, and x is a point in an Euclidean space. We shall denote
this clustering problem as C(f, k). The input to C(f, k) is a set of points in an Euclidean space.

Given an instance P of n points, C(f, k) seeks to partition them into k sets, which we shall
denote as clusters. Let these clusters be C1, . . . , Ck. A solution also finds k points, which we call
centers, c1, . . . , ck. We shall say that ci is the center of cluster Ci (or the points in Ci are assigned
to ci). The objective of the problem is to minimize the quantity

∑k
i=1 f(Ci, ci).

This is a fairly general definition. Let us see some important special cases.

• k-median : f1(Q,x) =
∑

q∈Q d(q, x).

• k-means : f2(Q,x) =
∑

q∈Q d(q, x)2.

We can also encompass the discrete versions of these problems, i.e., cases where the centers
have to be one of the points in P . In such problems, we can make f(Q,x) unbounded if x /∈ Q.

As stated earlier, we shall assume that we are given a constant ε > 0, and we are interested in
finding (1 + ε)-approximation algorithms for these clustering problems.

We now give some definitions. Let us fix a clustering problem C(f, k). Although we should
parametrized all our definitions by f , we avoid this because the clustering problem will be clear
from the context.

Definition 2.1. Given a point set P , let OPTk(P) be the cost of the optimal solution to the clustering
problem C(f, k) on input P .

Definition 2.2. Given a set of points P and a set of k points C, let OPTk(P,C) be the cost of the
optimal solution to C(f, k) on P when the set of centers is C.

3 Algorithm for 2-means Clustering

In this section we describe the algorithm for 2-means clustering. The 2-means clustering algo-
rithm contains many of the ideas inherent in the more general algorithm. This makes it easier to
understand the more general algorithm described in the next section.

Consider an instance of the 2-means problem where we are given a set P of n points in ℜd. We
seek to find C(f2, 2) where f2 corresponds to the k-means cost function as defined in Section 2.

We first look at some properties of the 1-means problem.

Definition 3.1. For a set of points P , define the centroid, c(P), of P as the point
P

p∈P p

|P | .

Claim 3.1. For any point x ∈ ℜd,

f2(P, x) = f2(P, c(P)) + |P | · d(c(P), x)2. (1)

5

Proof.

f2(P, x) =
∑

p∈P

||p − x||2

=
∑

p∈P

||p − c(P) + c(P) − x||2

=
∑

p∈P

||p − c(P)||2 +
∑

p∈P

||c(P) − x||2

= f2(P, c(P)) + |P | · d(c(P), x)2

where the second last equality follows from the fact that
∑

p∈P ||p − c(P)|| = 0.

From this we can make the following observation.

Fact 3.2. Any optimal solution to the 1-means problem with respect to an input point set P chooses
c(P) as the center.

We can deduce an important property of any optimal solution to the 2-means clustering problem.
Suppose we are given an optimal solution to the 2-means clustering problem with respect to the
input P . Let C = {c1, c2} be the set of centers constructed by this solution. C produces a
partitioning of the point set P into 2 clusters, namely, P1, P2. Pi is the set of points for which the
closest point in C is ci. In other words, the clusters correspond to the points in the Voronoi regions
in ℜd with respect to C. Now, Fact 3.2 implies that ci must be the centroid of Pi for i = 1, 2.

Inaba et. al. [14] showed that the centroid of a small random sample of points in P can be a
good approximation to c(P).

Lemma 3.3. [14] Let T be a set obtained by independently sampling m points uniformly at random
from a point set P . Then, for any δ > 0,

f2(S, c(T)) <

(
1 +

1

δm

)
OPT1(P)

holds with probability at least 1 − δ.

Therefore, if we choose m as 2
ε , then with probability at least 1/2, we get a (1+ε)-approximation

to OPT1(P) by taking the center as the centroid of T . Thus, a constant size sample can quickly
yield a good approximation to the optimal 1-means solution.

Suppose P ′ is a subset of P and we want to get a good approximation to the optimal 1-mean
for the point set P ′. Following Lemma 3.3, we would like to sample from P ′. But the problem
is that P ′ is not explicitly given to us. The following lemma states that if the size of P ′ is close
to that of P , then we can sample a slightly larger set of points from P and hopefully this sample
would contain enough random samples from P ′. Let us define things more formally first. Let P be
a set of points and P ′ be a subset of P such that |P ′| ≥ θ|P |, where θ is a constant between 0 and
1. Suppose we take a sample S of size 4

θε from P . Now we consider all possible subsets of size 2
ε

of S. For each of these subsets S′, we compute its centroid c(S′), and consider this as a potential
center for the 1-means problem instance on P ′. In other words, we consider f2(P

′, c(S′)) for all
such subsets S′. The following lemma shows that one of these subsets must give a close enough
approximation to the optimal 1-means solution for P ′.

Lemma 3.4. The following event happens with constant probability

min
S′:S′⊂S,|S′|= 2

ε

f2(P
′, c(S′)) ≤ (1 + ε)OPT1(P

′)

6

Algorithm 2-clustering(P, ε)
Inputs : P : Point set

ε: approximation factor
Output : The optimal 2-means clustering of the points in P .

1. Let α = ε/64
2. Sample a set S of size O(1/α) from P
3. For each subset S′ of S of size 2/α do

(a) Compute the mean, c′1, of S′. This is a candidate approximate center for C1.
(b) Consider the points of P in ascending order of distance from c′1
(c) For i = 1 to log (|P |) + 1 do

i. Let Q′

i be the last |P |/2i−1 points (farthest from c′1) in this sequence
[For iterations i ≥ 2, this only requires scanning of points in Q′

i−1]
ii. Assign the points in P − Q′

i to c′1. Compute f2(P − Q′

i, c
′

1).
[For iterations i ≥ 2, this can be computed from f2(P − Q′

i−1, c
′

1)
since f2(P − Q′

i−1, c
′

1) = f2(P − Q′

i−1, c
′

1) + f2(Q
′

i−1 − Q′

i, c
′

1)]

iv. Sample a set S̃ of size O(1/α2) from Q′

i

v. For each subset S̃′ of S̃ of size 2/α do

- Compute the mean, c′2, of S̃′. This is a candidate approximate center for C2.
- Assign the points in Q′

i to the nearest centers in {c′1, c′2}
- Compute the clustering cost for this choice of {c′1, c′2} as

Sum = f2(P − Q′

i, c
′

1) + OPT2(Q
′

i, {c′1, c′2}).
4. Compute the clustering cost to the centroid c(P) of P , i.e., f2(P, c(P)).
5. Return the clustering which has minimum cost from those obtained in steps 4 and 5.

Figure 2: The 2-means clustering algorithm

Proof. With constant probability, S contains at least 2
ε points from P ′. The rest follows from

Lemma 3.3.

The 2-means clustering algorithm is presented in Figure 2. In the following proofs, we use the
standard notation B(p, r) to denote the ball of radius r around a point p.

Theorem 3.5. Given a point set P of size n in ℜd, there exists an algorithm which produces a
(1 + ε)-approximation to the optimal 2-means solution on the point set P with constant probability.

Further, this algorithm runs in time O(2(1/ε)O(1)
dn).

Proof. Let α = ε/64. We can assume that OPT2(P) > (1 + ε/2)OPT1(P) otherwise the solution to
the 1-mean problem for P obtained by computing the centroid of P in O(nd) time has cost at most
(1 + ε/2)OPT2(P).

Consider an optimal 2-means solution for P . Let c1 and c2 be the two centers in this solution.
Let P1 be the points which are closer to c1 than c2 and P2 be the points closer to c2 than c1. So c1

is the centroid of P1 and c2 that of P2. Without loss of generality, assume that |P1| ≥ |P2|.
Since |P1| ≥ |P |/2, Lemma 3.4 implies that if we sample a set S of size O

(
1
α

)
from P and look

at the set of centroids of all subsets of S of size 2
α , then at least one of these centroids, call it c′1

has the property that f2(P1, c
′
1) ≤ (1 + α)f2(P1, c1). Since our algorithm is going to cycle through

all such subsets of S, we can assume that we have found such a point c′1. Our remaining proof is
based on Lemma 3.6 and Claims 3.7 and 3.8.

Let the distance between c1 and c2 be t, i.e., d(c1, c2) = t.

7

Lemma 3.6. d(c1, c
′
1) ≤ t/4.

Proof. Suppose d(c1, c
′
1) > t/4. Equation (1) implies that

f2(P1, c
′
1) − f2(P1, c1) = |P1|d(c1, c

′
1)

2 ≥ t2|P1|
16

.

But we also know that left hand side is at most αf2(P1, c1). Thus we get t2|P1| ≤ 16αf2(P1, c1).
Applying Equation (1) once again, we see that

f2(P1, c2) = f2(P1, c1) + t2|P1| ≤ (1 + 16α)f2(P1, c1).

Therefore, f2(P, c2) ≤ (1+16α)f2(P1, c1)+f2(P2, c2) ≤ (1+16α)OPT2(P). This contradicts the
fact that OPT1(P) > (1 + ε/2)OPT2(P).

This completes the proof of Lemma 3.6.

Now consider the ball B(c′1, t/4). The previous lemma implies that this ball is contained in the
ball B(c1, t/2) of radius t/2 centered at c1. So B(c′1, t/4) contains only points in P1. Since we are
looking for the point c2, we can delete the points in this ball and hope that the resulting point set
has a good fraction of points from P2.

This is what we prove next. Let P ′
1 denote the point set P1 −B(c′1, t/4). Let P ′ denote P ′

1 ∪P2.
As we noted above P2 is a subset of P ′.

Claim 3.7. |P2| ≥ α|P ′
1|

Proof. Suppose not, i.e., |P2| ≤ α|P ′
1|. Notice that

f2(P1, c
′
1) ≥ f2(P

′
1, c

′
1) ≥

t2|P ′
1|

16
.

