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Abstract Topological properties of chemical library networks, such as the aver-1

age clustering coefficient, average path length, and existence of hubs, can serve as2

indicators to describe the inherent complexities of chemical libraries. We have used3

Diversity-Oriented Synthesis (DOS) and Focussed Libraries to investigate the appear-4

ance of scale-free properties and absence of small-world behavior in chemical libraries.5

DOS aims to elicit structural complexity in small compounds with respect to skele-6

ton, functional groups, appendages and stereochemistry. Complexity here indicates7

incorporation of sp3 carbons, hydrogen bond acceptors and donors in the molecule.8

Biological studies have shown how structural complexity enhances the interaction of9

molecules with complex biological macromolecules. In contrast, Focussed Libraries10

concentrate on specific scaffolds against a specific biological target. We have quantified11
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the diversity in several DOS and Focussed Libraries based on properties of similarity12

and dissimilarity threshold networks formed from them. Similarity and dissimilarity1 13

networks were generated from diverse chemical libraries at various Tanimoto similar-14

ity coefficients (tc) using FP2 and MACCS fingerprints. The dissimilarity networks at15

very low tc threshold led to the absence of small-world behaviors, as evidenced by low16

average clustering coefficient and high average path length in comparison to Erdös–17

Renyi networks. Dissimilarity networks exhibit scale free topology as evidenced by a18

power law degree distribution. The similarity networks at high tc threshold have shown19

high clustering coefficients and low average path lengths, without the appearance of20

hubs. Combining dissimilarity and similarity threshold graphs revealed assortative and21

dissortative behaviors in the DOS libraries, leading to the conclusion that the vertices22

of the dissimilarity communities are more likely to share similarity edges, but it is quite23

unlikely for the vertices in a similarity community to share dissimilarity edges. We24

propose a simple and convenient diversity quantification tool, QuaLDI (Quantitative25

Library Diversity Index) to quantify the diversity in DOS and Focussed libraries. We26

anticipate that these topological properties can be used as descriptors to quantify the27

diversity in chemical libraries before proceeding for synthesis.28

Keywords Dissimilarity · Similarity · Diversity · Small-world · Chemical space29

networks30

1 Introduction31

With the increasing popularity of automated screening technologies and the avail-32

ability of cheap data storage and powerful computers, compound collections have33

grown into large molecular libraries, often containing millions of chemical substances,34

and representing valuable intellectual property. However, the potential combina-35

tions of just one hundred atoms create a chemical space far exceeding the total36

number of particles in the universe. All the molecules known to chemists since37

the dawn of alchemy represent an infinitesimal subspace of this vast chemical38

space.39

There are as many ways to assess molecular similarity as there are distinct molec-40

ular properties. Representations using molecular descriptors or fingerprints are often41

employed to quantify similarities between molecules. Molecular descriptors are con-42

stitutional, topological, and geometrical or quantum chemical features of molecules43

that quantify the relationship between the molecular structure and molecular prop-44

erties. Threshold networks have been constructed using descriptors representing45

physicochemical properties [1], such as molecular weight, partition coefficients, and46

constitution (e.g. the number of sp2 hybridized atoms), and choosing similarity or47

dissimilarity threshold values. All pairs of molecules with similarity greater than or48

equal to the threshold produces a similarity network; pairs of molecules with sim-49

ilarity less than or equal to the threshold produces the corresponding dissimilarity50

network. Molecular fingerprints are the representations of the molecular structures51

encoded as bit strings. The bit patterns are characteristic of a given molecule. The52

fingerprints [2–7] for the molecules computed via Open Babel [5]. In networks char-53
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acterising chemical libraries, molecules in the libraries are treated as vertices (or54

nodes) and the relationships between pairs of molecules form the edges of the net-55

work. Similarity networks constructed on large compound collections using different56

sets of descriptors have revealed some common features [8–10], such as the small-57

world property and scale-free degree distributions. The idea of the small-world was58

inspired from Milgram’s Six Degrees of Separation [11] and popularized by Watts59

and Strogatz [12] among physicists and biologists. It refers to communities with60

highly connected vertices in the network. Scale-free networks, where the probabil-61

ity that a node has k links decays as power-law p(k) ∼ k−α(α is the exponent and62

usually lies between 2 and 3) are often characterized by a small number of highly63

connected vertices (hubs). A scale-free network’s degree distribution is a straight64

line on a log–log plot. Many real world networks with complex topology have been65

reported to follow scale-free distributions with dissortative (high degree vertices con-66

necting low degree vertices) degree mixing, such as the world wide web [13], internet67

