
JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 1

Learning Component Size Distributions for

Software Cost Estimation: Models Based on

Arithmetic and Shifted Geometric Means Rules
Shachi Sharma, Member, IEEE, Parag C. Pendharkar and Karmeshu

Abstract—Understanding software size distribution is critical
to software cost estimation using COCOMO model and design
of reliable production function model. This paper proposes and
validates a theoretical framework based on the maximization
of Shannon entropy to learn component size distribution of
software systems when partial information about the moments
is given. Specification of appropriate moment constraints either
in the form of shifted geometric mean or arithmetic mean
or both geometric and arithmetic means are considered. The
models are validated using 30 real datasets. The analysis reveals
that software systems where component sizes depict power-law
behavior are governed by shifted geometric mean whereas those
systems in which component size distribution shows exponential
behavior are described by arithmetic mean. Another type of
software system is also considered where the component size
distribution is found to depict gamma distribution. Such systems
are characterized by specification of both arithmetic and ge-
ometric means. The study underlines that the use of modern
object-oriented programming languages adheres to power-law
distribution indicating the existence of team synergies leading
to substantial containment of software costs when compared to
the use of traditional procedural programming languages.

Index Terms—Characterizing moments, COCOMO model,
component size distribution, exponential distribution, gamma
distribution, maximum entropy principle, power-law, Shannon
entropy, software cost estimation

I. INTRODUCTION

Software engineering researchers are interested in regression

functions for predicting software cost [1]. A typical regression

function for software cost estimation can be written as

yi = f(xi) + ϵi, (1)

where xi is an input vector of cost drivers or input prices

and yi is a variable measuring software cost for project i =
{1, . . . , N}, and the variable ϵi ∼ N(0, σ2). A solution to

problem (1) can be obtained by solving the following convex

least squares problem

min
f

N
∑

i=1

(yi − f(xi))
2
, s. t. f ∈ F , (2)

Dr. Shachi Sharma is Assistant Professor at Department of Computer Sci-
ence, South Asian University, NewDelhi, 110021 India e-mail: shachi@sau.int

Dr. Parag C. Pendharkar is Professor at School of Business Administration,
The Pennsylvania State University at Harrisburg, Middletown, PA 17057
United States email: pxp19@psu.edu

Dr. Karmeshu is Distinguished Professor at Department of Computer
Science and Engineering, Shiv Nadar University, U.P 201314 India. Corre-
sponding author, email: karmeshu@snu.edu.in, karmeshu@gmail.com.

Manuscript received ; revised .

where F is a family of an infinite number of functions.

Generally, the problem (2) is difficult to solve [2], but if

the underlying probability density function (pdf) for f(x) is

known then F can be restricted to a finite set of parametric

regression functions. As an example, if f(x) is known to be

multivariate normal then the impact of input cost drivers on

software cost is additive and linear regression method can be

considered in optimizing (2). However, if f(x) underlying pdf

is log normal then Cobb-Douglas1 form can be considered

for f(x) because the impact of cost drivers on software cost

is multiplicative [3]. The primary benefit of knowing the

underlying pdf is that E(y|x) can be estimated consistently.

The fundamental problem of reliably estimating software

cost comes down to understanding underlying software cost

driver distributions. A common software cost driver is soft-

ware component sizes. Software engineering literature has

traditionally used exponential [4] and power-law [5] pdfs

for software component sizes. Depending on which pdf is

chosen, different results will be obtained. For example, the

maximum likelihood (ML) estimate of unknown parameter of

exponential distribution is inversely related to the arithmetic

mean2, whereas the ML estimate for unknown exponent of

power-law distribution is related to geometric mean3 [6],

[7]. It is well-known that for different non-negative values,

arithmetic mean (AM) is greater than geometric mean (GM).

In other words, the component size aggregator for exponential

distribution is arithmetic mean (additive) while for power-law

distribution, it is multiplicative (geometric mean).

In addition to a reliable cost estimate, the knowledge of

underlying software size distribution provides a better under-

standing of software cost behavior. For example, one of the

widely used models is COCOMO which establishes a formal

relationship between software size and software cost [8]. For

a given dataset of software component sizes, under restrictive

conditions, assuming same constant multiplier and constant

returns to scale (CRS) relationship between software size and

software cost, it can be proved that the software cost estimate

1The COCOMO model is a univariate case of Cobb-Douglas function.
2In a software development project, the N component sizes

x1, x2, ..., xN follows exponential distribution with parameter λ0

i.e. f(x) = λ0e
−λ0x, the maximum likelihood estimate for λ0 is given by

λ̂0 = N
∑

N
i=1

xi
.

3For a power-law distribution f(x) = Bx−γ , x ≥ 1, here B is
normalization constant, the maximum likelihood estimate for parameter γ
is given by γ̂ = 1 + N

∑

N
i=1

log xi
.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 2

for exponential component size distribution will always be

higher.4

It is worth noting that exponential law is exhibited by

Boltzmann-Gibbs distribution in which energy is considered to

be a conserved variable. Using the analogy between physical

system and economic system, Dragulescu and Yakovenko [9]

have argued that money can be regarded as a conserved

quantity while wealth can increase or decrease by way of

transferring it from one agent to another. Programmer and

project management skills are conserved in a project and these

skills can be transferred from one software project to another

when projects are faced with budget pressure [10]. Software

project managers can also impact component size distributions

by controlling various factors like selection of programming

language, team size, team member experience, computer-aided

software engineering tools, improved project management and

project coordination practices [11]. The multiplicative impact

of component size on software cost indicates the existence

of software project management synergies. Modern object-

oriented software programming languages that use code reuse,

encapsulation, and polymorphism will result in smaller com-

ponent sizes than older third-generation procedural languages

[12]. Software complexity is also better handled using object-

oriented programming languages that allow for improved

module coupling [13]. The use of UML modelling allows

for better programmer coordination of activities as well [14].

Furthermore, languages such as Python make extensive use

of libraries (e.g., Scikit-Learn, Numpy, Pandas, etc.), which

allows programmers to quickly develop applications with

minimal code writing [15].

Power-law pdfs are scale-invariant. This means that power-

law distributions are independent of software projects’ scale

and are more general and widely applicable for software

projects of all sizes and budgets. The power-law distributions

also adhere to the Pareto principle [16], which in software

engineering context means that majority of software costs

(sizes) are concentrated in a few components. The COCOMO

II model uses similar cost concentration mechanisms using

multiplicative software complexity factors [17]. The exponen-

tial software size distribution assumes that all components

contribute towards software costs and this distribution is more

aligned with the traditional COCOMO model that aggregates

software sizes in an additive manner.

The understanding of software size pdfs can also provide

insights into the programmer and team learning process.

