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We consider lepton flavor violating Higgs decay, specifically h → µτ , in a lepto-

quark model. We introduce two scalar leptoquarks with the SU(3)c×SU(2)L×U(1)Y

quantum numbers, (3, 2, 7/6) and (3, 2, 1/6), which do not generate dimension-4 op-

erators mediating proton decay. They can mix with each other by interactions with

the standard model Higgs. The constraint from the charged lepton flavor violat-

ing process, τ− → µ−γ, is very strong when only one leptoquark contribution is

considered. However, we demonstrate that significant cancellation is possible be-

tween the two leptoquark contributions. We show that we can explain the CMS

(ATLAS) excess in h → µτ . We also show that muon (g − 2) anomaly can also be

accommodated.
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I. INTRODUCTION

Leptoquarks (LQs) are scalar particles which carry both baryon and lepton numbers [1].

They appear in gauge theories with “unified” gauge groups, such as Pati-Salam model,

SU(5) grand unification, etc.

Since LQs are strongly interacting particles which can decay semileptonically, their masses

are strongly bounded by the LHC experiments, such as ATLAS and CMS. For the third-

generation scalar LQs, the ATLAS group excludes the mass in the range mLQ < 625GeV

and 200GeV < mLQ < 640GeV at 95% confidence level (C.L.) based on their 8 TeV data,

assuming 100% branching fractions into bντ and tντ , respectively [2]. On the other hand,

the CMS group had reported various 8TeV bounds at 95% C.L. on mLQ as mLQ > 740GeV,

mLQ > 650GeV and mLQ > 685GeV with assumptions of 100% branching fractions into bτ ,

tντ and tτ , respectively [3, 4].

We note that the CMS excess of eejj and eνjj [5] can also be interpreted as a signal

of the first generation LQ with mass about 650 GeV. An example of detailed study of LQ

models for the excess can be found in [6].

In the standard model (SM), lepton flavor violating (LFV) Higgs decay channels are

absent at tree level and highly suppressed by small neutrino masses and the GIM mechanism

at loop level. Therefore, once they are observed with sizable branching fractions, they

indicate a clear signal of new physics beyond the SM. The CMS collaboration reported the

LFV Higgs decay branching fraction, using the 19.7 fb−1 of
√
s = 8 TeV,

B(h → µτ) = (0.84+0.39
−0.37)%, (I.1)

which deviates 2.4σ from zero [7]. Here, µτ means the inclusive final state consisting of

µ+τ− and µ−τ+. Although recent ATLAS measurement, using the 20.3 fb−1 of
√
s = 8 TeV,

B(h → µτ) = (0.77± 0.62)%, (I.2)

does not show a significant deviation from the SM [8], it is at least consistent with the

CMS result. If confirmed by the future data at LHC Run II which can probe down to

∼ 10−3, it would be a clear signal requiring new physics beyond the SM. There are several

model-independent [9–21] and also model-dependent studies [22–38] to accommodate this

deviation.
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The theoretical and experimental sensitivity of the anomalous magnetic moment of the

muon, i.e. (g−2)µ, has reached to probe the electroweak scale. State of the art calculations in

the SM cannot explain the experimental result, and there is about 3σ discrepancies between

them [39, 40]:

∆aµ = aexpµ − aSMµ = (299± 90 to 394± 84)× 10−11, (I.3)

which also calls for new physics models.

In this paper we consider a LQ model as an explanation of the LFV Higgs decay, h → µτ

and muon (g − 2) anomaly. Considering the proton decay constraints, only two types of

SU(2)L doublet leptoquarks are favored. We assume both of them are realized in nature.

We first show that a strong constraint from τ− → µ−γ can be alleviated significantly due

to cancellations between the top and bottom quark contributions.1 We show that there is

allowed parameter space to accommodate the h → µτ anomaly and (g−2)µ. A smoking gun

signal which distinguishes our model from other models would be the direct LQ production

at colliders. A promising signature at the LHC is the pair production of LQs decaying into

a quark and a lepton, where the decay pattern is so characteristic. Especially, components

with +2/3 electric charge, named as Y1 and Y2 later, should be relatively light and couple

to the bottom quark, the electron and the muon for the explanation of the excess in h → µτ

and the muon (g−2) with circumventing the bound from τ− → µ−γ. Therefore, the smoking

gun final states in our model are bb τ−τ+ and bb µ−µ+.