[14], protein-protein interaction networks [15], and with assortative (high degree68

vertices connecting high degree vertices) mixing, such as networks of film actors69

[12] and business people [16]. There are reports of networks showing both small-70

world and scale-free behavior [17]. This raises the question of how commonplace71

and important are small-world and scale-free properties within classes of chemical72

libraries.73

Chemists construct molecular libraries for a variety of reasons, using different syn-74

thetic strategies. We adopt focused library design strategies when the objective is to75

look at molecules that are chemically similar to known drug leads. In other situa-76

tions, it is more useful to cast the net wide with the hope of discovering new types77

of molecules. One popular strategy to create large molecular libraries is combinato-78

rial chemistry [18], where various combinations of functional groups are attached at79

different substitution points to a molecular scaffold, but it has been argued that most80

combinatorial approaches fail to deliver truly novel compounds [19]. Willet [20],81

Agrafiotis et al. [21], and Wintner et al. [22], have proposed different algorithms to82

quantify the diversity in a chemical library.83

Quantitative structure activity relationships (QSAR [23]) are an effective tool in84

drug design used to predict the biological activities of molecules based on their struc-85

tural similarities. However, factors such as solubility, permeability, polymorphism,86

cytotoxicity, mutation and drug resistance represent major challenges encountered87

by chemists, biologists and pharmacists, forcing researchers to broaden the spectrum88

of new chemical entities. Broadening the chemical spectrum requires a chemically89

diverse set of compounds obtained from synthetically feasible number of steps target-90

ing various regions of biological space. The quest for diverse compounds is supported91

by the Diversity-oriented synthesis (DOS) [24] strategy. DOS helps to synthesize92

molecular libraries possessing structural complexity as well as skeletal and stereo-93

chemical diversity. For the present study, we are using DOS (expressing diversity)94

[25–28], and focussed (expressing similarity) libraries [29] to quantify the diversity95

through network theory.96
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2 Dataset, pair-wise similarity and dissimilarity measure97

We represented the DOS libraries [25–28], and Focussed Libraries [29] in SDF format,98

converting molecules into fingerprints using Open Babel [5]. We used the simple and99

popular Open Babel fingerprints such as FP2 [17] (a path based fingerprint charac-100

terized by 7-atom linear chain fragments that correspond to 1024 bits) and MACCS101

[30] fingerprints (that uses SMARTS patterns to describe the molecular sub structure102

or subgraph).103

In order to compare keys we used the Tanimoto similarity distance, tc, a pair-wise104

measure represented by the equation105

tc =
A ∩ B

(A ∪ B) − (A ∩ B)
, (2.1)106

where A∩ B is the number of common bits in the structural fingerprints of compounds107

‘A’ and ‘B’ and A∪B is the sum of the numbers of bits in the fingerprints of compounds108

‘A’ and ‘B’.109

Networks based on Tanimoto coefficient cut-offs of the structural fingerprints were110

generated using Eq. 2.11 and the igraph package [6,31]. Dissimilarity networks at111

thresholds tc ≤ 0.5, 0.4, 0.3, 0.2, 0.22 and similarity networks at thresholds tc ≥112

0.8, 0.9, 0.95, 0.98, 0.99 and 0.995 were generated. The similarity and dissimilarity113

networks were compared at equivalent density of edges to maintain consistency in the114

properties of the threshold networks.115

2.1 Pattern of labelling threshold network116

The scheme used for labelling the threshold networks is described in Table 1. The117

threshold networks were compared with their corresponding Erdös–Renyi random118

networks (ERNs) at equivalent edge densities. For example, the ERN corresponding119

to the threshold network DO S118_F_tc ≤ 0.22 is generated from the equivalent120

number of molecules (N = 118) by connecting them randomly with a probability of121

connection (p = 0.0016) nearly equivalent to the edge density of the threshold network122

as mentioned in Table 2.123

3 Network properties124

A graph [11] is an algebraic object represented by an ordered triple comprising a125

non-empty set (V, E, �G), where vertices, V = {vi |i = 1, 2, 3, . . . , n}, edges, E =126

{ei |i = 1, 2, 3, . . . , m}, such that V ∩ E = ∅ and an incident function is defined by,127

�G : E → [V ]2; e �→ �G (e) =
{

vi , v j

}

. A network is a dynamical object defined by128

the four-tuple, G =
(

Vt , Et , �Nt , Jt

)