Since f2(P1, c
′
1) ≤ (1 + α)f2(P1, c1), it follows that

t2|P ′
1| ≤ 16(1 + α)f2(P1, c1) (2)

So,

f2(P, c1) = f2(P1, c1) + f2(P2, c1)

= f2(P1, c1) + f2(P2, c2) + t2|P2|
≤ f2(P1, c1) + f2(P2, c2) + t2α|P ′

1|
≤ f2(P1, c1) + f2(P2, c2)

+16α(1 + α)f2(P1, c1)

≤ (1 + 32α)f2(P1, c1) + f2(P2, c2)

≤ (1 + 32α)OPT2(P),

where the second equation follows from Equation (1), while the second inequality follows from
Inequality (2) and the fact that |P2| ≤ α|P ′

1|. But this contradicts the fact that OPT1(P) >
(1 + ε/2)OPT2(P).

This completes the proof of Claim 3.7.

8

The above claim combined with Lemma 3.4 implies that if we sample O
(

1
α2

)
points from P ′,

and consider the centroids of all subsets of size 2
α in this sample, then with constant probability

we shall get a point c′2 for which f2(P2, c
′
2) ≤ (1 + α)f2(P2, c2). Thus, we get the centers c′1 and c′2

which satisfy the requirements of our lemma.
The only problem is that we do not know the value of the parameter t. We will somehow need

to guess this value and yet maintain the fact that our algorithm takes only linear amount of time.
We can assume that we have found c′1 (this does not require any assumption on t). Now we

need to sample from P ′ (recall that P ′ is the set of points obtained by removing the points in P
distant at most t/4 from c′1). Suppose we know the parameter i such that n

2i ≤ |P ′| ≤ n
2i−1 .

Consider the points of P in descending order of distance from c′1. Let Q′
i be the first n

2i−1 points
in this sequence. Notice that P ′ is a subset of Q′

i and |P ′| ≥ |Q′
i|/2. Also we can find Q′

i in linear
time (because we can locate the point at position n

2i−1 in linear time). Since |P2| ≥ α|P ′
1|, we see

that |P2| ≥ α|Q′
i|/4. Thus, Lemma 3.3 implies that it is enough to sample O

(
1
α2

)
points from Q′

i

to locate c′2 (with constant probability of course).
But the problem with this scheme is that we do not know the value i. One option is try all

possible values of i, which will imply a running time of O(n log n) (treating the terms involving α and
d as constant). Also note that we cannot use approximate range searching because preprocessing
takes O(nlogn) time.

We somehow need to combine the sampling and the idea of guessing the value of i. Our
algorithm proceeds as follows. It tries values of i in the order 0, 1, 2, In iteration i, we find the
set of points Q′

i. Note that Q′
i+1 is a subset of Q′

i. In fact Q′
i+1 is the half of Q′

i which is farther
from c′1. So in iteration (i+ 1), we can begin from the set of points Q′

i (instead of P ′). We can find
the candidate point c′2 by sampling from Q′

i+1. Thus we can find Q′
i+1 in time linear in |Q′

i+1| only.
Further in iteration i, we also maintain the sum f2(P − Q′

i, c
′
1). Since f2(P − Q′

i+1, c
′
1) =

f2(P −Q′
i, c

′
1) + f2(Q

′
i −Q′

i+1, c
′
1), we can compute f2(P −Q′

i+1, c
′
1) in iteration i + 1 in time linear

in Q′
i+1. This is needed because when we find a candidate c′2 in iteration i+1, we need to compute

the 2-means solution when all points in P −Q′
i are assigned to c′1 and the points in Q′

i are assigned
to the nearer of c′1 and c′2. We can do this in time linear in |Q′

i+1| if we maintain the quantities
f2(P − Q′

i, c
′
1) for all i.

Thus, we see that iteration i takes time linear in |Q′
i|. Since |Q′

i|’s decrease by a factor of 2,

the overall running time for a given value of c′1 is O(2(1/α)O(1)
dn). Since the number of possible

candidates for c′1 is O(2(1/α)O(1)
), the running time is as stated.

Claim 3.8. The cost, ∆, reported by the algorithm satisfies OPT2(P)≤∆≤(1 + α)OPT2(P) with
constant probability.

Proof. OPT2(P)≤∆ is obvious as we are associating each point with one of the 2 centers being
reported and accumulating the corresponding cost. Now, consider the case when we have the
candidate center set where each center is a (1 + α)-approximate centroid of its respective cluster.
As we are associating each point to the approximate centroid of the corresponding cluster or a
center closer than it, it follows that ∆≤(1 + α)OPT2(P).

This also completes the proof of Theorem 3.5.

3.1 General Properties of Clustering Problems

Our algorithms will work on any of clustering problems defined in Section 2 provided certain
conditions are satisfied. We state these conditions in this section.

9

Definition 3.2. We say that a point set P is (k, α)-irreducible if OPTk−1(P) ≥ (1 + δα)OPTk(P),
where δ is a constant determined by the nature of the clustering problem (e.g. k-median, k-means).
Otherwise we say that the point set is (k, α)-reducible.

Reducibility captures the fact that if P is (k, α)-reducible for a small constant α, then the
optimal solution for C(f, k − 1) on P is close to that for C(f, k) on P . So if we are solving the
latter problem, it is enough to solve the former one. In fact, when solving the problem C(f, k) on
the point set P , we can assume that P is (k, α)-irreducible, where α = ǫ

8δk . Indeed, suppose this
is not the case. Let i be the highest integer such that P is (i, α)-irreducible. Then, OPTk(P) ≤
(1+δα)k−iOPTi(P) ≤ (1+ε/4)OPTi(P). Therefore, if we can get a (1+ε/4)-approximation algorithm
for C(f, i) on input P , then we have a (1 + ε)-approximation algorithm for C(f, k) on P . Thus it is
enough to solve instances which are irreducible.

The first property that we want C(f, k) to satisfy is a fairly obvious one – it is always better to
assign a point in P to the nearest center. We state this more formally as follows :

Closeness Property : Let Q and Q′ be two disjoint set of points, and let q ∈ Q. Suppose
x and x′ are two points such that d(q, x) > d(q, x′). Then the cost function f satisfies the
following property

f(Q,x) + f(Q′, x′) ≥ f(Q − {q}, x) + f(Q′ ∪ {q}, x′).

This is essentially saying that in order to find a solution, it is enough to find the set of k centers.
Once we have found the centers, the actual partitioning of P is just the Voronoi partitioning with
respect to these centers. It is easy to see that the k-means problem and the k-median problem
(both the continuous and the discrete versions) satisfy this property.

We desire two more properties from C(f, k). The first property says that if we are solving
C(f, 1), then there should be a simple random sampling algorithm. The second property says that
suppose we have approximated the first i centers of the optimal solution closely. Then we should
be able to easily extract the points in P which get assigned to these centers. We describe these
properties in more detail below.

One of the key ingredients of the 2-means clustering algorithm described in the previous section
(Lemma 3.3) is the ability to derive an approximate center for a set of points using a small (constant
size) random sample from the point set. The generalization of this requirement is formally presented
below.

Random Sampling Procedure : There exists a procedure A that takes as input a parameter
α (a constant), and a set of points R ∈ ℜd of size λα. A produces as output, another set of
points called core(R), of constant size, βα. A satisfies the condition that if R is a random
sample obtained from a set Q, then with constant probability there is at least one point
c ∈ core(R) such that OPT1(Q, {c}) ≤ (1 + α)OPT1(Q). Further the time taken by A to
produce core(R) from R is at most O(ηα · dn), where n is the size of Q and ηα is a constant.

As described in the previous section, if we take a random sample R of size λα = 2/α points from
the point set and compute its centroid, core(R) of size βα = 1, then with constant probability, this
centroid is a (1 + α)-approximation to the mean of point set.

In the course of our algorithm, the set Q will not be explicitly known - instead we sample from
a superset P ⊇ Q. We will sample a slightly larger set of points from P and then we isolate a
λα subset that consists only of points in Q and supply this to the Random Sampling Procedure.
Although we are not directly sampling from Q, our sampling/isolation procedure must ensure that
all λα subsets of Q are equally likely in the same way if we had directly sampled from Q.

10

Procedure Superset Sampling(P, α, θ)
Inputs : Point set P , constants α, θ , θ < 1, approximation ratio ε.

Output : A set of points called CEN(P, α, θ), of constant size O(2(λα
θ

)
O(1)

βα).

1. Choose a sample S of size O(4λα

θ) from P .
2. Consider all possible subsets of size λα of S.

There are O(2(λα
θ

)
O(1)

) of these.
3. For each of the subsets S′ do,

Generate a candidate center set for the 1-center for the clustering problem
using the Random Sampling Procedure, A (using ε).

4. Return the union of all these candidate center sets.

Figure 3: The Superset Sampling Procedure

Figure 3 describes a procedure to determine a set of candidate approximate centers using the
Random Sampling Procedure when there are extraneous points. We call this the Superset Sampling
Procedure.

Remark 3.1. Note that the only property we require the clustering problem to exhibit is the existence
of a Random Sampling Procedure. The Superset Sampling Procedure implicitly uses the Random
Sampling Procedure for the clustering problem under consideration.

The following lemma shows that one of the subsets considered by the Superset Sampling Pro-
cedure must give a close enough approximation to the optimal 1-center solution for Q.

Lemma 3.9. (Superset Sampling Lemma) Let core(S′) be the center set generated using the Ran-
dom Sampling Procedure on sampled subset S′. Then, the following event happens with constant
probability

min
c′∈core(S′):S′⊂S,|S′|=λα

f(Q, c′) ≤ (1 + α)OPT1(Q).

Proof. With constant probability, S contains at least λα points from Q, the required sample size.
Clearly the set S′ of λα points is equiprobable amongst all the point sets of the same size in
Q (obtained with replacement). The rest follows from the Random Sampling Procedure for the
clustering problem.

We will later see that our generalized algorithm yields a running time of O(2(k/ε)O(1)
nd) when

λα = O(
(

1
α

)O(1)
), βα = O(2(

1
α)

O(1)

), ηα = O(2(
1
α)

O(1)

) and θ = O(αO(1)

k).
Another important property of the 2-means clustering algorithm described in the previous

section is the ability to obtain a random sample of points from the smaller cluster after carefully
removing some points and then performing random sampling. Once we have approximated the
center of the larger cluster, we can remove enough of its points from around this center. This leaves
us with a point set, such that the smaller cluster forms a constant fraction of this point set.