The paper is organized as follows. In Sec. II, we introduce our model. In Sec. III, we

consider τ− → µ−γ constraint. In Sec. IV, we consider h → µτ signal. In Sec. V, we show

that we show that we can accommodate (g − 2)µ. In Sec. VI, we summarize and conclude.

II. THE MODEL

Among the possible LQs which have renormalizable interactions with the SM fermions,

only R2 and R̃2 in the notation of [1] do not have problem with the constraint from the proton

decay within renormalizable perturbation theory [6, 41]. They are in the representation

R2(3, 2, 7/6), R̃2(3, 2, 1/6), (II.1)

1 Note that similar discussions in the context of LQs are found in [30, 36].
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in the SM gauge group SU(3)C × SU(2)L × U(1)Y .
2

Assuming both of them exist in nature at renormalizable level, they interact with quarks

and leptons via the interaction Lagrangian

L = −λij
u u

i
RR

T
2 ǫ L

j
L − λij

e e
i
RR

†
2Q

j
L − λij

d d
i

RR̃
T
2 ǫ L

j
L + h.c., (II.2)

where we have suppressed color indices and ǫ (≡ iσ2) is the two-by-two antisymmetric matrix

with ǫ12 = 1. The scalar potential is given by

V = µ2
H |H|2 + µ2

2|R2|2 + µ̃2
2|R̃2|2

+ λH |H|4 + λ2|R2|4 + λ̃2|R̃2|4 + λHR|H|2|R2|2 + λ̃HR|H|2|R̃2|2

+ λH2R
†
2HH†R2 + λ̃H2R̃

†
2HH†R̃2 +

(
λmixR

†
2HR̃2ǫH + h.c.

)
, (II.3)

where H(1, 2, 1/2) is the SM Higgs doublet. R2 and R̃2 fields can be decomposed into SU(2)L

components,

R2 =


 V

Y


 , R̃2 =


 Ỹ

Z̃


 . (II.4)

After the Higgs gets vacuum expectation value (vev), v (≃ 246GeV), we can write

H =



 0

1√
2
(v + h)



 , (II.5)

in the unitary gauge. Then, the masses of V and Z̃ are given by

m2
V = µ2

2 +
1

2
λHRv

2, m2

Z̃
= µ̃2

2 +
1

2
λ̃HRv

2 +
1

2
λ̃H2v

2. (II.6)

The mass terms of Y and Ỹ are written as

Lmass(Y, Ỹ ) = −
(
Y † Ỹ †

)

 µ2

2 +
1
2
λHRv

2 + 1
2
λH2v

2 1
2
λmixv

2

1
2
λmixv

2 µ̃2
2 +

1
2
λ̃HRv

2





 Y

Ỹ


 . (II.7)

2 In the case of non-SU(2)L-doublet LQs, we can write down gauge-invariant dimension-four operators

generating rapid proton decay. The SU(2)L doublet ones do not allow such dangerous operators at

renormalizable level. However, as discussed in [6, 41], constraints from dimension-five effective operators

(generating proton decay) are still severe, where mLQ should be greater than around 105TeV even when

the cutoff scale is equal to the Planck scale. A remedy for reducing mLQ is to introduce a new symmetry

prohibiting the operators. In this paper, we do not consider constraints from the proton decay caused by

higher dimensional operators.
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The mass eigenstates, Y1, Y2 (with the electromagnetic charge +2/3) are mixture of Y and

Ỹ with mixing angle αY ,


 Y

Ỹ



 =



 cY sY

−sY cY







 Y1

Y2



 ≡ O



 Y1

Y2



 , (II.8)

where cY = cosαY , sY = sinαY .

As we will see, large αY and large mass splitting between V and Yi are favored to satisfy

the experimental constraints and also to enhance h → µτ . Concretely speaking, the relation

mYi
∼ mV /6 will be imposed to avoid the bound from τ− → µ−γ naturally with sizable

couplings, which are required for explanations of the excess in h → µτ .