, where t is a time parameter, simulated or real;129

Jt is an algorithm for defining the behavior of vertices and edges of the network with130

time. Our study involves the static libraries (non-dynamic chemical libraries) in conju-131

gation with algorithm J ; nevertheless, we refer to chemical similarity and dissimilarity132

graphs as networks throughout this paper. Here every vi ∈ V is represented as a vertex133
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(or node) and the discretized similarity measure forms the connection or edge between134

adjacent vertices. The total number of vertices in the network represents the order of135

the network, (V ) = |V | = n and the total number of connections or edges between136

the vertices represents the size of the network, (E) = |E | = m. The total possible137

number of connections or edges in the network is given by |E |max = n((n−1)
2

. The net-138

work density, D (G) =
number of edges

total number of edges
=

number of edges
total number of edges

= m
n(n−1)/2

.The139

structure of the network (V, E) can be represented as an adjacency matrix (n, n),140

A =
(

aij

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

a1i · · · a1j . . . a1n

...
. . .

...
. . .

...

a2i · · · a2j . . . a2n

...
. . .

...
. . .

...

ani . . . anj . . . ann

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, where the entries ai j = if i and j are adjacent;141

ai j = 0 if i and j are not adjacent. Network properties act as functions of the thresholds142

[32]. The current study focuses on properties such as the vertex degree (k), the degree143

distribution p(k), the average clustering coefficient C (G), average path length L (G),144

degree assortativity (r) and modularity (Q), defined below. The network properties145

of these chemical libraries were compared with the corresponding Erdös–Renyi ran-146

dom networks at comparable edge density. Hubs in a network are the vertices with147

maximum degree, H = max {k (vi )} in a local neighborhood.148

3.1 Small-world property149

The Clustering Coefficient (CiG
) [12] of a vertex in a graph/network is defined as the150

actual number of triangles (tr) which pass through the vertex ‘i’ divided by the total151

number of possible triangles of vertex ‘i’.152

CiG
= tri

/ (n (n − 2)) , (3.1)153

A clique Cq is a maximal complete subgraph in a graph, i.e. a subgraph in which every154

pair of vertices is connected [33]. For example, the hexagonal array of vertices with155

similarity edges (colored blue) in Fig. 3c, wherein every node pair is connected, repre-156

sents the maximal complete subgraph or clique in a network. Detection and analysis of157

the cliques in the network reveals a detailed view of the community structure (highly158

connected vertices with similar or dissimilar feature) within it. The neighborhood SN159

of a vertex i in a network G is the set of all its adjacent vertices j . The neighborhood160

of i in G is given by Ŵ (i) = { j ∈ V : i, j ∈ E}.161

3.1.1 Average clustering coefficient C (G)162

Average Clustering Coefficient C (G) of a network (G) is the clustering coefficient163

CiG
of the node ‘i’ averaged over all ‘n’ vertices of the network G.164

C (G) =

n
∑

i=1

CiG

n
, (3.2)165
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The dissimilarity networks generated from FP2 and MACCS fingerprints exhibit166

C (G) ∼= CE (G). Fig. 3a shows mostly second-order clustering characterised by167

a minimal ring size of four in similarity networks with C (G) ≫ CE (G), as shown in168

Tables 2 and 3.169

3.1.2 Average path length L (G)170

Average Path Length L (G) [12] is the shortest path di, j connecting a pair of vertices,171

averaged over all pairs of vertices ‘n p’ in the network G (Eq. 3.3).172

L (G) =
∑

i

∑

j

di, j

n p

(3.3)173

A community of highly connected vertices with very high average clustering coeffi-174

cient C (G) and relatively short average path length L (G) in a network is known as a175

small-world. The existence of hubs in a network acts as an indicator of the presence176

of the small-world property.177

This property plays a significant role in describing the existence or absence of178

the small-world behavior in the network with low or high L (G) in comparison with179

L E (G), the average path length of ERN measured at nearly equivalent network density.180

The dissimilarity networks generated from FP2 and MACCS fingerprints exhibit181

L (G) ∼= L E (G), while similarity networks show very high L (G) < L E (G) as seen182

from Tables 2 and 3.183

3.1.3 Small-world metric184

The existence of the small-world property in a network can be characterised by the185

following metrics:186

(a) C (G) ≫ CE (G), where C (G) = Average Clustering Coefficient of a network,187