We now generalize this property. Consider the optimal k-clustering of a point set, P , where i
centers are fixed (these correspond to the centers that have already been approximated) and k − i
centers are free to be selected from the centers of the optimal solution (these correspond to the
centers that are yet to be determined). We refer to the clusters centered at the fixed points as fixed
clusters and the clusters centered at the free centers as free clusters (see Figure 4). There exists a

11

value r such that if we construct balls of radius r around the i fixed centers, then these balls contain
enough points (S) of the fixed clusters, such that the free clusters form a constant fraction of the
remaining points lying outside these balls (P − S). This allows us to obtain a random sample of
points from the largest free cluster of the required constant size by taking a constant size random
sample from the remaining point set. This generalization is formally stated below.

*

+
+

+

+

+
+ +

+

+

+
+

+ +

+
+

+

+
+

+
+

+

+

+

+

+ +

++

*

+++
+

+
+ + +

+

+
+

+

+
+ + +

+
+

+

+ +

+ ++

+

+

+

+

+

+

+
+

+

+

+

+

+
+

+

++

+

+
+

+

+
+

+

+

+

+

+

+

+

+ +

+

+

+

+

+

+

oo

o

o

o

o

o

o

*

*

*

o

o
o

o

o

o
o

o
o

o

o

o

o

o

o

o
o

o

o
o

o

o

o

o

o

o

o

o

o

c ’

c ’

c ’

cc

c2

1

i

i+1

i+2

c k

*

o

o

oo

o

o

o

o
o

o

o

o o

o

o

o

S 1

S i

2S

S = S U S U ... U S21 i

radius = r

Figure 4: Tightness Property: Fixed clusters with centers c′1, c
′
2, . . . , c

′
i and free clusters with centers

ci+1, . . . , ck

Tightness Property : Let P be a set of points which is (k, α)-irreducible for some constant
α. Consider an optimal solution to C(f, k) on P and let C = {c1, . . . , ck} be the centers in
this solution. Suppose we have a set of i points C ′

i = {c′1, . . . , c′i}, such that OPTk(P, C̃i) ≤
(1+α/k)iOPTk(P), where C̃i = {c′1, . . . , c′i, ci+1, . . . , ck}. Let P ′

1, . . . , P
′
k be the partitioning of

P if we choose C̃i as the set of centers (in other words this is the Voronoi partitioning of P
with respect to C̃i). We assume w.l.o.g. that P ′

i+1 is the largest cluster amongst P ′
i+1, . . . , P

′
k.

Then there exists a set of points S such that the following conditions hold :

(a) S is contained in P ′
1 ∪ . . . ∪ P ′

i .

(b) Let x ∈ S, x′ ∈ P − S. Then, d(x, {c′1, . . . , c′i}) ≤ d(x′, {c′1, . . . , c′i}).
(c) P − S contains at most

|P ′

i+1|

αO(1) points of P ′
1 ∪ . . . ∪ P ′

i .

We show the existence of the tightness property for the k-means clustering problems.

Lemma 3.10. The k-means and discrete k-means clustering problems satisfy the tightness property.

Proof. We essentially need to show the existence of the desired set S, described in the definition
above.

12

Recall that in the discrete version of the problem, f2(Q,x) = ∞ when x is not a point of the
input point set. Consider the closest pair of centers between the sets C ′\C ′

i and C ′
i – let these centers

be cl and c′r respectively. Let t = d(cl, c
′
r). Let S be the set of points B(c′1, t/4) ∪ · · · ∪ B(c′i, t/4).

Clearly, S is contained in P ′
1 ∪ · · · ∪ P ′

i . This shows (a). Also, for any x ∈ S, x′ ∈ P − S,
d(x, {c′1, . . . , c′i}) ≤ d(x′, {c′1, . . . , c′i}). This proves (b).

Suppose P − S contains more than |Pl|/α2 points of P ′
1 ∪ · · · ∪ P ′

i . In that case, these points

are assigned to centers at distance at least t/4. It follows that OPTk(P,C ′) is at least t2|Pl|
16α2 . This

implies that t2|Pl| ≤ 16α2OPTk(P,C ′). Let ml be the centroid of Pl. Further, let Tl be the average

cost paid by Pl when the center is its centroid, i.e., Tl =

P

p∈Pl
d(p,ml)

2

|Pl|
. Observe that f2(Pl, cl) =

|Pl|(Tl + d(cl,ml)
2). Therefore, if we assign the points in Pl from cl to c′r, the increase in cost is

|Pl|
(
d(c′r,ml)

2 − d(cl,ml)
2
)

≤ |Pl|
(
(d(c′r, cl) + d(cl,ml))

2 − d(cl,ml)
2
)

≤ |Pl|
(
t2 + 2td(cl,ml)

)

We know that the first term above, i.e., |Pl|t2 is at most 16α2OPTk(P,C ′). We now need to
bound the second term only. We consider two cases

• t ≤ αd(cl, cm) : In this case, |Pl|·2td(cl,ml) ≤ 2αd(cl,ml)
2|Pl| ≤ 2αf2(Pl, cl) ≤ 2αOPTk(P,C ′).

• t > αd(cl, cm) : In this case, |Pl| · 2td(cl,ml) ≤ 2t2|Pl|
α ≤ 32αOPTk(P,C ′).

Thus, in either case, the cost increases by at most

48αOPTk(P,C ′) ≤ 48α(1 + α/k)iOPTk(P) ≤ 48α(1 + α/k)kOPTk(P) ≤ 144αOPTk(P).

But this contradicts the fact that P is (k, α)-irreducible for δ = 144. This proves the tightness
property.

We now make some important observations about the Tightness Property in the case when there
are multiset (coincident) points. These observations are important in solving the weighted versions
of the clustering problems efficiently (cf. Section 7).

Observation 3.1. In a multiset clustering problem, given a set of k centers, there always exists
an optimal clustering (for these k centers) in which all the points that share the same coordinates
are assigned to the same center.

By the Closeness Property, every point is assigned to its closest center. Now, if there are two
centers equidistant from a point, it does not matter which center they get assigned to as this does
not change the cost of the solution. Therefore we can always modify an optimal clustering to get
another clustering with the same cost in which all the points that share the same coordinates are
assigned to the same center.

Observation 3.2. In a multiset clustering problem, the Tightness Property can be extended to
ensure that all coincident points either belong to S or to P − S, i.e., they are not split between S
and P − S.

This follows from the fact that the optimal clustering is determined by the Voronoi partitioning
of the point set (Closeness Property) and Observation 3.1 above.

13

4 A General Algorithm for Clustering

We show that if a clustering problem C(f, k) satisfies the conditions stated in the previous section,
then there is an algorithm which for any fixed ε > 0, produces with constant probability, a solution

within (1 + ε) factor of the optimal cost. The running time of this algorithm is O(2(
k
ε)

O(1)

· dn).
Fix a clustering problem C(f, k). Fix an instance consisting of a set P of n points in ℜd. Suppose

we are given a constant ε > 0. We present a brief outline of the algorithm.

4.1 Outline

We can assume that the solution is irreducible, i.e., removing one of the centers does not create a
solution which has cost within a small factor of the optimal solution.

We start with k optimal (unknown) centers. In each iteration, we will consider the optimal
clustering formed by i currently known centers and k − i optimal (unknown) centers. Call this
the optimal clustering of the current iteration. Our goal will be to approximate the next largest
cluster, so that the resulting clustering is an approximation to the optimal clustering of the current
iteration. We will bound the overall approximation factor to within a factor of (1+ε) of the optimal
clustering.

One of the main challenges is to accurately estimate the centers of the (optimal) clustering that
may have widely varying sizes [3, 21]. In order to obtain a linear time algorithm, this must be done
efficiently.

Suppose we have found centers c′1, . . . , c
′
i. As the clustering problem satisfies the tightness

property, we know that there exists a value r such that the points at a distance of at most r
from {c′1, . . . , c′i} (set S of the tightness property) get assigned to c1, . . . , ci by the optimal solution
induced by the centers of the optimal solution {c1, . . . , ck}. So, we can delete these points. Without
loss of generality, we assume that the largest cluster from amongst those centered around the
unknown clusters {ci+1, . . . , ck} is centered around ci+1. Let P ′

i+1 be this cluster. Now we can show
that among the remaining points, the size of P ′

i+1 is significant. Therefore, we can use random
sampling to obtain a center c′i+1 which is a pretty good estimate of ci+1. Of course we do not know
the value of r, and so a naive implementation of this idea gives an O(n(log n)k) time algorithm.

To obtain a linear time algorithm, we reason as follows. As mentioned above, we can not guess
the parameter r. So we try to guess the size of the point set obtained by removing the points in
the balls of radius r centered at {c1, . . . , ci}, i.e. we try to guess the size of P −S. So we work with
the remaining point set with the hope that the time taken for this remaining point set will also be
small and so the overall time will be linear. Now, we describe the actual clustering algorithm.

4.2 The Algorithm

The algorithm is described in Figures 5 and 6. Figure 5 is the main algorithm. The inputs
are the point set P , k and an approximation factor ε. Let α denote ε

8δk , where δ is a suitable
constant depending on the nature of the clustering problem, as determined by the irreducibility of
the clustering problem (see Definition 3.2). The algorithm k-clustering(P, k, ε) tries to find the
highest i such that P is (i, α)-irreducible. In that case it is enough to find i centers only. Since we
do not know this value of i, the algorithm tries all possible values of i.

We now describe the algorithm Irred-k-clustering(Q,m, k,C, α,Sum). We have found a set
C of k − m centers already. The points in P − Q have been assigned to C. We need to assign the
remaining points in Q. The case m = 0 is clear. In Step 2, we try to find a new center that is
a (1 + α/k)-approximation to the 1-center of the next largest cluster using the Superset Sampling

14

Algorithm k-clustering(P, k, ε)
Inputs : Point set P , number of clusters k, approximation ratio ε.
Output : k-clustering of P .