Performance improvement research in psychology provides

evidence for individual additive skill learning and team col-

laborative learning processes. The performance improvement

research suggests that geometric mean provides a good overall

fit when collaborative learning process exists [18]–[20]. When

team synergies do not exist, and individual skills play a major

role then the performance improvement research suggests that

additive aggregator based exponential distribution represents a

4The COCOMO relationship between software size (L) and development
effort or cost (D) is: D = K.Lδ , where K is constant of proportionality.
Under constant return to scale assumption δ = 1. This means expected
development effort E(D) = K.E(L), where E(L) is the expected software
size.

better fit of the learning process [21]. The scale invariance

of power-law was noticed in the learning process as well.

For example, in mathematics education classroom learning

process, a group of researchers found that same power-law

distribution repeated themselves from learning in individuals

to learning in teams to learning in a collection of teams [22].

One pertinent unexplored question relates to the study of

the combined effect of both additive (characterized by arith-

metic mean) and multiplicative (characterized by geometric

mean) learning processes on software size distribution. The

resulting effect will lead to a new software size distribution

which has not so far been examined in the literature. The

understanding and rationale for software size distributions

will play a pivotal role in software engineering as well as

software cost estimation using COCOMO model. The learning

process has characteristic features which involve arithmetic

and geometric means. In presence of partial information about

the moments of the distributions, the question of obtaining an

objective distribution is based on Maximum Entropy Principle

(MEP) which not only minimizes entropy but is also consistent

with the given moment constraints [23], [24]. This framework

provides a theoretical justification for the emergence of various

types of component size probability distributions. The two

moment constraints considered in this paper are the arithmetic

mean and geometric mean. We also consider a new moment

constraint in the form of shifted geometric mean which is an

intermediate measure between arithmetic mean and geometric

mean [25]. The advantage of shifted geometric mean is that a

parameter is added to all data points and its value is estimated

from the real-world data. By adding this parameter, the inter-

nal validity of the results is improved, and high confidence

is obtained on whether the underlying pdf is a power-law

distribution. The specification of both arithmetic and geometric

means allows us to consider additional distributions such as

the gamma. Finally, we test and validate our approach using

real-world datasets.

The paper is organized into nine sections. Section II presents

maximum Shannon entropy framework and a model is con-

structed to provide closed form expression for component size

distribution when partial information in the form of shifted

geometric mean is available as a constraint. A procedure is

outlined in section III based on gradient descent algorithm to

estimate the parameters of the model. The real datasets are

used to validate our findings in section IV. In the following

section V, the exponential behavior of component size distri-

bution is modeled when arithmetic mean is prescribed as the

constraint. Section VI develops a gamma like component size

distribution when both arithmetic and geometric means are

specified as the constraints. Section VII discusses the impli-

cations of the study in software cost estimation of component

based software development. A discussion of threats to validity

of the proposed framework is presented in section VIII. The

last section IX contains conclusion.

II. COMPONENT SIZE DISTRIBUTION: SHIFTED

GEOMETRIC MEAN AS CONSTRAINT

Let random variable X represent the component size in a

software system with probability distribution pn = P (X =

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 3

n), n = 1, 2, ..., M such that pn is the probability that

component size is n. The Shannon entropy of the software

system is given by

S = −

M
∑

n=1

pn log pn. (3)

It would be appropriate to consider shifted geometric mean as

constraint such that

M
∑

n=1

log (n+ a) pn = log (Q+ a) (4)

where a is the shift parameter and Q is the geometric mean.

The normalization constraint is

M
∑

n=1

pn = 1. (5)

Maximizing Shannon entropy (3) subject to shifted geometric

mean constraint (4) and normalization constraint (5), results

in Lagrangian function

Φ = −

M
∑

n=1

pn log pn + α

(

1−

M
∑

n=1

pn

)

+ β

[

log (Q+ a)−

M
∑

n=1

log (n+ a) pn

]

. (6)

Differentiating (6) with respect to pn, α and β, we have

− (1 + log pn)− α− β log (n+ a) = 0 (7)

1−

M
∑

n=1

pn = 0 (8)

and

log (Q+ a)−
M
∑

n=1

log (n+ a) pn = 0. (9)

Solving (7) and (8) together results in component size distri-

bution as

pn = Z−1(n+ a)
−β

(10)

where Z =
∑M

n=1 (n+ a)
−β

is the normalization constant.

Note that, for large component size, (10) behaves as

pn ∼ n−β , β > 1 (11)

i.e. exhibiting power-law. The Lagrange’s parameter β can be

estimated from (9) as
∑M

n=1 log (n+ a) (n+ a)
−β

∑M
n=1 (n+ a)

−β
= log (Q+ a) . (12)

For large M and β > 1, the summation in normalization

constant Z can be approximated by integral yielding

Z =

M
∑

n=1

(n+ a)
−β

≃

∫ M

1

(x+ a)
−β

dx. (13)

The resultant component size probability distribution becomes

p (n | β, a,M) =
(1− β) (n+ a)

−β

[

(M + a)
1−β

− (1 + a)
1−β
] . (14)

Algorithm 1 Gradient descent algorithm for estimating pa-

rameters β and a

Require: Empirical data

Ensure: Parameters β and a
initialize β and a
while convergence do

β = β − α
∑

n

(

∂pn
∂β

) [

1 + log pn
qn

]

a = a − α
∑

n

(

∂pn
∂a

) [

1 + log pn
qn

]

end while

The closed form of component size distribution (14)

enables us to compute some other quantities of interest like

mean component size and cumulative distribution.

Mean Component Size

The expected component size is given by

E[X] = X =

M
∑

n=1

npn = Z−1
M
∑

n=1

n(n+ a)
−β

. (15)

Approximating the summation by integral in (15), the expected

component size is given by

X =

(

1− β

2− β

)

[

(M + a)
2−β

− (1 + a)
2−β

(M + a)
1−β

− (1 + a)
1−β

]

− a. (16)

Cumulative Distribution Function of the Component Size

One of the quantities of interest in software engineering is

the probability that component size is less than or equal to a

specified value i.e. cumulative distribution function (CDF) of

the component size

FX(x) = P (X ≤ x) = Z−1
x
∑

n=1

(n+ a)
−β

. (17)

Again replacing summation by integral in (17) gives

FX(x) =
(x+ a)

1−β
− (1 + a)

1−β

(M + a)
1−β

− (1 + a)
1−β

(18)

which shows power-law behavior for large value of x i.e.,

FX(x) ∼ x−(β−1), β > 2. (19)

In order to evaluate the cumulative component size dis-

tribution (18), one needs to compute the shift parameter a

and Lagrange parameter β. The procedure to compute the

parameters is described in the next section.