G and CE (G) = Average Clustering Coefficient of the Erdös–Renyi random188

network constructed from the same vertices at nearly equivalent edge density189

[13,34],190

(b) L (G) < L E (G), where LG = Average Path Length [12] of a network, G and191

L E (G) = Average Path Length of the corresponding Erdös–Renyi random net-192

work constructed from the same vertices at nearly equivalent edge density,193

(c) L (G) ∝ LogN , where L (G) = Average Path Length of a network, G should be194

proportional to LogN . The third metric refers to the growing network (dynamic)195

but can be ignored since the study involves only analysis of static networks196

(N = constant).197

If the network fails to satisfy any of the above metrics, it lacks small-world character.198

The dissimilarity networks mentioned in the Tables 2 and 3 fail to satisfy the metrics199

(a) and (b), thereby establishing absence of the small-world property.200

The networks at dissimilarity thresholds tc ≤ 0.3–0.7 show properties, C (G) ∼=201

CE (G) and L (G) ∼= L E (G) resembling the corresponding Erdös–Renyi random202

network constructed from the same vertices (N = 118) at nearly equivalent edge density203

123

Journal: 10910-JOMC Article No.: 0657 TYPESET DISK LE CP Disp.:2016/6/24 Pages: 26 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

J Math Chem

T
a

b
le

3
N

et
w

o
rk

p
ro

p
er

ti
es

o
f

D
O

S
li

b
ra

ri
es

(N
=

1
1

8
,

3
2

,
4

1
)

an
d

F
o

cu
ss

ed
li

b
ra

ry
(F

L
,

N
=

4
1

)
at

v
ar

io
u

s
d

is
si

m
il

ar
it

y
an

d
si

m
il

ar
it

y
th

re
sh

o
ld

s
u

si
n

g
M

A
C

C
S

(M
)

fi
n

g
er

p
ri

n
ts

D
is

si
m

il
ar

it
y

n
et

w
o
rk

s-
M

A
C

C
S

C
(G

)
L

(G
)

C
(G

)
>

C
E

(G
)

C
(G

)
≫

C
E

(G
)

L
(G

)
<

L
E

(G
)

A
v
er

ag
e

d
eg

re
e

N
o

.
o

f
ed

g
es

D
(G

)

D
O

S
1

1
8

_
M

_
t c

≤
0
.2

0
1
.8

1
N

o
N

o
Y

es
2

2
8

0
.0

0
4

E
R

N
(1

1
8

,
0

.0
0

4
5

)
0

2
.1

1
0

.5
2

3
1

0
.0

0
4

5

D
O

S
4
1
_
M

_
t c

≤
0
.2

0
1
.6

6
N

o
N

o
N

o
1
.6

6
5

0
.0

0
6

1

E
R

N
(4

1
,

0
.0

0
6

1
)

0
1

.4
0

.3
6

0
.0

0
9

7

D
O

S
3
2
_
M

_
t c

≤
0
.2

0
1
.8

6
N

o
N

o
N

o
1
.6

6
5

0
.0

1

E
R

N
(3

2
,

0
.0

1
)

0
1

.2
5

0
.1

9
3

0
.0

0
6

F
L

4
1

_
M

_
t c

≤
0
.3

0
1
.9

2
N

o
N

o
Y

es
3

.6
4

3
1

0
.0

3
8

E
R

N
(4

1
,

0
.0

3
8

)
0

2
.6

3
1

.2
7

2
6

0
.0

3
2

S
im

il
a

ri
ty

n
et

w
o

rk
s-

M
A

C
C

S

D
O

S
1

1
8

_
M

_
t c

≥
0
.9

0
.6

7
1

.1
Y

es
Y

es
Y

es
1

.6
2
8

0
.0

0
4

E
R

N
(1

1
8

,
0

.0
0

4
)

0
2

.1
1

0
.5

2
3

1
0
.0

0
4

5

D
O

S
4
1
_
M

_
t c

≥
0
.8

0
.5

1
.3

7
Y

es
Y

es
Y

es
1

.2
1

1
4

0
.0

2

E
R

N
(4

1
,

0
.0

2
)

0
3

.3
0

.9
7

2
0

0
.0

2
4

D
O

S
3
2
_
M

_
t c

≥
0
.8

0
.7

5
1

.1
6

Y
es

Y
es

Y
es

1
.5

4
1

0
0
.0

2

E
R

N
(3

2
,

0
.0

2
)