Here, we look into the mass matrix in Eq. (II.7) and discuss whether we can realize the

mass hierarchy as mYi
∼ mV /6 with a large mixing in αY in our setup. A key point is that

the (1, 1) component of the mass matrix is rephrased as m2
V + 1

2
λH2v

2. Then, when the

following relations are realized,

m2
V , λH2v

2 > λmixv
2, µ̃2

2 +
1

2
λ̃HRv

2, (II.9)

and a cancellation occurs between m2
V and 1

2
λH2v

2 with a negative λH2, the relation mYi
∼

mV /6 (i = 1, 2) can be realized. In addition, if the off-diagonal terms are comparable with

diagonal ones, a large mixing angle in αY is expected. For example, if the (1,1) and (2,2)

components are of similar size with ∼ O(1) TeV2 and λmix ∼ 10, we get mY1,2
& 0.7 TeV

and a maximal αY , which can obviously avoid the current direct search bound on third

generation LQs. However, when mV is multi TeV, a realization of such cancellation between

m2
V and 1

2
λH2v

2 would get to be nontrivial within perturbative λH2. To further enhance

mass difference between V and Yi and/or the mixing angle αY , we can implicitly assume

additional contributions via higher dimensional operators such as

φ

Λ
R†

2HH†R2,
φ

Λ
R†

2HR̃2ǫH, (II.10)

where φ is a new singlet with a large vev as 〈φ〉 > Λ.

Although there is no apparent symmetry which leads to the mass ratio mYi
∼ mV /6,

the UV complete grand unified theory (GUT) or flavor theory into which our low energy

effective theory is embedded have larger symmetry and we expect they guarantee the mass

ratio without fine tuning. The high energy theory will also generate the dimension-five

operators in (II.10).
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τ µ

V (Yi)

t(b)

FIG. 1: Feynman diagrams for τ− → µ−γ. The photon line can be attached to any charged

particles, and there are four possibilities.

Finally, we comment on the case with a small mixing angle αY , which corresponds to

the possibility that no sizable cancellation occurs between the terms m2
V and 1

2
λH2v

2. Even

in this case, (at least) one mass eigenstate can be light as the relation mYi
∼ mV /6 being

fulfilled. But, as we will see in Sec. III, we should accept a larger hierarchy between two

leptoquark couplings to circumvent the bound from τ− → µ−γ. To make matters worse, as

discussed in Sec. IV, such hierarchical couplings are inappropriate for explaining the excess

in h → µτ .

III. τ− → µ−γ

In this section, we consider the constraints from the charged lepton flavor violating pro-

cesses. Since we are interested in 2 ↔ 3 transitions, we restrict ourselves only to τ− → µ−γ

decay. Our study can be applied to other LFVs, such as µ− → e− or τ− → e− transitions,

similarly. However, we assume they are sufficiently suppressed by small LFV couplings.

The effective Hamiltonian for τ− → µ−γ is written as

Heff = Cγ
R µLσ

µνFµντR + Cγ
L µRσ

µνFµντL, (III.1)

where Cγ
R,L are Wilson coefficients and Fµν (= ∂µAν − ∂νAµ) is the photon field strength

tensor.

The Feynman diagrams for τ− → µ−γ are shown in Fig. 1. We note that in our model,

the chirality flip appearing in (III.1) can occur inside the loop. Therefore the amplitudes

can be proportional to mt or mb instead of small masses from the external lines, mτ or mµ.

This is the main reason that this LFV process becomes a very strong constraint in ordinary
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third generation LQ models.

The Wilson coefficients Cγ
R,L can be calculated from the diagrams in Fig. 1:

Cγ
R =

Nce

32π2m2
V

[(
λ23
e λ33∗

e mµ + λ32∗
u λ33

u mτ

)(2
3
I1(x) +

5

3
J1(x)

)
+ λ32∗

u λ33∗
e mt

(2
3
I2(x) +

5

3
J2(x)

)]

+
∑

j=1,2

Nce

32π2m2
Yj

[(
λ23
e λ33∗

e O2
1jmµ + λ32∗

d λ33
d O2

2jmτ

)(
− 1

3
I1(yj) +

2

3
J1(yj)

)

+ λ32∗
d λ33∗

e O1jO2jmb

(
− 1

3
I2(yj) +

2

3
J2(yj)

)]
,

Cγ
L =

Nce

32π2m2
V

[(
λ32∗
u λ33

u mµ + λ23
e λ33∗

e mτ

)(2
3
I1(x) +

5

3
J1(x)

)
+ λ23

e λ33
u mt

(2
3
I2(x) +

5

3
J2(x)

)]

+
∑

j=1,2

Nce

32π2m2
Yj

[(
λ32∗
d λ33

d O2
2jmµ + λ23

e λ33∗
e O2

1jmτ

)(
− 1

3
I1(yj) +

2

3
J1(yj)

)