III. ESTIMATION OF PARAMETERS

In view of the non-linearity, it is difficult to obtain values

of the parameters β and a in (12) analytically. We estimate

parameters β and a using gradient descent algorithm [26] and

choose popular Kullback-Leibler (KL) measure [23] as the loss

function. The KL measure calculates the distance between two

probability distributions. The objective is to find those values

of parameters β and a which minimizes distance between p(n)
as computed from (14) and empirical probability distribution

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 4

TABLE I: Dataset from [5]

Package Language Total Total

lines components

Embedded control system I C 1498 87

Embedded control system II C 2709 70

Communication package C 36019 781

Statistics package C 16532 419

Javascript interpreter C 27764 718

Embedded control system III C 1373 23

C++ parser C 43700 937

Fortran 77 parser C 4345 90

Graphics package I C 1635 51

Graphics package II C 4564 71

Geophysical modeling C 12916 46

Fortran to C converter C 18716 502

JPEG graphics utilities C 18485 501

C parser C 42699 502

Abstract interpretation library C 13816 265

Weather modeling Fortran 15149 144

Geophysical modeling Fortran 279638 704

Geophysical modeling Tcl-tk 33774 394

Mobile phone calculations Tcl-tk 5506 99

Javalin flight modeller Tcl-tk 2593 58

C parser front end Tcl-tk 20108 304

q(n) as obtained from the dataset. The KL measure is given

by

KL(p||q) =
∑

n

p(n) log
p(n)

q(n)
. (20)

The gradient descent algorithm [26] estimates parameters β

and a iteratively such that

βi+1 = βi − α
∂

∂β

[

∑

n

pn log
pn

qn

]

(21)

and

ai+1 = ai − α
∂

∂a

[

∑

n

pn log
pn

qn

]

. (22)

TABLE II: Details of OO software datasets

Data set Language Total Total

lines components

Bielak [27] C++ 70438 152

Guttag [28] Python 511 9

Pendharkar [29] C # 745 10

WEKA [30] Java 29789 68

Crypto library [31] Java 6770 25

Basic linear algebra [32] C # 1398 31

Codec library [33] Java 10543 58

Here, α is the learning rate. The equations (21) and (22) can

be further simplified to

βi+1 = βi − α
∑

n

(

∂pn

∂β

)[

1 + log
pn

qn

]

(23)

and

ai+1 = ai − α
∑

n

(

∂pn

∂a

)[

1 + log
pn

qn

]

. (24)

The gradient descent algorithm is presented in Algorithm 1.

The partial derivatives of pn with respect to β and a, as

obtained from (14) are

∂pn

∂β
=

1
{

(M + a)
1−β

− (1 + a)
1−β
}2

[{

(M + a)
1−β

− (1 + a)
1−β
}

{

(β − 1) (n+ a)
−β

log (n+ a)− (n+ a)
−β
}

−
{

(1− β) (n+ a)
−β
}{

(1 + a)
1−β

log (1 + a)

−(M + a)
1−β

log (M + a)
}]

(25)

and

∂pn

∂a
=

(1− β)
{

(M + a)
1−β

− (1 + a)
1−β
}2

[{

(M + a)
1−β

−(1 + a)
1−β
}{

−β(n+ a)
−β−1

}

−
{

(1− β) (n+ a)
−β
}{

(M + a)
−β

− (1 + a)
−β
}]

.

(26)

Using algorithm 1, the statistical procedure to validate model

for real datasets is outlined in the next section.

IV. RESULTS OF EXPERIMENTS

To validate the MEP based component size distribution as

presented in section II, we conduct experiments using many

real datasets. Highlighting the importance of component

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 5

TABLE III: Estimated values of parameters using gradient descent based procedure

Package Maximum component Estimated shift Estimated power KL measure

or dataset size M parameter a exponent parameter β

Embedded control system I 175 45.0056 4.9261 0.0002

Embedded control system II 511 14.0606 2.2846 0.0005

Communication package 410 110.0176 4.3599 0.0042

Statistics package 228 700.0715 17.0773 0.0012

Javascript interpreter 2228 47.0130 3.7136 0.0525

Embedded control system III 454 30.0510 3.2866 0.00001

C++ parser 965 99.0203 4.3276 0.0098

Fortran 77 parser 365 173.0103 5.5894 0.0006

Graphics package I 191 28.0210 2.5666 0.0016

Graphics package II 542 125.0062 3.6899 0.0009

Geophysical modeling C 3036 137.0069 2.2402 0.0012

Fortran to C converter 1193 80.0198 4.4726 0.0014

JPEG graphics utilities 254 280.0059 9.7986 0.0001

C parser 2160 150.0441 4.0335 0.1835

Abstract interpretation library 846 125.0168 4.3223 0.0685

Weather modeling 422 108.0115 2.1365 0.0493

Geophysical modeling Fortran 2430 5000 14.2803 0.0058

Geophysical modeling Tcl-tk 2252 57.0889 2.6205 0.0530

Mobile phone calculations 465 53.1012 2.6786 0.0591

Javalin flight modeller 253 27.1132 2.0760 0.0952

C parser front end 913 115.0293 3.7954 0.1345

Bielak 2924 250.0115 4.0412 0.0552

Guttag 227 20.0394 2.4298 0.0001

Pendharkar 473 45.0403 3.1069 0.0001

WEKA 2524 1000 3.8349 0.0082

Crypto library 1145 450.0134 2.7409 0.0030

Basic linear algebra 141 43.1618 1.5213 0.0003

Codec library 1022 97.0102 2.1000 0.0138

size distribution in softwares, Hatton [5] employs statistical

mechanics approach to develop analytical model to capture

power-law distribution being exhibited by softwares developed

in different programming languages. The dataset used in

his study are shown in Table I. Also, some other datasets

from object-oriented programming languages such as C++,

Java, Python and C# are chosen to test the MEP based

component size distribution. These datasets are described

in Table II. The C++ dataset used in our study already

had software size data for different components. For Java,

Python and C# datasets, a component was defined either

as a model or a service. The WEKA dataset has been

constructed from 11 packages from WEKA repository,

and model components for this dataset sometimes spanned

multiple classes. Since C# programming implemented only

one model (Ant colony algorithm), service components sizes

are used for this application. A service component is an

element of a program that can be deployed independently

offering a predefined service and can communicate with other

components [34]. To improve the internal validity of data

collection, separate authors transcribed model component and

service component data. The parameters β and a are estimated

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 6

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Log w

L
o

g
 P

(
X

>
w

)

Actual Data

Estimated Data

(a) Embedded control system 1

0 1 2 3 4 5 6 7
−6

−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(
X

>
w

)

Actual Data

Estimated Data

(b) Embedded control system 2

1 2 3 4 5 6 7
−7

−6

−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(
X

>
w

)