0
1

.3
8

0
.5

6
9

0
.0

1
8

F
L

4
1

_
M

_
t c

≥
0
.9

8
1

1
Y

es
Y

es
Y

es
4

.9
2

2
0
.0

2
6

E
R

N
(4

1
,

0
.0

2
6

)
0

1
.7

7
0

.7
8

1
6

0
.0

1
9

T
h
e

ta
b
le

d
es

cr
ib

es
fe

at
u
re

s
o

f
d

is
si

m
il

ar
it

y
th

re
sh

o
ld

n
et

w
o
rk

s
(g

en
er

at
ed

u
si

n
g

M
A

C
C

S
fi

n
g
er

p
ri

n
ts

)
sh

o
w

in
g

th
e

ab
se

n
ce

o
f

sm
al

l-
w

o
rl

d
b

eh
av

io
r,

w
h
er

ea
s

si
m

il
ar

it
y

th
re

sh
o
ld

n
et

w
o
rk

s
ex

h
ib

it
th

e
sm

al
l-

w
o

rl
d

b
eh

av
io

r.
T

h
e

d
is

si
m

il
ar

it
y

n
et

w
o
rk

s
ab

b
re

v
ia

te
d

as
D

O
S

1
1
8
_
F

_
t c

≤
0
.2

2
,
D

O
S

4
1

_
F

_
t c

≤
0
.3

6
an

d
D

O
S

3
2

_
F

_
t c

≤
0
.4

re
fe

r
to

th
e

n
et

w
o

rk
s

g
en

er
at

ed
fr

o
m

D
O

S
li

b
ra

ry
co

m
p

ri
si

n
g

1
1

8
,
4

1
an

d
3

2
co

m
p

o
u

n
d

s
u

si
n

g
O

p
en

B
ab

el
fi

n
g

er
p

ri
n

t
F

P
2

at
T

an
im

o
to

si
m

il
ar

it
y

co
ef

fi
ci

en
t,

t c
≤

0
.2

2
,
0

.3
6

an
d

0
.4

.

T
h
e

d
is

si
m

il
ar

it
y

n
et

w
o
rk

ab
b
re

v
ia

te
d

as
F

L
4
1
_
F

_
t c

≤
0
.5

,
re

fe
rs

to
a

n
et

w
o

rk
g

en
er

at
ed

fr
o

m
F

o
cu

ss
ed

li
b

ra
ry

(F
L

)
co

m
p

ri
si

n
g

4
1

co
m

p
o

u
n

d
s

u
si

n
g

O
p

en
B

ab
el

fi
n

g
er

p
ri

n
t

F
P

2
(F

)
at

T
an

im
o
to

si
m

il
ar

it
y

co
ef

fi
ci

en
t,

t c
≤

0
.5

.
C

(G
)

a
n

d
C

E
(G

)
ar

e
th

e
av

er
ag

e
cl

u
st

er
in

g
co

ef
fi

ci
en

t
o

f
th

re
sh

o
ld

an
d

E
rd

ö
s–

R
en

y
i

n
et

w
o

rk
.

L
(G

)
a

n
d

L
E

(G
)

ar
e

th
e

av
er

ag
e

p
at

h
le

n
g

th
s

o
f

th
re

sh
o

ld
an

d
E

rd
ö

s–
R

en
y

i
n

et
w

o
rk

.
D

(G
)

=
N

et
w

o
rk

d
en

si
ty

123

Journal: 10910-JOMC Article No.: 0657 TYPESET DISK LE CP Disp.:2016/6/24 Pages: 26 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

J Math Chem

(Eg., ERN (N = 118, D(G) = 0.18); this reflects pseudo random behavior of the network,204

as mentioned in Table 4.205

3.1.4 Degree assortativity [35,36]206

The nature of community structures in the threshold networks depends on the assorta-207

tive and dissortative mixing of degrees of vertices in the network. Degree assortativity208

is the correlation coefficient between the degrees of connected vertices, given by209

Eq. 3.4:210

r =

∑

1≤i, j≤n

(

Ai j −
ki k j

2m

)

ki k j

∑

1≤i, j≤n

(

kiδi j −
ki k j

2m

)

ki k j

, (3.4)211

where an element of the adjacency matrix of the network,212

Ai j =

{

1 i f nodes i and j are connected,

0 otherwise
,213

ki k j are the degrees of node i and j, respectively; δi j = Kronecker delta function,214
{

0 i = j

1 i �= j
; n and m are the order (total number of vertices in the network) and the size215