+ λ23
e λ33

d O1jO2jmb

(
− 1

3
I2(yj) +

2

3
J2(yj)

)]
, (III.2)

where Nc = 3 is the color factor, x = m2
t/m

2
V , and yi = m2

b/m
2
Yi
. The loop functions are

obtained to be

I1(x) =
2 + 3x− 6x2 + x3 + 6x log x

12(1− x)4
,

J1(x) =
1− 6x+ 3x2 + 2x3 − 6x2 log x

12(1− x)4
,

I2(x) =
−3 + 4x− x2 − 2 log x

2(1− x)3
,

J2(x) =
1− x2 + 2x log x

2(1− x)3
. (III.3)

The branching ratio of τ− → µ−γ is then

B(τ− → µ−γ) =
ττ (m

2
τ −m2

µ)
3

4πm3
τ

(
|Cγ

R|2 + |Cγ
L|2

)
, (III.4)

where ττ = 87.03 µm is the lifetime of τ . The current experimental bound is [42]

B(τ− → µ−γ) < 4.4× 10−8. (III.5)

This corresponds to

|Cγ
R|2 + |Cγ

L|2 <
(
4.75× 10−10

GeV

)2

. (III.6)
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FIG. 2: Contour plots for (λ32
u /λ32

d )∗ which is required for exact cancellations of τ− → µ−γ in

(mY2
,mY1

)-plane through Eq. (III.7). From top-left to bottom, the sine of the mixing angle sinαY

is chosen as 1/
√
2, 0.3 and 0.2, respectively. mV is set as mV = 6mY2

and mY1
is formulated as

mY1
= amY2

by use of the factor a, where the range [1.1, 6.0] is considered in the three plots.

For the discussion of τ− → µ−γ, we assume Cγ
L = 0 for simplicity. If we consider a single

leptoquark contribution from V , B(τ− → µ−γ) gives lower mass bound 0.85, 3.7, 14, 42 TeV,

for λ33
e = 0.001, 0.01, 0.1, 1, respectively, where we took λ32

u = 0.35. With these parameters,

we obtain too small contribution to h → µτ as was noticed in [30].
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Since we introduce both R2 and R̃2, we can have diagrams with the chirality flip inside

the b-quark loop, which generate terms proportional to mb. The Yi − b contributions are

naively expected to be smaller than V − t contribution by factor mb/mt ∼ 1/35. However,

since Cγ
R,L are proportional to mf/m

2
LQ (f = t, b) as can be seen in (III.2), if mYi

∼ mV /6,

cancellations between t and b contributions can occur naturally. Note that a nonzero mixing

between Y and Ỹ is mandatory for a natural cancellation since in the limit sinαY → 0

the contributions being proportional to mb turn out to be zero. Neglecting small terms

proportional to mτ or mµ, an exact cancellation in Cγ
R occurs when the following condition

is held,

λ32∗
u

λ32∗
d

= −
2∑

i=1

O1iO2i

mb

mt

(
mV

mYi

)2 −1
3
I2(yi) +

2
3
J2(yi)

+2
3
I2(x) +

5
3
J2(x)

. (III.7)

In Fig. 2, the values of the ratio (λ32
u /λ32

d )∗ which are required for exact cancellations of

τ− → µ−γ are shown as (mY2
, mY1

)-planes through Eq. (III.7) with the three choices of the

sine of the mixing angle sinαY as 1/
√
2, 0.3 and 0.2.3 Here, mV is set asmV = 6mY2

andmY1

is formulated as mY1
= amY2

by use of the factor a, where the range [1.1, 6.0] is considered

in the three plots. Note that in the case that mY1
and mY2

are completely degenerated,

the two contributions being proportional to mb are exactly canceled out between them and

no cancellation mechanism works in τ− → µ−γ. Here, almost all the shown regions in

Fig. 2 (where sinαY is greater than 0.2), the target values of the ratio (λ32
u /λ32

d )∗ are greater

than 0.05, which means that we can adjust naturally the two couplings for realizing the

cancellation. However, as we will see in the following section, when the ratio (λ32
u /λ32

d )∗ gets

to be small, it is hard to explain the excess of h → µτ .