Actual Data

Estimated Data

(c) Communication package

0 1 2 3 4 5 6 7 8
−12

−10

−8

−6

−4

−2

0

Log w

L
o

g
 P

(
X

>
w

)

Actual Data

Estimated Data

(d) Javascript interpreter

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
−6

−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(
X

>
w

)

Actual Data

Estimated Data

(e) Embedded control system 3

0 1 2 3 4 5 6 7
−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(
X

>
w

)

Actual Data

Estimated Data

(f) C++ parser

0 1 2 3 4 5 6
−7

−6

−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(X
>w

)

Actual Data

Estimated Data

(g) Fortran 77 parser

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−6

−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(X
>w

)

Actual Data

Estimated Data

(h) Graphics package I

1 2 3 4 5 6 7
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Log w

L
o

g
 P

(X
>w

)

Actual Data

Estimated Data

(i) Graphics package II

1 2 3 4 5 6 7 8 9
−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(
X

>
w

)

Actual Data

Estimated Data

(j) GeoPhysical modelling

0 1 2 3 4 5 6 7 8
−7

−6

−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(X
 >

 w
)

Actual Data

Estimated Data

(k) Fortran to C converter

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−7

−6

−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(
X

>
w

)

Actual Data

Estimated Data

(l) JPEG graphics utilities

0 1 2 3 4 5 6 7
−7

−6

−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(X
 >

 w
)

Actual Data

Estimated Data

(m) C Parser

0 1 2 3 4 5 6 7
−6

−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(X
 >

 w
)

Actual Data

Estimated Data

(n) Abstract interpretation library

0 1 2 3 4 5 6 7
−6

−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(
X

>
w

)

Actual Data

Estimated Data

(o) Weather modeling

Fig. 1: Comparison of complementary cumulative component size distribution

using Algorithm 1 and test whether the cumulative component

size distribution (18) conforms to the empirical distribution as

obtained from the data is performed. To this end, we construct,

Null Hypothesis H0: The Cumulative component size

distribution (18) fits well to the empirical cumulative

component size distribution i.e. for all x,

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 7

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
−10

−9

−8

−7

−6

−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(X
 >

 w
)

Actual Data

Estimated Data

(a) Geophysical modeling Fortran

0 1 2 3 4 5 6 7 8
−6

−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(
X

>
w

)

Actual Data

Estimated Data

(b) Geophysical modeling TCL

0 1 2 3 4 5 6 7
−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(
X

>
w

)

Actual Data

Estimated Data

(c) Mobile phone calculations

0 1 2 3 4 5 6
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Log w

L
o

g
 P

(
X

>
w

)

Actual Data

Estimated Data

(d) Javalin flight modeller

0 1 2 3 4 5 6 7
−6

−5

−4

−3

−2

−1

0

Log w

L
o

g
 P

(
X

>
w

)

Actual Data

Estimated Data

(e) C parser front end

0 1 2 3 4 5 6 7
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Log w

L
o

g
 P

(X
 >

 w
)

Actual Data

Estimated Data

(f) Bielak

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Log w

L
o

g
 P

(X
 >

 w
)

Actual Data

Estimated Data

(g) Python

1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
−2.5

−2

−1.5

−1

−0.5

0

Log w

L
o

g
 P

(X
 >

 w
)

Actual Data

Estimated Data

(h) Pendharkar

3 4 5 6 7 8
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

Log w

L
o

g
 P

(X
 >

 w
)

Actual Data

Estimated Data

(i) WEKA

3 3.5 4 4.5 5 5.5 6 6.5 7

Log w

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

L
o

g
 P

(X
 >

 w
)

Actual Data

Estimated Data

(j) Crypto library

1.5 2 2.5 3 3.5 4 4.5 5

Log w

-5

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

L
o

g
 P

(X
 >

 w
)

Actual Data

Estimated Data

(k) Basic linear algebra

1 2 3 4 5 6 7

Log w

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

L
o

g
 P

(X
 >

 w
)

Actual Data

Estimated Data

(l) Codec library

Fig. 2: Comparison of complementary cumulative component size distribution (continuation from Fig. 1)

FX(x) = F0(x)

Alternative Hypothesis H1: there exists x such that

FX(x) ̸= F0(x).

For testing goodness of fit, we use Kolmogorov-Smirov (KS)

statistic [35]. Besides the value of KS statistic, Clauset et

al. [7] emphasize on the significance of p value while fitting

power-law distributions to empirical data. If p value is large

and close to 1, it means that the null hypothesis is retained. If

p value is small then the null hypothesis is not supported by

the dataset indicating significant difference between fitted cu-

mulative component size distribution and empirical cumulative

component size distribution.

The values of the parameters β and a for datasets of Table

I and Table II are presented in Table III. The results of KS

test are shown in Table IV. The fitted cumulative component

size distributions are found to be in close agreement with em-

pirical distributions. Both the actual and fitted complementary

cumulative component size distribution are plotted in Figures

1 and 2 for valid KS test.

An important observation from the results of Table III and

Table IV is that the value of shift parameter turns out to be very

large for the cases where null hypothesis is rejected. For large

value of shift parameter a, it can be easily shown that shifted

geometric mean approximates arithmetic mean. Rewriting (4),

we have

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 8

TABLE IV: Results of KS test

Package KS value p value Null hypothesis

accepted

Embedded control system I 0.1343 0.8881 Yes

Embedded control system II 0.0564 1.0000 Yes

Communication package 0.0488 0.9880 Yes

Statistics package 0.2209 0.0252 No

Javascript interpreter 0.0840 0.7772 Yes

Embedded control system III 0.2276 0.8709 Yes

C++ parser 0.0851 0.5625 Yes

Fortran 77 parser 0.0566 1.0000 Yes

Graphics package I 0.0809 0.9999 Yes

Graphics package II 0.0743 0.9986 Yes

Geophysical modeling C 0.1081 0.9750 Yes

Fortran to C converter 0.0769 0.8660 Yes

JPEG graphics utilities 0.0500 0.9977 Yes

C parser 0.0756 0.6931 Yes

Abstract interpretation library 0.0667 0.9688 Yes

Weather modeling 0.0485 0.9996 Yes

Geophysical modeling Fortran 0.0771 0.1389 Yes

Geophysical modeling Tcl-tk 0.0530 0.9811 Yes

Mobile phone calculations 0.0781 0.9865 Yes

Javalin flight modeller 0.0952 0.9874 Yes

C parser front end 0.0455 0.9989 Yes

Bielak 0.0777 0.9037 Yes

Guttag 0.2500 0.9290 Yes

Pendharkar 0.1250 1.0000 Yes

WEKA 0.0746 0.9897 Yes

Crypto library 0.1265 0.9776 Yes

Basic linear algebra 0.1446 0.9097 Yes

Codec library 0.1371 0.7258 Yes

M
∑

n=1

log
[

a
(

1 +
n

a

)]

pn = log

[

a

(

1 +
Q

a

)]

. (27)

We get on simplification

M
∑

n=1

log
(

1 +
n

a

)

pn = log

(

1 +
Q

a

)

. (28)

If the shift parameter is very large, i.e. n << a, then

log
(

1 +
n

a

)

=
n

a
+
(n

a

)2

+ ...