1. For i = 1 to k do
Obtain the clustering Irred-k-clustering(P, i, i, φ, ε/(8δk), 0).

2. Return the clustering which has minimum cost.

Figure 5: The k-clustering Algorithm

Procedure and the Random Sampling Procedure for the clustering problem. This will work provided
a good fraction of the points in Q do not get assigned to C. If this is not the case then in Step 3,
we assign half of the points in Q to C and call the algorithm recursively with this reduced point
set. For the base case, when |C| = 0, as P1 is the largest cluster, we can obtain the candidate
centers by invoking CEN(Q,α/k, 1/k) instead. This is tackled in Step 2. Step 3 is not performed in
this case, as there are no centers.

4.3 Analysis and Proof of Correctness

We can now show that if we have the Random Sampling Procedure described above, then we can
get a (1+ε)-approximation algorithm for the clustering problem with constant probability. Further

the running time of the algorithm is O(2(k
ε
)O(1)

dn).

Theorem 4.1. Suppose a point set P is (k, α)-irreducible. Then the algorithm
Irred-k-clustering(P, k, k, ∅, α, 0) returns a solution to the clustering problem C(f, k) on input P
of cost at most (1 + α)OPTk(P) with probability γk, where γ is a constant.

Proof. Consider an optimal solution to C(f, k) on input P . Let the centers be K = {c1, . . . , ck} and
let these partition the point set P into clusters P1, . . . , Pk respectively. The only source of random-
ization in our algorithm is the invocations to the Superset Sampling Procedure (see Lemma 3.9).
Recall that the desired event in the superset sampling lemma happens with constant probability.
For ease of exposition, we shall assume that this desired event in fact always happens when we
invoke this procedure. At the end of this proof, we will compute the actual probability with which
our algorithm succeeds. Thus, unless otherwise stated, we assume that the desired event in the
superset sampling lemma always happens.

Observe that when we call Irred-k-clustering with input (P, k, k, ∅, α, 0), it gets called recur-
sively again several times (although with different parameters). Let W be the set of all calls to
Irred-k-clustering when we start it with input (P, k, k, ∅, α, 0). Let Wi be those calls in W in
which the parameter C (i.e., the set of centers already found) has size i.

For all values of i, our algorithm shall maintain the following invariant :

Invariant : The set Wi contains a call in which the list of parameters (Q,m, k,C, α,Sum)
has the following properties :

(1) If the optimal solution, K, is (k, α)-irreducible and C ′
i = {c′1, . . . , c′i} is a set of i known

centers then there exists a set C ′′
i = {ci+1, . . . , ck} of k − i unknown centers, C ′′

i ⊆ K,

such that OPTk(P, C̃i) ≤ (1 + α/k)iOPTk(P), where C̃i = C ′
i ∪ C ′′

i .

15

Algorithm Irred-k-clustering(Q, m, k, C, α,Sum)
Inputs : Q: Remaining point set, m: number of cluster centers yet to

be found, k: total number of clusters,
C: set of k − m cluster centers found so far,
α: approximation factor, Sum: the cost of assigning points in P − Q

to the centers in C
Output : The clustering of the points in Q in k clusters.

1. If m = 0
Assign the points in Q to the nearest centers in C.
Sum = Sum + The clustering cost of Q.
Return the clustering.

2. Use the Superset Sampling procedure and for each center c ∈ CEN(Q, α/k, αO(1)/k)
Obtain the clustering Irred-k-clustering(Q, m − 1, k, C ∪ {c}, α, Sum).

3. (a) Consider the points in Q in ascending order of distance from C.
(b) Let U be the first |Q|/2 points in this sequence.
(c) Assign the points in U to the nearest centers in C.
(d) Sum = Sum + The clustering cost of U .
(e) Compute the clustering Irred-k-clustering(Q − U, m, k, C, α,Sum).

4. Return the clustering which has minimum cost.

Figure 6: The irreducible k-clustering algorithm

(2) Let P ′
1, . . . , P

′
k be the partitioning of P if we choose C̃i as the set of centers (in other

words this is the Voronoi partitioning of P with respect to C̃i), where C̃i is as defined
above. Then the set P − Q is a subset of P ′

1 ∪ · · · ∪ P ′
i .

Clearly, if we show that the invariant holds for i = k, then we are done. It holds trivially for
i = 0. Suppose the invariant holds for some fixed i. We shall show that the invariant holds for
(i + 1) as well. We assume w.l.o.g. that P ′

i+1 is the largest cluster amongst P ′
i+1 ∪ · · · ∪ P ′

k. Our
algorithm approximates the center of P ′

i+1 and we show that this center when added to C ′
i forms

the required set of centers C ′
i+1 for the next iteration.

As the invariant holds for i, there exist parameter lists in Wi which satisfy the invariant prop-
erties mentioned above. Consider any such parameter list. As the conditions of the Tightness
Property are met, there exists a set S contained in P ′

1 ∪ · · · ∪ P ′
i such that P − S contains at most

|P ′
i+1|/α points of P ′

1 ∪ · · · ∪ P ′
i . Let P̄ denote P − S.

We show in Claim 4.2 that the invariant properties imply that Q contains all the points of
P ′

i+1 ∪ · · · ∪ P ′
k. Further, in Claim 4.3, we show that P ′

i+1 forms a constant fraction of the points

of P̄ , i.e., |P ′
i+1| ≥ αO(1)

k |P̄ |. It follows that |P ′
i+1| ≥ αO(1)

k |P̄ ∩Q|. So, if we knew P̄ , then we could
get a point c′i+1 which is a (1 + α/k) approximation to ci+1 (as the 1-center of the cluster P ′

i+1)

by sampling O((λα/kk/αO(1))) points from P̄ ∩ Q, and generating the candidate center set of size

O(2(k
α

λα/k)O(1)
βα/k) as described by the Random Sampling Procedure and the Superset Sampling

Procedure. But of course we do not know P̄ .
Note that we actually only require a constant factor approximation to P̄ ∩Q. Amongst the pa-

rameter lists in Wi satisfying the invariant conditions mentioned above, choose a list (Q,m, k,C, α,Sum)
for which |Q| is smallest.

Note that condition (b) of the tightness property suggests that when we consider the points in

16

P (and therefore Q) in order of distance from the centers in C ′
i, then the points of S are closer than

the points of P̄ . Therefore, we can eliminate half the remaining points of Q in order of distance
from these centers until we get to a factor 2 approximation to P̄ ∩ Q. This is done recursively in
Step 3 of the algorithm. In fact, a call to the algorithm Irred-k-clustering that corresponds to
Q being a factor 2 approximation to P̄ ∩ Q corresponds to a parameter list (Q,m, k,C, α,Sum) in
Wi, satisfying the invariant conditions, for which |Q| is smallest. We prove this in Lemma 4.4.

Note that this is similar to the process of eliminating points in order of distance from the
approximate center of the larger cluster till we get to a constant fraction of the points in the second
cluster in the 2-means clustering algorithm described in Section 3.

We now formally prove the above claims.

Claim 4.2. P ′
i+1 ∪ · · · ∪ P ′

k is contained in P̄ ∩ Q.

Proof. We already know that S is contained in P ′
1 ∪ · · · ∪P ′

i . Therefore, P ′
i+1 ∪ · · · ∪P ′

k is contained
in P̄ . Moreover, from invariant (2), we have that P ′

i+1 ∪ · · · ∪ P ′
k ⊆ Q. Claim 4.2 follows.

Claim 4.3. |P ′
i+1| ≥ αO(1)

k |P̄ |.

Proof. By the tightness property, we know that there are at most |P ′
i+1|/α elements of P ′

1 ∪ . . .∪P ′
i

in P̄ . Therefore, since P ′
i+1, . . . , P

′
k are the clusters associated with the centers in C ′′

i and P ′
i+1 is the

largest of these clusters, we have |P̄ | ≤ |P ′
i+1|/αO(1) + |P ′

i+1|+ . . . + |P ′
k| ≤ |P ′

i+1|/αO(1) + k|P ′
i+1| ≤

k
αO(1) |P ′

i+1|.
This proves Claim 4.3.

Recall that we are considering the parameter list (Q,m, k,C, α,Sum) in Wi, satisfying the
invariant conditions, for which |Q| is smallest.

Lemma 4.4. |P̄ ∩ Q| ≥ |Q|/2.

Proof. Suppose not, i.e., |P̄ ∩ Q| ≤ |Q|/2.
Claim 4.5. Consider the points in Q sorted in ascending order of the distance from C. Let U be
the first |Q|/2 points in this order. Then U does not contain a point of P̄ ∩ Q.

Proof. Follows from condition (b) of the Tightness Property for the clustering problem and the
assumption that |P̄ ∩ Q| ≤ |Q|/2.

So, if U is as defined in the claim above, then P̄ ∩Q is a subset of Q−U . Since P ′
i+1∪· · ·∪P ′

k is
contained in P̄ ∩Q (because of Claim 4.2 and the fact that Q is in the parameter list which satisfies
the invariant for i), it follows that P ′

i+1 ∪ · · · ∪ P ′
k is a subset of Q − U . Thus, the parameter list

(Q − U,C, k,m,α,Sum) which is formed in Step 3(e) of the algorithm satisfies the invariant for i
as well, i.e., it is in Ci. But this violates the fact that (Q,C, k,m,α,Sum) was the parameter list
satisfying the invariant for i in Ci for which |Q| is smallest.

This proves Lemma 4.4.

The lemma above implies that |P̄ ∩ Q| ≥ |Q|/2. Combined with Claim 4.3, we get |P ′
i+1| ≥

αO(1)|Q|
4k . The superset sampling lemma combined with the claim above imply that by sam-

pling O(λα/kk/αO(1)) points from Q and generating the candidate center set as described by
the Random Sampling Procedure, A, for the clustering problem, we shall get a point c′i+1 such
that f(P ′

i+1, c
′
i+1) ≤ (1 + α/k)f(P ′

i+1, ci+1), where ci+1∈C ′′
i is the center of P ′

i+1 in the opti-

mal clustering induced by C̃i. This is done in the Superset Sampling Procedure. This is the

17

case handled by the Step 2 in the algorithm Irred-k-clustering. In this case the algorithm is
called again with parameters (Q,m − 1, k, C ∪ {c′i+1}, α,Sum). It is easy to see now that this
parameter list satisfies the invariant for i + 1. The set of known centers C ′

i+1 for the next it-
eration is C ′

i ∪ {c′i+1} and the set of unknown centers C ′′
i+1 is C ′′

i \{ci+1}. Since f(P ′
i+1, c

′
i+1) ≤

(1 + α/k)f(P ′
i+1, ci+1) and the clustering problem satisfies the closeness property, it follows that

OPTk(P,C ′
i+1 ∪ C ′′

i+1)≤(1 + α/k)OPTk(P, C̃i)≤(1 + α/k)i+1OPTk(P). Thus we have shown that the
invariant holds for all values of i.