The Wilson coefficient Cγ
R can be rewritten in terms of the ratio in (III.7), which we will

define as (λ32∗
u /λ32∗

d )cancel,

Cγ
R ≃ Nce

32π2m2
V

λ32∗
u λ33∗

e mt

(2
3
I2(x) +

5

3
J2(x)

)[
1− λ32∗

d

λ32∗
u

(
λ32∗
u

λ32∗
d

)

cancel

]
. (III.8)

This equation shows again that, if λ32∗
d /λ32∗

u = (λ32∗
d /λ32∗

u )cancel, C
γ
R = 0. We can consider

a deviation from the exact cancellation by introducing δ in such a way that λ32∗
d /λ32∗

u =

(λ32∗
d /λ32∗

u )cancel(1 − δ). Then we can take δ as a degree of required tuning for cancellation

3 Note that the sign of sinαY is not important. We can compensate a negative sign by flipping the sign of

the coupling λ32
u

or λ32
d
.
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FIG. 3: The blue region shows the 2σ favored region for h → µτ in (mV , λconv)-plane, where

λconv ≡ |λ32
u λ33

e |. The black contours indicate degrees of the fine tuning defined around Eq. (III.8)

in percentage terms.

in τ− → µ−γ. In Fig. 3, the black lines show a constant contour plot of δ in (mV , λconv(≡
|λ32

u λ33
e |))-plane in percentage terms when we take the upper limit on Cγ

R (with Cγ
L = 0)

in Eq. (III.6). The plot shows that we need fine-tuning at the level of 0.1% to explain the

excess of h → µτ consistently.

IV. h → µτ

The lepton flavor violating Higgs decay is evaluated from the Feynman diagrams shown

in Fig. 4. The divergence in diagram Fig. 4 (a) cancels those in Fig. 4 (c), (d), and the total

result is finite, generating the dimension-four effective operators

Heff(h → µτ) = hµ(CRPR + CLPL)τ +H.c. (IV.1)

The dimensionless effective couplings CR,L are calculated to be

CR = −λ32∗
u λ33∗

e

Ncmt

16π2v

[
Iacd(rt, rh) + Ia(rt, rh)− λHR

v2

m2
V

Ib(rt, rh)

]
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τ µ
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t(b)
τ µ

V (Yi)

t(b)

τ µ

V (Yi)
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τ µ
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t(b)

h h

h h

(a) (b)

(c) (d)

FIG. 4: Feynman diagrams of one-loop correction for H0 − µ− τ vertex.

−λ32∗
d λ33∗

e

Ncmb

16π2v

{
2∑

i=1

O2iO1i

[
Iabc(0, si) + Ia(0, si)

]

−
2∑

i,j=1

O2iO1j(O
TΛO)ji

v2

m2
Yb

Ib2(sij, sj)

}
, (IV.2)

CL = −λ23
e λ33

u

Ncmt

16π2v

[
Iacd(rt, rh) + Ia(rt, rh)− λHX

v2

m2
V

Ib(rt, rh)

]

−λ23
e λ33

d

Ncmb

16π2v

{
2∑

i=1

O2iO1i

[
Iabc(0, si) + Ia(0, si)

]

−
2∑

i,j=1

O2iO1j(O
TΛO)ji

v2

m2
Yb

Ib2(sij, sj)

}
, (IV.3)

with rt = m2
t/m

2
V , rh = m2

h/m
2
V , si = m2

h/m
2
Yi
, sij = m2

Yi
/m2

Yj
, and

Λ ≡


 λHR λmix

λmix λ̃HR


 . (IV.4)

Note that the coupling combinations, λ32∗
u λ33∗

e and λ32∗
d λ33∗

e in CR; λ
23
e λ33

u and λ23
e λ33

d in CL,

are also found in the terms in Cγ
R and Cγ

L for describing primary contributions to τ− → µ−γ,

respectively. But here, no sizable cancellation emerges between terms being proportional
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to mt and mb when we adjust parameters for realizing the cancellation in τ− → µ−γ. We

ignore the apparently irrelevant terms being proportional to mτ or mµ, which arise from

chirality flips in the external lines. The loop functions are

Iacd(rt, rh) = −1

2
− 2

∫
[dx] log

[
x3 + (1− x3)rt − x1x2rh − iε

]

+

∫ 1

0

dx log
[
x+ (1− x)rt − iε

]
,

Ia(rt, rh) =

∫
[dx]

x1x2rh − rt
x3 + (1− x3)rt − x1x2rh

,

Ib(rt, rh) =

∫
[dx]