TABLE V: Results: arithmetic mean as constraint

Dataset Parameter KS value p value Null hypo-

λ thesis accepted

Withrow [36] 0.0016 0.3224 0.7091 Yes

Basili [37] 0.0058 0.1323 1.0000 Yes

Statistics

Package [5] 0.0245 0.2698 0.0029 No

and

log

(

1 +
Q

a

)

=
Q

a
+

(

Q

a

)2

+ ...

Retaining the first dominant term and neglecting second and

higher order terms, we find, for large a, both arithmetic and

geometric means become equal i.e.

M
∑

n=1

npn = Q = A. (29)

Accordingly, in the following section, we explore the case

when the Shannon Entropy (3) is maximized using arithmetic

mean as the constraint.

V. ARITHMETIC MEAN SPECIFIED

Noting that A denotes the arithmetic mean of the component

sizes in a given software system, maximization of (3) subject

to arithmetic mean
M
∑

n=1

n pn = A (30)

and the normalization (5) constraints results in exponential

component size distribution

pn =

[

1− e−λ

e−λ (1− e−Mλ)

]

e−nλ, n = 1, 2, ..., M (31)

where λ is the Lagrange’s parameter which can be determined

from constraint (30) i.e.,

A =
1

1− e−λ
−

Me−Mλ

1− e−Mλ
. (32)

Cumulative Distribution of Component Size

The cumulative distribution function of the component

size in this case is given by

FX (x) =
1− e−λx

1− e−Mλ
. (33)

The above results are validated for Withrow dataset [36]

which gives component sizes in Ada software, Basili dataset

[37] from a large scale project in Fortran language and

statistics package of Table I. Using the data, the model pa-

rameter λ is computed from (32). The cumulative distribution

of component size is calculated from (33) and KS test is

performed for validation. The results are shown in Table V and

the KS test passes for Withrow [36] and Basili [37] datasets.

The comparative graphs are presented in Figures 3 and 4.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 9

0 100 200 300 400 500 600 700 800 900 1000
−3

−2.5

−2

−1.5

−1

−0.5

0

w

L
o

g
 P

(
X

>
w

)

Actual Data

Estimated Data

Fig. 3: Complementary CDF plot of Withrow dataset [36].

50 100 150 200 250 300 350 400 450
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

w

lo
g

 P
(
X

>
w

)

Actual Data

Estimated Data

Fig. 4: Complementary CDF plot of Basili dataset [37].

TABLE VI: Results: arithmetic and geometric mean together

as constraints

Dataset µ θ KS p
value

Null hypo-

value thesis accepted

Withrow [36] 0.6467 0.0015 0.1364 1,0000 Yes

Basili [37] 2.1160 0.0155 0.0179 1.0000 Yes

Statistics

Package [5] 2.3409 0.0593 0.1794 0.1119 Yes

However, for statistics package of Table I, we further explore

the maximization of Shannon entropy (3) with both arithmetic

and geometric mean as constraints in the following section.

VI. BOTH ARITHMETIC AND GEOMETRIC MEAN

SPECIFIED

The Shannon entropy

S = −

M
∑

n=1

pn log pn (34)

is maximized subject to constraints of arithmetic mean

M
∑

n=1

n pn = A, (35)

geometric mean

M
∑

n=1

(log n) pn = logQ (36)

and normalization
M
∑

n=1

pn = 1. (37)

Following the same procedure as illustrated in section II, the

component size distribution turns out to be

pn =
λ1−λ2

1 n−λ2 e−nλ1

Γ (1− λ2)− Γ (1− λ2, (M − 1)λ1)
(38)

where λ1 and λ2 are Lagrange’s parameters corresponding to

arithmetic mean and geometric mean constraints respectively,

Γ (s, x) is the incomplete gamma function. For large M with

θ = λ1 and µ = 1− λ2 and using the identity 6.5.32 of [38],

Γ (s, x) → 1, as x → ∞, (38) is approximated by gamma

distribution i.e.

pn (θ, µ) =
θµ nµ−1 e−nθ

Γ(µ)
, n > 0. (39)

The gamma distribution (39) is again tested for Withrow

[36], Basili [37] datasets, and statistics package of Table I.

The results are shown in Table VI. It is worth noting that the

KS test passes for statistics package of Table I. For Withrow

and Basili datasets, the KS value is found to be less than that

for the case when only arithmetic mean is considered. Also, the

p value turns out to be unity for Withrow dataset. In this case,

gamma distribution is a better fit than exponential distribution.

The implications of this study are discussed in the next

section.

VII. DISCUSSION

Once the pdf of software size distribution is known, it can

be used to obtain the probability distribution of software cost

using COCOMO model. However, to get an inkling about the

impact of expected software size on total software cost, we use

the the relationship between expected component size, E(X),
and software size is L = N × E(X). The expected cost

in the COCOMO model can be written as K[N × E(X)]
δ
.

Using the expected component sizes for power-law distribution

(16) and exponential distribution (32), we get expected costs,

for large M , as KNδM δ and KN δ(1− e−λ)
−δ

respectively.

These expressions suggest that software cost will grow as the

number of components increases. However, the consequence

of the long-tail of power-law distribution is that bulk of the

contribution towards software size comes from large number

of small size components exceeding the contribution of a

few very large sized components [6]. Thus, it becomes more

economical to procure these large sized components from

third parties rather than developing them in house. Ideally,

managers should aim for a higher value of power-law exponent

β and a lower value of maximum component size M to lower

overall software development cost. When managers attempt

both then they are trying to reduce variance in component

sizes to contain software cost for a medium to large size

software project (i.e., β > 2). Since N
λ0

=
∑N

i=1 xi, the

growth of software development cost for an exponential com-

ponent size distribution, in big-O notation, can be written

as O

(

(

∑N
i=1 xi

)δ
)

. The cost containment in exponentially

distributed component sizes comes down to reducing the total

size of components. While the primary focus of this study is

to better understand software size distribution so that software

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 10

cost can be predicted reliably, (1) can be easily extended to

the following production function form [39]

yi = f(xi) + vi − ui (40)

where vi is statistical noise and is assumed to be independent

and identically distributed with a two-sided normal distribu-

tion, and ui defines cost inefficiency that shows how far a

firm operates above the cost frontier. The dual of (40) forms

a stochastic cost function, which can be used for stochastic

cost frontier analysis [39]. To the best of our knowledge,

stochastic cost frontier analysis is not used in software en-

gineering literature and using such analysis with reference to

software size distributions is a worthwhile undertaking to gain

insights into software cost drivers. The primary usefulness

of such analysis is that after a software development project

is complete, components can be ranked in terms of their

cost inefficiencies and software development processes for

components lying on cost efficiency frontier can be analyzed

as role models.