As we mentioned earlier, a parameter list (Q,m, k,C, α,Sum) which satisfies the invariant for
i = k has the desired centers in C.

It is easy to verify that the cost reported by the algorithm OPTk(P,C) satisfies

OPTk(P)≤OPTk(P,C)≤(1 + α/k)kOPTk(P)≤(1 + 2α)OPTk(P)≤(1 + ε/4)OPTk(P).

This proves the correctness of our algorithm. We just need to calculate the probability with
which the algorithm is called with such a parameter list.

Note that the only source of randomness in Irred-k-clustering is in the Step 2(a). The
sampling gives the desired result with constant probability (according to Lemma 3.9). Further
each time we execute Step 2, we decrease m by 1. So, in any sequence of successive recursive calls,
there can be at most k invocations of Step 2. Now, we have just shown that there is a parameter
list in Wk for which C contains a set of centers close to the optimal clusters. Let us look at the
sequence of recursive calls which have resulted in this parameter list. In these sequence of calls, as
we mentioned above, there are k invocations of the random sampling. Each of these work correctly
with constant probability. Therefore, the probability that we actually see this parameter list during
the execution of this algorithm is γk for some constant γ.

This completes the proof of Theorem 4.1

Now we establish the running time of our algorithm.

Theorem 4.6. The algorithm Irred-k-clustering when called with parameters (P, k, k, ∅, α, 0)

runs in time O(2(k/α)O(1)
dn), where n = |P |.

Proof. Let T (n,m) be the running time of our algorithm on input (Q,m, k,C, α,Sum) where n =
|Q|. Then in the invocation of Superset Sampling Procedure in Step 2, we have u(k, α) subsets of

the sample, where u(k, α) = O(2(λα/k
k
α

)O(1)
). Computation of the candidate center set from any set

S′ takes O(ηα/k · nd) time. Steps 3(a)-(d) take O(nd) time. Therefore we get the recurrence

T (n,m) = O(u(k, α) · βα/k)T (n,m − 1) + T (n/2,m) + O(u(k, α) · ηα/k · nd).

Let λα = O(1/αO(1)), βα = O(2(1/α)O(1)
) and ηα = O(2(1/α)O(1)

). Choose c =
O(2(k/α)γ

) to be large enough, for a suitable constant γ, such that

T (n,m) ≤ c · T (n,m − 1) + T (n/2,m) + c · nd.

We claim that T (n,m) ≤ cm · 23m2 · nd. The proof is by induction. Consider the base cases.
T (n, 0) = knd as there are no more centers to be determined and the points only need to be assigned
to the closest center. Also, T (0,m) = 0 as there are no points and therefore it holds vacuously.
For the inductive step, suppose that the claim holds for T (n′,m′) ∀n′,∀m′ < m and it holds for
T (n′,m′) ∀n′ < n,∀m′. Then, we are required to show that

cm · 23m2 · nd ≥ c · cm−1 · 23(m−1)2 · nd + cm · 23m2 · n

2
d + c · nd.

18

For this, it suffices to show that 23m2 ≥ 23(m−1)2 + 23m2−1 + 1 which clearly holds for m ≥ 1.
It follows that T (n, k) is O(2(k/α)O(1)

dn) when λα = O(1/αO(1)), βα = O(2(1/α)O(1)
) and ηα =

O(2(1/α)O(1)
).

We can now state our main Theorem.

Theorem 4.7. For a clustering problem satisfying the Closeness Property, Tightness Property and
for which there exists a Random Sampling Procedure, a (1 + ε)-approximate solution for a point

set P in ℜd can be found in time O(2(k/ε)O(1)
dn), with constant probability.

Proof. We can run the algorithm Irred-k-clustering ck times for some constant c to ensure that it
yields the desired result with constant probability. This still keeps the running time O(2(k/α)O(1)

dn).
So let us assume this algorithm gives the desired solution with constant probability.

Notice that the running time of our main algorithm in Figure 5 is also O(2(k/α)O(1)
dn). We just

have to show that it is correct.
Let i be the highest index for which P is (i, α)-irreducible. So, it follows that

OPTi(P) ≤ (1 + δkα)OPTi+1(P) ≤ · · · ≤ (1 + δkα)k−iOPTk(P) ≤ (1 + ε/4)OPTk(P).

Further, we know that the algorithm Irred-k-clustering on input (P, i, i, ∅, α, 0) yields a set of i
centers C for which OPTk(P,C) ≤ (1 + ε/4)OPTi(P). Therefore, we get a solution of cost at most
(1 + ε/4)(1 + ε/4)OPTk(P) ≤ (1 + ε)OPTk(P). This proves the Theorem.

We now give applications to various clustering problems. We show that these clustering prob-
lems satisfy the tightness property and admit a random sampling procedure as described in the
previous section.

For the k-means clustering problem, the random sampling procedure follows from Lemma 3.3
shown by Inaba et al [14], and the tightness property follows from Lemma 3.10. This leads to the
following Corollary to Theorem 4.7.

Corollary 4.8. Given a point set P of n points in ℜd, a (1+ε)-approximate solution to the k-means

clustering problem can be found in time O(2(k/ε)O(1)
dn), with constant probability.

5 k-median Clustering

As described earlier, the clustering problem C(f, k) is said to be the k-median problem if f(Q,x) =∑
q∈Q d(q, x). We now exhibit the Random Sampling Procedure and the Tightness Property for

this problem leading to the following Corollary to Theorem 4.7.

Corollary 5.1. Given a point set P of n points in ℜd, a (1 + ε)-approximate solution to the

k-median clustering problem can be found in time O(2(k/ε)O(1)
dn), with constant probability.

5.1 Random Sampling Procedure

Badoiu et al. [3] showed that a small random sample can be used to get a close approximation

to the optimal 1-median solution. Given a set of points P , let AvgMed(P) denote OPT1(P)
|P | , i.e., the

average cost paid by a point towards the optimal 1-median solution.

Lemma 5.2. [3] Let P be a set of points in ℜd, and ε be a constant between 0 and 1. Let X be a
random sample of O(1/ε3log1/ε) points from P . Then with constant probability, the following two
events happen: (i) The flat span(X) contains a point x such that OPT1(P, {x}) ≤ (1 + ε)OPT1(P).
and (ii) X contains a point y at distance at most 2AvgMed(P) from x.

19

We now show that if we can upper and lower bound AvgMed(P) up to constant factors, then we
can construct a small set of points such that at least one of these is a good approximation to the
optimal center for the 1-median problem on P .

Lemma 5.3. Let P be a set of points in ℜd and X be a random sample of size O(1/ε3log1/ε) from
P . Suppose we know numbers a and b such that a ≤ AvgMed(P) ≤ b. Then, we can construct a

set Y of O(2(1/ε)O(1)
log(b/εa)) points such that with constant probability there is at least one point

z ∈ X ∪ Y satisfying OPT1(P, {z}) ≤ (1 + 2ε)OPT1(P). Further, the time taken to construct Y from

X is is O(2(1/ε)O(1)
log(b/εa)d).

Proof. Our construction is similar to that of Badoiu et al. [3]. We can assume that the result
stated in Lemma 5.2 holds (because this happens with constant probability). Let x and y be as in
Lemma 5.2.

We will carefully construct candidate points around the points of X in span(X) in an effort to
get within close distance of x.

For each point p ∈ X, and each integer i in the range [⌊log ε
4a⌋, ⌈logb⌉] we do the follow-

ing – let t = 2i. Consider the grid Gp(t) of side length εt/(4|X|) = O(tε4log(1/ε)) in span(X)
centered at p. We add all the vertices of this grid lying within distance at most 2t from p to
our candidate set Y . This completes the construction of Y . The number of vertices in a grid
Gp(t) is O(2t/(tε4log(1/ε)))O(1/ε3 log1/ε) = O(2(1/ε)O(1)

). The number of such grids considered is

O((1/ε3log1/ε) · log(4b/εa)). Hence the total size of Y is O(2(1/ε)O(1)
log(b/εa)). The time taken to

construct Y from X is proportional to the number of points in Y and hence O(2(1/ε)O(1)
log(b/εa)d).

We now show the existence of the desired point z ∈ X ∪ Y . Consider the following cases:

1. d(y, x)≤εAvgMed(P) : Using triangle inequality, we see that

f(P, y) ≤ f(P, x) + |P |d(y, x) ≤ (1 + 2ε)OPT1(P).

Therefore y itself is the required point.

2. d(y, x) > εAvgMed(P) : Consider the value of i such that 2i−1≤AvgMed(P)≤2i – while con-
structing Y , we must have considered this value of i for all points in X. Let t = 2i. Clearly,
t/2≤AvgMed(P)≤t.

Observe that d(y, x)≤2AvgMed(P)≤2t. Therefore, in the manner by which we have con-
structed Gy(t), there must be a point p ∈ Gy(t) for which d(p, x) ≤ εt/2 ≤ εAvgMed(P). This
implies that

f(P, p) ≤ f(P, x) + |P |d(x, p) ≤ (1 + 2ε)OPT1(P).

Hence p is the required point.

This completes the proof of Lemma 5.3.

We now show the existence of the random sampling procedure.

Theorem 5.4. Let P be a set of n points in ℜd, and let ε be a constant, 0 < ε < 1/12. There
exists an algorithm which given a random sample, R, of O((1

ε)O(1)) points from P constructs a
set of points core(R) such that with constant probability there is a point x ∈ core(R) satisfying

f(P, x) ≤ (1+O(ε))OPT1(P). Further, the time taken to construct core(R) from R is O(2(1/ε)O(1)
d).