1

1− x3 + x3rt − x1x2rh
,

Ib2(sij , sj) =

∫
[dx]

1

x1sij + x2 − x1x2sj
, (IV.5)

where
∫
[dx] ≡

∫ 1

0
dx1

∫ 1

0
dx2

∫ 1

0
dx3 δ(1 − x1 − x2 − x3) and ε represents an infinitesimal

positive value.4 The form of the partial width Γh→µ−τ+ is described by use of the Wilson

coefficient CR and CL in Eq. (IV.1) as

Γh→µ−τ+ =
β̄

16πmh

[
(m2

h −m2
µ −m2

τ )
(
|CR|2 + |CL|2

)
− 2mµmτ (CRC

∗
L + CLC

∗
R)
]
,(IV.6)

with the kinetic factor

β̄ =

√

1−
2(m2

µ +m2
τ )

m2
h

+
(m2

µ −m2
τ )

2

m4
h

, (IV.7)

while that of the conjugated process Γh→µ+τ− is straightforwardly obtained by the replace-

ments CR → C∗
R and CL → C∗

L. The inclusive width Γh→µτ is simply defined as

Γh→µτ = Γh→µ−τ+ + Γh→µ+τ− . (IV.8)

We use the value ΓSM
h = 4.07MeV in mh = 125GeV reported by the LHC Higgs Cross

Section Working Group [43] for evaluating B(h → µτ) in our model.

In the following analysis, as we did in the τ− → µ−γ in Sec. III, we adopt the assumption

of CL = 0. Among many terms in (IV.2), the two terms in the first line, i.e., the top-quark

contribution in Fig. 4 (a) dominates and we ignore the bottom-quark contributions in the

following numerical estimation. In Fig. 3, we show the 2σ range to explain the excess in

4 When X is real, the relation log [X ± iε] = log [|X |] ± iπθ (−X) with the Heaviside theta function θ is

useful.
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h → µτ shown in Eq. (I.1) in (mV , λconv)-plane, where λconv ≡ |λ32
u λ33

e |. We set λHR = 1,

which is the coupling of the subleading term in Eq. (IV.2) with the suppression factor

v2/m2
V . Here, an upper limit on λconv is estimated as (λ32

u λ33
e )|max = ((λ32

u /λ32
d )λ32

d λ33
e )|max ≃

0.25 ·4π ·4π ≃ 40, where 0.25 means a typical maximal value of the ratio (λ32
u /λ32

d ) shown in

Fig. 2 (when mV is multi TeV and sinαY = 1/
√
2), and 4π comes from perturbative regime

in λ32
d and λ33

e .

Combining Fig. 2 and Fig. 3, we can see that it is possible to explain the excess shown

in Eq. (I.1) in our scenario. At first, we will remember the relation in the LQ’s masses,

mYi
∼ mV /6 for ensuring natural cancellations between λ32

u and λ32
d in τ− → µ−γ. When we

request the (exact) cancellation in τ− → µ−γ, as shown in Fig. 2, the ratio (λ32
u /λ32

d )∗ should

be smaller than unity. Considering a typical scale of mV is more than a few TeV through the

relation mYi
∼ mV /6 and the latest LHC bounds on mLQ, as a rough estimation, λconv needs

to be larger than around ten. Taking into account the bound via perturbativity λ33
e < 4π,

roughly speaking, λ32
u should be greater than one through the definition of λconv. Following

this property, we should think about the property of the ratio (λ32
u /λ32

d )∗. Roughly, greater

than 0.1 is required for realizing the above inequality λ32
u > 1 within the region where λ32

d is

still perturbative (λ32
d < 4π). This means that the mixing angle αY should be large to some

extent since when αY becomes far from the maximal case, the region with (λ32
u /λ32

d )∗ > 0.1

shrinks or disappears.5

As an example, we can satisfy τ− → µ−γ constraint, with (mV , mY1
, mY2

) =

(3.6, 0.9, 0.6) TeV and sinαY = 1/
√
2 leading to λ32

u /λ32
d ≈ 0.15. If we take λ32

d ≈ 10

and λ33
e ≈ 4, we get λconv ≈ 6, which can explain the central value shown in Eq. (I.1).