The returns to scale (RTS) relationship between software

size and software cost is an unsettled question in software

engineering literature [1]. There are two primary techniques

used for testing RTS relationships – data envelopment analysis

(DEA) and stochastic frontier analysis (SFA) – and both of

these techniques yield conflicting results when used on the

same datasets. The proponents of SFA argue that common

production process assumption is seldom satisfied in software

engineering datasets and SFA is a more important technique

to use [1]. The proponents of DEA argue that SFA imposes

a predetermined untested production function relationship on

software engineering datasets and non-parametric DEA mod-

els do not impose any such relationship [40]. The software

size distributions derived in this paper may be used in part

to explain the extent to which common production process

assumption is satisfied.

When component sizes follow power-law distribution, soft-

ware cost is primarily governed by the total number of

components. The project managers are encouraged to use

fewer components albeit the size of components may be large

implying either more number of classes or large size classes in

a component. Accordingly, single responsibility principle [41]

must be followed while designing classes so that the quality

and reliability of the software will not be compromised [42].

Further, the classification of components is also critical and

component cohesion needs to be considered in determining

component sizes as Lack of Cohesion in Method (LCOM)

induces fault-proneness [43]. Generally, GUI components are

cohesive, but model components that span a single class or

multiple classes, cohesion plays an important role. Large size

incohesive classes are considered unnecessarily complex and

should be avoided, but large size cohesive classes5 should

be preferred because they are easier to develop, reuse, and

maintain [43]. When component sizes follow an exponential

distribution, software costs are mostly determined by the total

software size. Managing such projects may be challenging

5A cohesive class is a class where its methods and variables are related to
each other.

because all components are equally important for the overall

functionality of a software application. When gamma fits

distribution of component size, it represents a characteristic of

projects where programmers with identical skills are assigned

software development responsibilities with different levels of

complexity [44].

During early phases of software development where soft-

ware managers have a choice of selecting a programming

language, software tools and programmers; this study suggests

that modern object-oriented and end-user programming lan-

guages must be chosen because the component size distribu-

tion for these programming languages has a higher probability

of fitting the power-law distribution. Stevanetic and Zdun

[45] argue that the creation of software components that are

understandable is key to improve the quality of component

models. Pan et al. [46] indicate that cohesive classes are better

as they improve software stability and reduce ripple effects

caused during software maintenance. Li et al. [47] argue that

software reliability can be improved by identifying influential

modules in the early stages of software development. When

the results of our study are combined with some of the

studies in the literature, it appears that power-law software size

distributions, better understanding and planning of cohesive

software components early in the software development phase

are key to create low cost, high quality, stable and maintainable

software.

VIII. THREATS TO VALIDITY

We have proposed a unified analytical framework based

on MEP which requires specification of moments to obtain

various component size distributions. In this regard, using

shifted geometric mean yields component size distribution

which mimics asymptotically power-law behavior, while arith-

metic mean and both arithmetic mean in conjunction with

geometric mean lead to exponential and gamma distributions,

respectively. It is interesting to point out that MEP is a very

general approach which can work across datasets from diverse

projects and results depend upon the choice of characterizing

moments. In this section, we discuss issues related to the

validity of proposed framework.

A. Internal Validity

The major threat to internal validity of the proposed frame-

work is when moments constraints have to be modified in light

of availability of new datasets. Such a situation may arise

when component sizes do not conform to the distributions

considered in this paper. Accordingly, new constraints need

to be identified that may capture the empirically observed

distribution.

Another aspect related to internal validity deals with the

underlying stochastic dynamics of the software development

process which in equilibrium yields desired component size

distribution. As pointed out by Whitt [48], ”However, even

when equilibrium is attained, in general there can be many

stochastic processes having the same equilibrium distribution.

In addition to the equilibrium distribution, it is useful to

describe the fluctuations or transient behavior of the stochastic

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 11

process”. This issue can be appreciated in light of the discus-

sion by Simon [49] where he analyses a class of distributions

in a wide range of empirical data corresponding to diverse

phenomena. Further, Simon notes that any similarity in these

diverse phenomena can be attributed to the common property

of the probabilistic mechanism. It is worth highlighting that

the similar observations have been made by Concas et al.

[50] about the underlying stochastic generation mechanisms

involved in software development process.

B. External Validity

External validity is concerned with the applicability of the

proposed framework to other software systems. The functional

relatedness of the elements of a module, referred to as cohe-

sion, can be extended to deal with the forces that cause a

module or class to change [41]. As pointed in section IV, a

component is a unit of functionality which is a collection of

modules or classes. Therefore, adherence to single responsi-

bility principle is one of the challenging tasks which in turn

becomes a plausible threats of external validity.

As noted by Concas et al. [50], the software development

process involves numerous decisions which can suitably be

modeled as a stochastic process. The underlying stochastic

mechanisms have the potential to explain the causal relation-

ships between quality of software and various factors like

team dynamics, programming language, software engineering

tools, project management and coordination practices etc. Any

static or dynamic change in these factors may pose a threat

to external validity of the proposed framework. These issues

require broadening of the framework to incorporate underlying

stochastic dynamics or stochastic variables of interest in the

problem formulation. This is likely to open a new modeling

paradigm for software engineering.

IX. CONCLUSION

Software size is a major independent variable in COCOMO

and COCOMO II models. This study uses a mathematical

framework to maximize Shannon’s entropy to learn software

component size distributions. Shifted geometric, geometric

and/or arithmetic means along with normalization constraint

were used to learn power-law, exponential and gamma com-

ponent size distributions. The results of the study indicate

that as programming languages evolved, the behavior of un-

derlying component size distributions changed as well. For

object-oriented programming languages (C++, C#, Java and

Python) the component size distributions are described by

power-law. For recent end-user programming languages (e.g.,

Python), power-law distributions can also be used to describe

component sizes. Generally, we believe that the results of our

study are generalizable because of diversity of programming

languages and software component types (GUI, Model, Ser-

vice components among others) used in the study, but there is

still a little bit of bias of procedural programming languages.