20

Proof. Consider the optimal 1-median solution for P – let c be the center in this solution. Let
T denote AvgMed(P). Consider the ball B1 of radius T/ε2 around c. Let P ′ be the points of P
contained in B1. It is easy to see that |P ′| ≥ (1 − ε2)n.

Let R be a random sample of size 1/ε + 1 points from P . We split R into two parts. Let p be a
random point of R and Q be the remaining 1/ε points. Then clearly p and Q are random samples
of P having size 1 and 1/ε respectively.

With constant probability, p lies in P ′. With constant probability, the points of Q also lie in
P ′. So we assume that these two events happen. Let v =

∑
q∈Q d(q, p). We want to show that v is

actually close to AvgMed(P).
Let B2 denote the ball of radius εT centered at p. One of the following two cases must happen:

• There are at least 2ε|P ′| points of P ′ outside B2 : In this case, with constant probability, the
sample Q contains a point outside B2. Therefore, v ≥ εT . Also notice that any two points
in B1 are at distance at most 2T/ε2 from each other. So, v ≤ 2T |Q|/ε2. We choose a = vε2

2|Q|

and b = v/ε. Notice that b/a is O(1/εO(1)). We can now use the Lemma 5.3 to construct the
desired core set.

• There are at most 2ε|P ′| points of P ′ outside B2 : Suppose d(p, c) ≤ 4εT . In this case
f(P, p) ≤ (1 + O(ε))OPT1(P) and we are done. So assume this is not the case. Note that the
number of points outside B2 is at most |P − P ′| + 2ε|P ′| ≤ ε2n + 2ε(1 − ε2)n ≤ 3εn. Now
suppose we assign all points of P from c to p. Let us see the change in cost. The distance the
points in B2 have to travel decreases by at least d(c, p) − 2εR. The increase in the distance
for points outside B2 is at most d(c, p). So the overall decrease in cost is at least

|B2|(d(c, p) − 2εR) − (n − |B2|)d(c, p) > 0

if we use |B2| ≥ n(1 − 3ε) and d(c, p) ≥ 4εR. This yields a contradiction because c is the
optimal center. Thus we are done in this case as well.

This proves Theorem 5.4.

Thus we have shown the existence of the random sampling procedure.

5.2 Tightness Property

We now show the tightness property.

Lemma 5.5. The k-median clustering problem, having cost function f1(Q,x) =
∑

q∈Q d(q, x) sat-
isfies the tightness property.

Proof. We need to show the existence of the desired set S.
Consider the closest pair of centers between the sets C̃i\C ′

i and C ′
i – let these centers be cl and

c′r respectively. Let t = d(cl, c
′
r). Let S be the set of points B(c′1, t/4) ∪ · · · ∪ B(c′i, t/4), i.e., the

points which are distant at most t/4 from C ′
i = {c′1, . . . , c′i}.

Clearly, S is contained in P ′
1 ∪ · · · ∪ P ′

i . This shows (a). Also, for any x ∈ S, x′ ∈ P − S,
d(x, {c′1, . . . , c′i}) ≤ d(x′, {c′1, . . . , c′i}). This proves (b).

Suppose P − S contains more than |Pl|/α points of P ′
1 ∪ · · · ∪P ′

i . In that case, these points are

assigned to centers at distance at least t/4. It follows that OPTk(P, C̃i) is at least t|Pl|
4α . This implies

that t|Pl| ≤ 4αOPTk(P, C̃i). But then if we assign all the points in Pl to c′r, the cost increases by at
most

|Pl|t ≤ 4αOPTk(P, C̃i) ≤ 4α(1 + α/k)iOPTk(P) ≤ 4α(1 + α/k)kOPTk(P) ≤ 12αOPTk(P).

21

But this contradicts the fact that P is (k, α)-irreducible for δ = 12. This proves the tightness
property.

5.3 Applications to the 1-median Problem

In this section, we present an algorithm for the 1-median problem. Given a set of n points in ℜd,
the algorithm with constant probability produces a solution of cost at most (1 + ε) of the optimal

cost for any constant ε > 0. The running time of the algorithm is O(21/εO(1)
d), assuming that it is

possible to randomly sample a point in constant time.
Our algorithm is based on the following idea presented by Indyk [15].

Lemma 5.6. [15] Let X be a set of n points in ℜd. For a point a ∈ ℜd and a subset Q ⊆ X, define
SQ(a) =

∑
x∈Q d(a, x) and S(a) = SX(a). Let ε be a constant, 0 ≤ ε ≤ 1. Suppose a and b are two

points such that S(b) > (1 + ε)S(a). Then, for a random sample Q obtained from X,

Pr

∑

x∈Q

d(a, x)≥
∑

x∈Q

d(b, x)

 < e−ε2|Q|/64.

We now show the existence of a fast algorithm for approximating the optimal 1-median solution.

Theorem 5.7. Let P be a set of n points in ℜd, and let ε be a constant, 0 < ε < 1. There exists
an algorithm which randomly samples a set R of O((1

ε)O(1)) points from P . Using this sample only,
it finds a point p such that f(P, x) ≤ (1 + O(ε))OPT1(P) with constant probability (independent of

ε). The time taken by the algorithm to find such a point p from R is O(2(1/ε)O(1)
d).

Proof. We first randomly sample a set R1 of O((1
ε)O(1)) points from P and using Theorem 5.4,

construct a set core(R1) of O(2(1/ε)O(1)
) points such that with constant probability, there is a point

x ∈ core(R1) satisfying f(P, x) ≤ (1 + O(ε))OPT1(P).
Now we randomly sample a set R2 of O((1/ε)O(1)) points and find the point p ∈ core(R1) for

which SR2(p) = f1(R2, p) is minimum. By Lemma 5.6, p is with constant probability a (1 + O(ε))-
approximate median of P .

Clearly, the time taken by the algorithm is O(2(1/ε)O(1)
d).

Also note that we can boost the success probability to an arbitrarily small constant by selecting
a large enough (yet constant) sample R.

6 Discrete k-means Clustering

This is the same as the k-means problem with the additional constraint that the centers must be
chosen from the input point set only. The tightness property follows from Lemma 3.10. We now
exhibit the Random Sampling Procedure for this problem leading to the following Corollary to
Theorem 4.7.

Corollary 6.1. Given a point set P of n points in ℜd, a (1+ε)-approximate solution to the discrete

k-means clustering problem can be found in time O(2(k/ε)O(1)
dn), with constant probability.

22

6.1 Random Sampling Procedure

We first show that given a good approximation to the center of the optimal (continuous) 1-means
problem, we can get a good approximation to the center of the optimal discrete 1-means problem.
Let P be a set of n points in ℜd. Let c be the center of the optimal solution to the (continuous)
1-means problem on P .

Lemma 6.2. Let α be a constant, 0 < α < 1, and c′ be a point in ℜd such that
∑

p∈P d(p, c′)2 ≤ (1+

α)
∑

p∈P d(p, c)2. Let x′ be the point of P closest to c′. Then OPT1(P, {x′})≤(1 + O(
√

α))OPT1(P).

Proof. Let x be the center of the optimal discrete 1-means solution, i.e., OPT1(P, {x}) = OPT1(P).
Let T be the average cost paid by the points of P in the optimal 1-means solution, i.e., T =
P

p∈P d(p,c)2

|P | .

Then OPT1(P) = |P |(T + d(c, x)2) and OPT1(P, {x′}) = |P |(T + d(c, x′)2). From the definition
of c′, we know that d(c, c′)2≤αT .

Notice that

d(c, x′)≤d(c, c′) + d(c′, x′)≤d(c, c′) + d(c′, x)≤2d(c, c′) + d(c, x).

We know that f2(P, x) = |P |(T + d(c, x)2) and f2(P, x′) = |P |(T + d(c, x′)2). So

f2(P, x′) − f2(P, x) = |P |(d(c, x′)2 − d(c, x)2)

≤ |P |
(
(2d(c, c′) + d(c, x))2 − d(c, x)2)

)

≤ 4|P |
(
d(c, c′)2 + d(c, c′)d(c, x)

)

≤ 4|P |
(
αT +

√
αTd(c, x)

)

≤ 4|P |
(
αT +

√
α(T + d(c, x)2)

)

≤ O(
√

α)OPT1(P).

We now show the existence of the random sampling procedure.

Theorem 6.3. Let α be a constant, 0 < α < 1. There exists an algorithm which given a random
sample,R, of O

(
1
α

)
points from P , finds a singleton set core(R) such that with constant probability

the point x ∈ core(R) satisfies f(P, x) ≤ (1+O(
√

α))OPT1(P). Further, the time taken to construct
core(R) from R is O((1

α + n)d).

Proof. Using Lemma 3.3, we can get a point c′ using the random sample R, such that
∑

p∈P d(p, c′)2 ≤
(1+α)

∑
p∈P d(p, c)2. As mentioned in the lemma, we do this by by taking the centroid of a random

sample of O(1/α) points of P . This takes time O(1
α · d).

The rest follows from the previous lemma.

7 Weighted Clustering

In this section, we consider the situation in which each point p has an integral weight wp associated
with it. Let W be the total sum of all the weights and n be the number of distinct points.

Let us look at the cost function for some weighted clustering problems.

• Weighted k-median : f1(Q,x) =
∑

q∈Q wq · d(q, x).

23

• Weighted k-means : f2(Q,x) =
∑

q∈Q wq · d(q, x)2.

For a set of points S, let WS =
∑

s∈S ws be the weighted sum of the points in S.
An important observation is that the solution to the above weighted problems is the same as

the solution to the corresponding unweighted version of the problems where a point p with weight
w is replaced with w points (of unit weight). The algorithm and proofs of the unweighted version
extend with little or no change by virtue of this observation. We outline these extensions below.

The Irreducibility definition and the Closeness Property extend to the weighted version without
any change. The Random Sampling Procedure is modified as follows.

Weighted Random Sampling Procedure : There exists a procedure A that takes as input
a parameter α (a constant), and a set of points R ∈ ℜd of size λα. A produces as output,
another set of points called core(R), of constant size, βα. A satisfies the condition that if R
is a random sample obtained from a weighted set Q, then with constant probability there is
at least one point c ∈ core(R) such that OPT1(Q, {c}) ≤ (1 + α)OPT1(Q). Further the time
taken by A to produce core(R) from R is at most O(ηα · dn), where n is the size (number of
distinct points) of Q and ηα is a constant.