V. (g − 2)µ

The anomalous magnetic moment of the muon has been measured to 0.5 ppm level [44],

aexpµ = 116 592 080(63)× 10−11. (V.1)

5 It is possible to modify the mass relation mYi
∼ mV /6 without caring about the difference between λ32

u

and λ32
d
. When mV is heavier than the case following mYi

∼ mV /6, the top contribution in τ− → µ−γ

decreases and the ratio (λ32
u /λ32

d
)∗ can get to be large, which means that larger λ32

u would be realizable.

On the other hand, however, a large mV suppresses the process h → µτ .
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Theoretical calculation in the SM has similar precision [45]

aSMµ = 116 591 785(61)× 10−11. (V.2)

The discrepancy

∆aµ = aexpµ − aSMµ = (295± 88)× 10−11 (V.3)

is believed to come from new physics contributions.

However, we should also keep in mind that there is a possibility that the discrepancy

(or part of it) comes from underestimated uncertainties in hadronic part, for example, in

hadronic light-by-light scattering. Lattice calculations [46–48] as well as calculations using

dispersion relations [49–51] will reduce the hadronic uncertainties in the future.

In our model the leptoquark contribution to (g − 2)µ is given by

∆aµ = − Ncmµ

8π2m2
V

[
mµ

( ∣∣λ23
e

∣∣2 +
∣∣λ32

u

∣∣2
)(2

3
I1(x) +

5

3
J1(x)

)
+ Re(λ32

u λ23
e )mt

(2
3
I2(x) +

5

3
J2(x)

)]

−
∑

j=1,2

Ncmµ

8π2m2
Yj

[
mµ

( ∣∣λ23
e

∣∣2O2
1j +

∣∣λ32
d

∣∣2O2
2j

)(
− 1

3
I1(yj) +

2

3
J1(yj)

)

+ Re(λ32
d λ23

e )O1jO2jmb

(
− 1

3
I2(yj) +

2

3
J2(yj)

)]
, (V.4)

the loop functions are given in (III.3). We notice that, if we set mµ,τ → 0 in Cγ
R in Eq. (III.2)

and inside the square brackets in ∆aµ in Eq. (V.4), ∆aµ is exactly proportional to Cγ
R as

∆aµ = −4mµ

e

λ23
e

λ33
e

Cγ
R, (V.5)

where we assumed all the couplings are real. If we use the current upper bound of Cγ
R in

(III.6), we get

∆aµ ≈ −(66.3× 10−11)
λ23
e

λ33
e

. (V.6)

Therefore we see that, if −7 . λ23
e /λ33

e . −2, we can explain the muon (g − 2)µ with ±2σ

accuracy.

Since in our case the Yukawa couplings to explain h → µτ and (g − 2)µ are rather large,

one may expect higher order diagrams such as Barr-Zee type two-loop diagrams [52] may

enhance (g − 2)µ as in the case of MSSM with large tanβ [53, 54]. In our estimate, the
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µ µt

V V

t t

µ

γ

FIG. 5: A two-loop Barr-Zee type diagram for (g − 2)µ.

dominant two-loop diagram is shown in Fig. 5. Other diagrams, such as the one with LQs

running inside the loop, are suppressed, for example, by small muon mass, and we do not

consider them. Although the diagram in Fig. 5 may look comparable with the one-loop

diagrams due to large λ32
u λ23

e , we still need chirality flip inside the muon line in the fermionic

triangle loop. Concretely, the diagram is estimated to be suppressed at least by

∼ 1

16π2
λ32
u λ33

e

mµ

mt

∼ 10−3 (V.7)

compared to the one-loop diagram.

VI. CONCLUSION

In this paper, we considered the recent CMS excess in h → µτ and the muon (g − 2)

anomaly. We showed that we can accommodate both discrepancies by introducing two

leptoquarks R2(3, 2, 7/6) and R̃2(3, 2, 1/6) that are free from proton decay problems at

renormalizable level. The constraints from lepton flavor violating process τ− → µ−γ can

be evaded by a natural cancellation between leptoquark contributions with some tuning on

λ32
u and λ32

d , where their orders can be the same. When the cancellation is realized, sizable

couplings contributing to h → µτ are allowed and then we give a reasonable explanation on

the excess. The (g − 2)µ anomaly is also explained. Finally, we mention that various kinds

of other anomalies in flavor physics have been reported [55–60]. Giving a more exhaustive

explanation in the context of leptoquarks would be an important task [61].
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