Among the secondary conclusions of this study is the

desirability of developing CD type software cost forecasting

models. The traditional COCOMO model has the Cobb-

Douglas form. Pendharkar et al. [51] illustrated that other

variables such as team size can also be added to the traditional

COCOMO model to extend and improve its forecasting. The

benefit of using CD type software cost functions is that these

functions can be used for stochastic cost analysis (SCA).

The SCA analysis allows use of technical efficiency and

random noise that is traditionally ignored in software analysis.

The study also suggests that the software component size

distribution type may be used as a discriminating parameter

for software engineering research. Software engineering re-

searchers have used ISBSG (isbsg.org) datasets to test their

hypotheses [11]. DEA research in software engineering [52]

often uses different software projects for software project

productivity analysis [53]. Most of these studies use the entire

dataset to draw their conclusions. This study suggests that,

wherever possible, software component size distribution may

be used to screen out projects where software size distributions

are dissimilar. By using software projects where software size

distributions are similar, more robust research conclusions can

be drawn.

Highlighting the importance of component size distribution

in softwares, Hatton [5] employs Boltzmann-Gibbs statistical

mechanics framework to formulate analytical model to capture

power law distribution being exhibited by softwares devel-

oped in different languages. It is worth noting that Tsallis

proposed a non-extensive statistical mechanics framework to

generate power law behavior in a wide variety of systems

[54]. The apparent success of non-extensive statistical me-

chanics, in contrast to Boltzmann-Gibbs mechanics, suggest

a deeper question posed by Gell-mann and Tsallis [54], ”An

intriguing that remains unanswered is: exactly what do all

these systems have in common? One suspects, of course, that

the deep explanation must arise from microscopic dynamics.

The various cases could all be associated with something

like a scale-free dynamical occupancy of phase space, but

this certainly deserves further investigation”. Motivated by

this, several investigations have been carried out including

in communication network. Karmeshu and Shachi [55]–[58]

have examined the emergence of power law in networks using

MEP framework based on Tsallis entropy. The success of non-

extensive mechanics would be useful to explore the possibility

of its application in the analysis of software systems.

X. ACKNOWLEDGEMENT

The authors thank the anonymous reviewers for providing

useful comments and suggestions that helped to improve the

work.

REFERENCES

[1] B. A. Kitchenham, “The question of scale economies in software– Why
cannot researchers agree?”, Information and Software Technology, vol.
44, no. 1, pp. 13—24, 2002.

[2] D. L. Hanson and G. Pledger, “Consistency in concave regression”,
Annals of Statistics, vol.4, no. 6, pp. 1038–1050, 1976.

[3] A. S. Goldberger, “The interpretation and estimation of Cobb-Douglas
functions”, Econometrica, vol. 35, no. 3-4, pp. 464–472, 1968.

[4] Y. K. Malaiya and J. Denton, “Module size distribution and defect
density”, Proceedings of 11th international symposium on software
reliability engineering, ISSRE, 2000.

[5] L. Halton, “Power-law distributions of component size in general
software systems”, IEEE Transactions on Software Engineering, vol.
35, no. 4, pp. 566–572, 2009.

JOURNAL OF LATEX CLASS FILES, VOL. , NO. , 2020 12

[6] M. E. Newman, “Power laws, Pareto distributions and Zipf’s law”,
Contemporary Physics, vol. 46, no. 5, pp. 323–351, 2005.

[7] A. Clauset, C. R. Shallz and M. E. J. Newman, “Power-law distributions
in empirical data”, SIAM Review, vol. 51, no. 4, pp. 661–703, 2009.

[8] A. A. Abdulmajeed, M. A. Al-jawaherry and T. M. Tawfeeq, “Predict the
required cost to develop software engineering projects by using machine
learning”, Journal of Physics: Conference Series, vol. 1897, 2021.

[9] A. Dragulescu and V. M. Yakovenko, “Exponential and power-law
probability distributions of wealth and income in the United Kingdom
and the United States”, Physica A, vol. 299, pp. 213–221, 2001

[10] N. Nan and D. E. Harter, “Impact of budget and schedule pressure on
software development cycle, time and effort”, IEEE Transactions on
Software Engineering, vol. 35, no. 5, pp. 624–637, 2009.

[11] P. C. Pendharkar and J. A. Rodger, “An empirical study of the impact
of team size on software development effort”, Information Technology
and Management, vol. 8, pp. 253–262, 2007.

[12] R. S. Sreekumar and R. V. Sivabalan, “A survival study of object oriented
principles on software project development”, 2015 Global Conference
on Communication Technologies (GCCT), pp. 307–310, 2015.

[13] L. C. Briand, J. W. Daly, and J. K. Wust,“A unified framework for
coupling measurement in object-oriented systems”, IEEE Transactions
on Software Engineering, vol. 25, no. 1, pp. 91–121, 1991.

[14] K-H Doan and M. Gogolla, “Quality improvement for UML and OCL
models through bad smell and metrics definition”, 2019 ACM/IEEE
22nd International Conference on Model Driven Engineering Languages
and Systems Companion (MODELS-C), pp. 774–778, 2019.

[15] W. Jordan, A. Bejo and A. G. Persada, “The Development of lexer
and parser as parts of compiler for GAMA32 processor’s instruction-set
using Python”, 2019 International Seminar on Research of Information
Technology and Intelligent Systems (ISRITI), pp. 450–455, 2019.

[16] V. Pareto and A. N. Page, Manuale di economia politica (”Manual of

political economy”), A.M. Kelley, ISBN 978-0-678-00881-2, 1971.

[17] B. W. Boehm, C. Abts, A. W. Brown, S. Chulani, B. K. Clark, E.
Horowitz, R. Madachy and D. J. Reifer, Software Cost Estimation with

COCOMO II, Prentice Hall Inc., Upper Saddle River, NJ, 2000.

[18] J. A. Fadul, “Collective learning: applying distributed cognition for
collective intelligence”, The International Journal of Learning, vol. 16,
no. 4, pp. 211–220, 2009.

[19] G. Madirolas and G. G. Polavieja, “Wisdom of the confident: using
social interactions to eliminate the bias in wisdom of the crowds”,
Collective Intelligence, pp. 1–4, 2014.

[20] C. C. Loannou, G. Madirolas, F. S. Brammer and H. A. Rapley,
“Adolescents show collective intelligence which can be driven by a
geometric mean rule of thumb”, PLOS One, pp. 1–17, 2018.

[21] A. Heathcote and S. Brown, “The power law repealed: The case for an
exponential law of practice”, Psychonomic Bulleetin and Review, vol.
7, no. 2, pp. 185–207, 2000.