Note that, as in the unweighted case, when we actually apply the Weighted Random Sampling
Procedure, the set Q will not be explicitly known - instead a superset P ⊇ Q will be given. We will
sample a slightly larger set of points from P and then isolate a subset of points of Q to be supplied
to the Weighted Random Sampling Procedure. Our sampling/isolation procedure must additionally
satisfy the condition that any point set obtained from the underlying set Q after sampling/isolation
must be equiprobable amongst all the point sets of the same size in Qm (obtained with replacement)
where Qm is the multiset obtained by replacing each weighted point p ∈ Q by wp points.

We now extend the Superset Sampling Procedure to the weighted problem, provided that the
total weight of the subset Q is a constant fraction of the total weight of P . To do this we perform
weighted sampling, i.e., while sampling every point, a point p is picked with probability wp/W . We
then isolate a subset of Q by enumerating all subsets of the sample.

Weighted Superset Sampling Procedure : This procedure takes as input a parameter α
(a constant), another parameter 0 < θ ≤ 1 (also a constant) and a set of points P ∈ ℜd, such
that WQ ≥ θWP , where |Q| ⊆ P is fixed but not explicitly specified. It produces as output

another set of points called WCEN(P,α, θ), of constant size O(2(λα
θ

)
O(1)

βα), such that with
constant probability there is at least one point c ∈ WCEN(P,α, θ) such that OPT1(Q, {c}) ≤
(1 + α)OPT1(Q).

This Procedure works as follows. It takes a weighted sample S of size O(4λα
θ) from P . It

then considers all possible subsets of size λα of S. There are O(2(λα
θ

)
O(1)

) of these. For each
of these subsets S′, it generates a candidate center set for the 1-center for the clustering
problem using the Weighted Random Sampling Procedure, A. It returns the union of all these
candidate center sets.

The following lemma shows that one of the subsets considered by the Weighted Superset Sam-
pling Procedure must give a close enough approximation to the optimal 1-center solution for Q.

Lemma 7.1. (Weighted Superset Sampling Lemma) Let core(S′) be the center set generated using
the Weighted Random Sampling Procedure on sampled subset S′. Then, the following event happens
with constant probability

min
c′∈core(S′):S′⊂S,|S′|=λα

f(Q, c′) ≤ (1 + α)OPT1(Q).

24

Proof. With constant probability, S contains at least λα points from Q, the required sample size.
Moreover this set S′ of λα points is equiprobable amongst all the point sets of the same size in
Qm (obtained with replacement) where Qm is the corresponding multiset obtained by replacing
a weighted point p ∈ Q with wp points. The rest follows from the Weighted Random Sampling
Procedure for the clustering problem.

For the Tightness Property, the size of the set is substituted with the weight of the set. We
restate this property below.

Weighted Tightness Property: Let P be a set of points which is (k, α)-irreducible for
some constant α. Consider an optimal solution to C(f, k) on P – let C = {c1, . . . , ck} be
the centers in this solution. Suppose we have a set of i points C ′

i = {c′1, . . . , c′i}, such that

OPTk(P, C̃i) ≤ (1 + α/k)iOPTk(P), where C̃i = {c′1, . . . , c′i, ci+1, . . . , ck}. Let P ′
1, . . . , P

′
k be the

partitioning of P if we choose C̃i as the set of centers (in other words this is the Voronoi
partitioning of P with respect to C̃i). We assume w.l.o.g. that P ′

i+1 be the largest cluster
amongst P ′

i+1, . . . , P
′
k. Then there exists a set of points S such that the following conditions

hold :

(a) S is contained in P ′
1 ∪ . . . ∪ P ′

i .

(b) Let x ∈ S, x′ ∈ P − S. Then, d(x, {c′1, . . . , c′i}) ≤ d(x′, {c′1, . . . , c′i}).

(c) P − S contains at most
WP ′

i+1

αO(1) points of P ′
1 ∪ . . . ∪ P ′

i .

It is important to note here that given a Random Sampling Procedure for an unweighted clus-
tering problem, the corresponding Weighted Random Sampling Procedure for the weighted version
of the problem can be simply obtained by performing weighted sampling as described above. Sim-
ilarly, it is easy to see that the Weighted Superset Sampling Procedure and the Weighted Tightness
Property translate into the Superset Sampling Procedure and the Tightness Property for the corre-
sponding unweighted version of the problem.

7.1 The Weighted Algorithm

The algorithm extends to the weighted version as follows. The algorithm k-clustering remains
unchanged. The algorithm Irred-k-clustering is modified as shown in Figure 7. We call the weighted
version of this algorithm, the Weighted-Irred-k-clustering algorithm.

Step 2 is modified to perform weighted random sampling. Based on the Weighted Superset
Sampling Lemma, now sampling can be performed for a set only if the remaining points have at
most double the weight (instead of double the number of points). Therefore, in Step 3(b), we only
eliminate points constituting half the remaining weight (instead of half the remaining points). We
assign these points to the nearest centers in C and recursively compute Irred-k-clustering on the
remaining set.

7.2 Analysis and Proof of Correctness

We will show that the weighted algorithm mimics the steps performed by the unweighted algorithm
on the unweighted version of the problem, with the exception of certain optimizations that lead to
improved running time.

We now prove correctness of the weighted algorithm.

25

Algorithm Weighted-Irred-k-clustering(Q, m, k, C, α,Sum)
Inputs : Q: Remaining point set, m: number of cluster centers yet to

be found, k: total number of clusters,
C: set of k − m cluster centers found so far,
α: approximation factor, Sum: the cost of assigning points in P − Q

to the centers in C
Output : The clustering of the points in Q in k clusters.

1. If m = 0
Assign the points in Q to the nearest centers in C.
Sum = Sum + The clustering cost of Q.
Return the clustering.

2. Use the Weighted Superset Sampling procedure and for each center c ∈ WCEN(Q, α/k, αO(1)/k)
Obtain the clustering Weighted-Irred-k-clustering(Q, m− 1, k, C ∪ {c}, α, Sum).

3. (a) Consider the points in Q in ascending order of distance from C.
(b) Let U be the first j points in this order such that

WU ≥ WQ/2 > WU − wpj
, where pj is the jth point in this sequence

(c) Assign the points in U to the nearest centers in C.
(d) Sum = Sum + The clustering cost of U .
(e) Compute the clustering Weighted-Irred-k-clustering(Q− U, m, k, C, α,Sum).

4. Return the clustering which has minimum cost.

Figure 7: The weighted irreducible k-clustering algorithm

Theorem 7.2. Suppose a weighted point set P is (k, α)-irreducible. Then the algorithm
Weighted-Irred-k-clustering(P, k, k, ∅, α, 0) returns a solution to the clustering problem C(f, k)
on input P of cost at most (1 + α)OPTk(P) with probability γk, where γ is a constant.

Proof. Note that the modifications in Step 2, namely weighted sampling for application of the
Weighted Superset Sampling Procedure and the Weighted Random Sampling Procedure correspond to
unweighted sampling for application of the Superset Sampling Procedure and the Random Sampling
Procedure on the unweighted problem. Therefore the weighted algorithm mimics this step of the
unweighted algorithm exactly.

In Step 3, as the Weighted Tightness Property implies Tightness Property in the corresponding
unweighted problem, we can remove half the remaining weight in order to get a factor 2 approxi-
mation to the set P̄ ∩ Q as was done in the unweighted version of the problem.

However, a careful look at Step 3(b) seems to suggest that we may be removing extra points in
the corresponding unweighted algorithm since we are removing all the points that have the same
coordinates as the point that divides Q into two equal sized partitions in order of distances from
the known centers. We prove below that we are justified in removing these extra points, in the
corresponding unweighted version of the problem.

Let Xp denote the set of (multiset) points in the unweighted problem corresponding to the point
p in the weighted problem. Note that wp = |Xp|. Consider Xpj (of Step 3(b)) in the unweighted
clustering problem. Then by Observation 3.2, either Xpj ⊆ S or Xpj ∩ S = φ. If Xpj ⊆ S, then
Q is already a factor 2 approximation of P̄ ∩ Q, since WU − wpj < WQ/2. Hence, the next center
is discovered using random sampling in Step 2 of the algorithm. Otherwise, Xpj ∩ S = φ. In this
case, clearly by eliminating the whole of Xpj in Step 3(b) of the algorithm, we do not remove any
point of P̄ ∩ Q.

26

Therefore the correctness of the weighted algorithm on a weighted point set follows from the
correctness of the corresponding unweighted algorithm when run on the corresponding unweighted
instance of the problem.

We now establish the running time of the weighted algorithm.

Theorem 7.3. The algorithm Weighted-Irred-k-clustering when called with parameters (P, k, k, ∅, α, 0)

runs in time O(2(k/α)O(1)
dn logk W), where n = number of distinct points in P and W = total weight

of the point set P .

Proof. Let T (n,m,W) be the running time of the weighted algorithm on input (Q,m, k,C, α,Sum)
where n = number of distinct points in Q and W = total weight of the point set Q. Note that in
application of the Weighted Random Sampling Procedure in Step 2, we can perform the weighted
random sampling in time O(λα/k · k

αO(1) ·n). This can be done by computing the cumulative weights
of the weighted points, Q, in an array of size n, then generating a random number in the range 1 to
WQ and picking the corresponding point based on the cumulative weights array. Then we obtain

u(k, α) subsets of the sample, where u(k, α) = O(2(λα/k
k
α

)O(1)
). Computation of the candidate

center set from any set S′ takes O(ηα/k · nd) time. Steps 3(a)-(d) take O(nd) time. Also note that
in Step 3(b), at least one distinct point is removed. Therefore we get the recurrence

T (n,m,W) = O(u(k, α) · βα/k)T (n,W,m − 1) + T (n − 1,W/2,m) + O(u(k, α) · ηα/k · nd).

Let λα = O(1/αO(1)), βα = O(2(1/α)O(1)
) and ηα = O(2(1/α)O(1)

). Choose c =
O(2(k/α)γ

) to be large enough, for a suitable constant γ, such that

T (n,m,W) ≤ c · T (n,m − 1,W) + T (n − 1,m,W/2) + c · nd.