[22] T. Hills, A. C. Hurford, W. M. Stroup and R. Lesh, “Formalizing
learning as a complex system: Scale invariant power-law distributions in
group and individual decision making”, in Foundations for the Future

in Mathematics Education, R. A. Lesh, E. Hamilton and Kaput (eds.),
Lawrence Erlbaum Associates, Mahwah, NJ, pp. 225–244, 2007.

[23] Karmeshu (Ed.), Entropy Measures, Maximum Entropy Principle and

Emerging Applications, Springer-Verlag Berlin Heidelberg, 2003.

[24] J. Peterson, P. D. Dixit and K. A. Dill, “A maximum entropy framework
for nonexponential distributions”, PNAS, vol. 110, no. 51, pp. 20380-
–20385.

[25] W. Cook, T. Koch, D. E. Steffy and K. Wolter, “An exact rational
mixed-integer programming solver”, International Conference on Integer
Programming and Combinatorial Optimization, pp. 104–116, 2011.

[26] D. P. Bertsekas and M. A. Belmont, Nonlinear Programming, Athenas
Scientific, 1995.

[27] J. Bielak, “Improving size estimates using historical data”, IEEE Soft-
ware, vol. 17, no. 6, pp. 27-–35, 2000.

[28] J. Guttag, Introduction to computation and programming using Python,
2nd edition, The MIT Press, Cambridge, MA, 2016.

[29] P. C. Pendharkar, “An ant colony optimization heuristic for constrained
task allocation problem”, Journal of Computational Science, vol. 7, pp.
37–47, 2015.

[30] WEKA, https://www.cs.waikato.ac.nz/ml/weka/

[31] Apache Commons Crypto Library,
https://commons.apache.org/proper/commons-crypto/

[32] M. Elsheimy, “C# Implementation of basic linear algebra concepts”,
https://github.com/elsheimy/Elsheimy.Components.Linears.

[33] Apache Commons Codec Library,
https://commons.apache.org/proper/commons-codec/

[34] M. Bell, Michael, Service-Oriented Modeling: Service Analysis, Design,

and Architecture, Wiley & Sons, 2008.
[35] F. J. Massey, “The Kolmogrov-Smirnov test for goodness of fit”, Journal

of the American Statistical Association, vol. 46, no. 253, pp. 68–78,
1951.

[36] C. Withrow, “Error density and size in Ada software”, IEEE Software,
vol. 7, no. 1, pp. 26–30, 1990.

[37] V. R. Basili abd B. T. Perricone, “Software errors abd complexity: an
empirical investigation”, Communications of ACM, vol. 27, no. 1, pp.
42–52, 1984.

[38] Abramowitz and Stegun, Handbook of Mathematical Functions, Na-
tional Bureau of Standards and Applied Mathematics Series 55, 1970.

[39] D. J. Aigner, C. A. K. Lovell and P. Schmidt, “Formulation and
estimation of stochastic frontier production functions”, Journal of Econo-
metrics, vol. 6, no. 1, pp. 21-–37, 1977.

[40] R. D. Banker and C. F. Kemerer, “Scale economies in new software
development”, IEEE Transactions on Software Engineering, vol. 10, no.
15, pp. 1199—1205, 1989.

[41] R. C. Martin, Agile software development, principles, patterns and

practices, Prentice Hall, 2002.
[42] T. Gyimothy, R. Ferenc and I. Siket, “Empirical validation of object-

oriented metrics on open source software for fault prediction”, IEEE
Transactions on Software Engineering, vol. 31, no. 10, pp. 897–910.

[43] P. Yu, T. Systa and H. Muller, “Predicting fault-proneness using OO
metrics. An industrial case study”, Proceedings of the Sixth European
Conference on Software Maintenance and Reengineering, pp. 99–107,
2002.

[44] K. S. Trivedi, Probability and statistics with reliability, queuing and

computer science applications, Second edition, Wiley, 2008.
[45] S. Stevanetic and U. Zdun, “Exploring the relationships between the un-

derstandability of architectural components and graph-based component
level metrics”, Proceedings of 14th International Conference on Quality
Software, pp. 353–358, 2014.

[46] W. Pan, H. Jiang, H. Ming, C. Chai, B. Chen and H. Li, “Character-
izing software stability via change propagation simulation”, Hindawi
Complexity, pp. 1–17, 2019.

[47] Y. Li, Z. Wang, X. Zhong and F. Zou, “Identification of influential func-
tion modules within complex products and systems based on weighted
and directed complex networks”, Journal of Intelligent Manufacturing,
vol. 30, no. 6, pp. 2375–2390, 2019.

[48] W. Whitt, “Untold horrors of the waiting room: What the equilibrium
distribution will never tell about the queue-length process”, Management
Science, vol. 29, no. 4, pp. 395–408, 1983.

[49] H. A. Simon, ”On a class of skew distribution functions”, Biometrika,
vol. 42, no. 3/4, pp. 425–440, 1955.

[50] G. Concas, M. Marchesi, S. Pinna and N. Serra, “Power-laws in a
large object-oriented software system”, IEEE Transactions on Software
Engineering, vol. 33, no. 10, pp. 687–708, 2007.

[51] P. C. Pendharkar, J. A. Rodger and G. H. Subramanian, “An empirical
study of the Cobb-Douglas production function properties of software
development effort”, Information and Software Technology, vol. 50, no.
12, pp. 1181–1188, 2008.

[52] P. C. Pendharkar, “Scale economies and production function estimation
for object oriented software component and source code documentation
size”, European Journal of Operational Research, vol. 172, no. 3, pp.
1040–1050, 2006.

[53] D. R. Pai, G. H. Subramanian and P. C. Pendharkar, “Benchmarking
software development productivity of CMMI Level 5 projects”, Infor-
mation Technology and Management, vol. 16, no. 3, pp. 235–251, 2015.

[54] M. Gell-mann and C. Tsallis, Nonextensive Entropy: Interdisciplinary

Applications, Oxford University Press, 2004.
[55] Karmeshu and S. Sharma, “Power law and Tsallis entropy: network

traffic and applications”, in Chaos, Nonlinearity, Complexity, Springer,
vol. 206, pp. 162–178, 2006.

[56] Karmeshu and S. Sharma, “Queue length distribution of network packet
traffic: Tsallis entropy maximization with fractional moments”, IEEE
Communication Letters, vol. 10, no.1, pp. 34–36, 2006.

[57] Karmeshu and S. Sharma, “q-Exponential product-form solution of
packet distribution in queueing networks: maximization of Tsallis en-
tropy”, IEEE Communication Letters, vol. 10, no. 8, pp.585 – 587, 2006.

[58] S. Sharma and Karmeshu, “Power law characteristics and loss probabil-
ity: finite buffer queueing systems”, IEEE Communication Letters, vol.
13, no. 12, pp. 971-9-73, 2009.