We claim that T (n,m,W) ≤ cm · 23m2 · nd · logm W . The proof is by induction. We show the
inductive step here. Suppose that the claim holds for T (n′,m′,W ′) ∀n′ < n,∀m′,∀W ′, it holds for
T (n′,m′,W ′) ∀n′,∀m′ < m,∀W ′ and it holds for T (n′,m′,W ′) ∀n′,∀m′,∀W ′ < W . Then, we are
required to show that

cm ·23m2 ·nd · logm W ≥ c · cm−1 ·23(m−1)2 ·nd · logm−1 W + cm ·23m2 · (n−1)d · (log W −1)m + c ·nd.

For this, it suffices to show that

23m2
logm W ≥ 23(m−1)2 logm−1 W + 23m2−1(log W − 1)m + 1.

We know that
ak ≥ ak−1 + (a − 1)k

(follows from the identity ak − bk = (a − b)(ak−1 + ak−2b + ... + bk−1) by setting b = a − 1).
Therefore, we get that

23m2
logm W ≥ 23m2

logm−1 (W) + 23m2
(log W − 1)m

≥ 23(m−1)2 logm−1 W + 23m2−1(log W − 1)m + 1 for m ≥ 1

It follows that T (n, k,W) is O(2(k/α)O(1)
dn logk W) when λα = O(1/αO(1)), βα =

O(2(1/α)O(1)
) and ηα = O(2(1/α)O(1)

).

Using these theorems, we get the final result for the weighted problem.

27

Theorem 7.4. For a clustering problem satisfying the Closeness Property, Weighted Tightness
Property and for which there exists a Weighted Random Sampling Procedure, a (1+ε)-approximate

solution for a weighted point set P in ℜd can be found in time O(2(k/α)O(1)
dn logk W), with constant

probability.

Proof. The proof is along the same lines as Theorem 4.7 based on Theorems 7.2 and 7.3.

The following corollary follows from our arguments for the extensions to the general properties
for weighted clustering problems.

Corollary 7.5. Given a point set P of n points in ℜd with total weight W , (1 + ε)-approximate
solutions to the weighted k-means clustering, weighted k-median clustering and the weighted discrete
k-means clustering problems can be found in time O(2(k/α)O(1)

dn logk W), with constant probability.

8 Conclusions

We presented a generic framework that solves a large class of clustering problems satisfying certain
properties in time linear in the size of the input for fixed values of k and d. We showed that the
k-means clustering, the k-median clustering and the discrete k-means clustering, all satisfy the
given properties and therefore admit of the linear time algorithms.

It remains open whether or not the discrete k-median clustering problem belongs to this class of
clustering problems. In particular, the existence of a Random Sampling procedure for the discrete
k-median clustering problem is not yet known.

We illustrate below by means of an example, that the strategy used in the discrete k-means
clustering, of first finding an approximate (continuous) center and then selecting the closest discrete
point to this approximate center does not work for the case of the discrete k-median clustering
problem. More precisely, we show that for a point set P , the discrete point closest to the non-
discrete 1-median may have cost arbitrary larger than the cost of the optimal discrete 1-median.

Consider a set P1 consisting of 3n points placed on the vertices of an equilateral triangle with
n points on each vertex. The coordinates of the vertices of the triangle are (0, 2a/

√
3), (a,−a/

√
3)

and (−a,−a/
√

3). Consider another set P2 consisting of 3 points placed on the vertices of another
equilateral triangle with 1 point on each vertex. The coordinates of this triangle are (0,−2a′/

√
3),

(a′, a′/
√

3) and (−a′, a′/
√

3) (see figure 8). The optimal 1-median for both P1 and P2 happens to be
the origin (0, 0). Therefore the optimal 1-median for P = P1 ∪P2 is also the origin. Let a′ = a− δ,
where δ is an infinitely small number. For ease of computation, we will consider a′ = a. The reason
for having a different value of a′ is only to ensure that the points of P2 are closer to the origin than
the points of P1. Now, the optimal (non-discrete) 1-median cost of P is 2

√
3a(n+1). The cost of the

1-median solution when the center is at a vertex corresponding to P1 is 4an + 8a/
√

3 and the cost
of the 1-median solution when the center is at a vertex corresponding to P2 is 4a + 8an/

√
3. Note

that the discrete points of P2 are closer to the optimal (non-discrete) 1-median than the discrete
points of P1. Therefore if we pick the discrete point closest to the non-discrete 1-median, we can
get a solution that has cost arbitrarily larger than the cost of the optimal discrete 1-median cost.

Note that the optimal 1-mean of the points set also happens to be the origin. However, the
cost of the 1-means solution when we pick any center from P1 is 4(2n + 1)a2 + 4(a − δ)2 whereas
for a center from P2 it is 4a2n + 4(n + 2)(a− δ)2. Thus, the cost is always lower for a point that is
closer to the optimal 1-mean of the point set.

Thus, the strategy used in approximating the discrete 1-mean center, of approximating the
(non-discrete) 1-center and then selecting the discrete point closest to it, does not work for the
1-median problem.

REFERENCES 28

S1

(0,0)

S2

S3

S4S5

n

S6

n

n

1 1

1

Figure 8: Bad example for discrete 1-median clustering

In a recent development, Ke Chen [6] showed that we can obtain small coresets for k-median
clustering in metric spaces as well as in Euclidean spaces. Specifically, in ℜd, the coresets are of
size with only polynomial dependence in d. Ke Chen shows that combining these coresets with
our result leads to a (1 + ε)-approximation algorithm for k-median clustering in ℜd, with running

time O(ndk + 2(k/ε)O(1)
d2nσ), for any σ > 0. An interesting open problem is whether there exist

coresets for the k-median or k-means clustering problems of size independent of n and having only
polynomial dependence in d.

Another interesting open problem is to find a PTAS for the k-means clustering problem, even
for fixed dimensions.

We also leave open the problem of finding linear time clustering algorithm with running time
O(2O(k/ε)nd). We would also like to note that such an algorithm was recently given by Ostrovsky
et. al. [20], but their analysis requires the input instances to satisfy a crucial “separation property”.

References

[1] S. Arora, Polynomial time approximation schemes for Euclidean TSP and other geometric
problems, Journal of the ACM, 1996, pp. 2-11.

[2] S. Arora, P. Raghavan and S. Rao, Polynomial time approximation schemes for the Euclidean
k-median problem, 30th Annual Symposium on Theory of Computing, 1998.

[3] M. Badoiu, S. Har-Peled and P. Indyk, Approximate clustering via core-sets, 34th Annual
Symposium on Theory of Computing 2002, pp. 250-257.

[4] M. Bern and D. Eppstein, Approximation algorithms for geometric problems, D. S. Hauchbaum,
editor, Approximating algorithms for NP-Hard problems. PWS Publishing Company, 1997.

REFERENCES 29

[5] A. Broder, S. Glassman, M. Manasse and G. Zweig, Syntactic clustering of the Web, 6th Int’l
World Wide Web Conf (WWW), 1997, pp. 391-404.

[6] Ke Chen, On k-median clustering in high dimensions. In 17th Annual Symposium on Discrete
Algorithms, 2006, pages 1177–1185.

[7] S. Dasgupta, The hardness of k-means clustering, Technical Report CS2007-0890, University
of California, San Diego, 2007.

[8] W. F. de la Vega, M. Karpinski, C. Kenyon and Y. Rabani, Approximation schemes for
clustering problems, 35th Annual Symposium on Theory of Computing, 2003, pp. 50-58.

[9] S. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas and R. A. Harshman, Indexing by
latent semantic analysis, Journal of the Society for Information Science, 41(6):391-407, 1990.

[10] R. O. Duda, P. E. Hart and D. G. Stork, Pattern Classification, Wiley-Interscience, New York,
2nd edition, 2001.

[11] C. Faloutsos, R. Barber, M. Flickner, J. Hafner, W. Niblack, D. Petkovic and W. Equitz,
Efficient and effective querying by image content, Journal of Intelligent Information Systems,
3(3):231-262, 1994.

[12] V. Guruswami and P. Indyk, Embeddings and non-approximability of geometric problems, 14th
Annual Symposium on Discrete Algorithms, 2003, pp. 537-538.

[13] S. Har-Peled and S. Mazumdar, Coresets for k-Means and k-Median Clustering and their
Applications, 36th Annual Symposium on Theory of Computing, 2004, pp. 291-300.

[14] M. Inaba, N. Katoh and H. Imai, Applications of Weighted Voronoi Diagrams and Random-
ization to Variance-Based k-Clustering, 10th Annual ACM Symposium on Computational Ge-
ometry, 1994, pp. 332-339.

[15] P. Indyk, High Dimensional Computational Geometry, Ph.D. Thesis, Department of Computer
Science, Stanford University, September 2004.

[16] S. Kolliopoulos and S. Rao, A nearly linear time approximation scheme for the Euclidean
k-medians problem, SIAM Journal of Computing, 37(3), 2007, pp. 757-782.

[17] A. Kumar, Y. Sabharwal and S. Sen, A simple linear time (1 + ε)-approximation algorithm
for k-means clustering in any dimensions, 45th Annual IEEE Symposium on Foundations of
Computer Science 2004, pp. 454-462.

[18] A. Kumar, Y. Sabharwal and S. Sen, Linear Time Algorithms for Clustering Problems in Any
Dimensions., International Colloquium on Automata, Languages and Programming, 2005, pp.
1374-1385.

[19] J. Matoušek, On approximate geometric k-clustering, Discrete and Computational Geometry,
24, 2000, pp. 61-84.

[20] R. Ostrovsky, Y. Rabani, L. J. Schulman and C. Swamy, The Effectiveness of Lloyd-Type
Methods for the k-Means Problem, 47th Annual IEEE Symposium on Foundations of Computer
Science 2006, pp. 165–176.

REFERENCES 30

[21] Yogish Sabharwal and Sandeep Sen. A linear time algorithm for approximate 2-means clus-
tering. Comput. Geom., 32(2):159–172, 2005.

[22] M. J. Swain and D. H. Ballard, Color indexing, International Journal of Computer Vision,
7:11-32, 1991.