(total number of edges in the network) of the network [32]. The degree assortativity216

provides information about the vertices of high degree connecting vertices of high217

degree and the low degree vertices connecting low degree vertices; its value can be218

positive or negative. Negative values represent degree dissortativity, characterised by219

vertices of high degree connecting low degree vertices.220

Assortative and Dissortative degree mixing in DOS libraries The nature of community221

structures in the threshold networks depends on the assortative and dissortative mixing222

of degrees of vertices in the network. Table 5 illustrates the assortative and dissortative223

mixing of degrees of vertices in threshold networks. The dissimilarity networks show224

the dissortative (negative degree assortativity) behavior characterised by high degree225

vertices connected to low degree vertices, as evidenced by the star subgraphs shown226

in Fig. 3a. The high negative assortativity associated with absence of cliquishness227

represents high dissortative mixing of vertices in the networks, thus reflecting dissim-228

ilarity or diversity in the library, as illustrated in Table 5. On the contrary, similarity229

networks show high degree assortativity accompanied by cliquishness featuring high230

degree vertices linked to other high degree vertices, thereby leading to small-world231

structures in the network (Fig. 3b).232

3.1.5 Modularity233

Modularity [37] of a network quantifies the community structures in the network, sep-234

arating the vertices into groups in such a way that there exist enough edges between235

the vertices within a group but very few edges between the groups. A number of algo-236

rithms have been recently proposed to find the community structures in networks, such237

as the Edge betweenness divisive algorithm proposed by Girvan and Newman [38,39],238

and the walktrap algorithm proposed by Pons and Latapy [40].We used Newman’s fast239
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greedy algorithm [2] to find the communities in dissimilarity and similarity networks.240

Modularity is described by Eq. 3.5:241

Q =
1

2m

∑

1≤i, j≤n

(

Ai j −
ki k j

2m

)

δ (i, j) (3.5)242

where δ (i, j)

{

1 if i and j belong to the same community

0 otherwise,
, the network with more243

community structure reflects high modularity. Modularity ranges between [−1 and 1).244

Dissimilarity networks show low modularity values as compared to similarity networks245

at comparable edge density, as mentioned in Table 5.246

3.2 Scale-free dissimilarity networks247

Scale-free networks, where the probability that a node has k links decays as a power-248

law249

p (k) α k−α, (3.6)250

are often characterized by a small number of highly connected vertices (hubs). A scale-251

free network’s degree distribution is linear on a log–log plot. While there have been252

studies of large real world complex networks (including chemical libraries) which253

exhibit scale-free topology based on similarity measures, there have been no studies254

using dissimilarity measures.255

3.2.1 Power law fit [41,42]256

Scale free networks and complex systems may not always follow power law degree257

distributions (Eq. 3.6). In a scale free network, the probability p (k) that a node has258

degree ′k′ decays exponentially, where α is the exponent of the fitted power-law distrib-259

ution. The minimum value of k is kmin, above which the theoretical degree distribution260

starts fitting the data plot; kmin can be estimated by Kolmogorov and Smirnov’s (KS)261

[43] test. The KS statistic D estimates the maximum separation between the data and262

the fitted cumulative distribution function (CDF),263

D = maxk≥kmin
|S (k) − P (k)| , (3.7)264

where S (k) and P (k) are the CDFs of the data and the fitted model, respectively. The265

appropriate kmin is the value which minimizes D.266

For the given value of kmin the scaling parameter is estimated by using a maximum267

likelihood estimator (MLE) [42] optimising maximum log-likelihood, defined as268

α̂ ∼= 1 + n

[

∑n

i=1
log

(

ki

kmin − 0.5

)]−1

, (3.8)269
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Table 6 Power law fitting

Dissimilarity networks-FP2 or MACCS α kmin Log likelihood KS. stat KS.p

DOS118_F_tc ≤ 0.3 2.44 8 −137.21 0.066 0.99

DOS118_M_tc ≤ 0.2 2.29 1 −32.93 0.064 0.99

DOS41_F_tc ≤ 0.4 4.87 9 −11.12 0.16 0.99

DOS41_M_tc ≤ 0.3 3.3 10 −24.23 0.127 0.99

DOS32_F_tc ≤ 0.4 2.42 3 −37.55 0.11 0.98

DOS32_M_tc ≤ 0.2 2.13 1 −7.01 0.07 1

FL41_F_tc ≤ 0.5 3.19 3 −5.22 0.11 1.0

FL41_M_tc ≤ 0.3 3.18 4 −14.31 0.15 0.99

Power law fits of dissimilarity networks using igraph package in R, which performs a test to determine

whether a power law distribution is plausible or not. Dissimilarity network-FP2: Dissimilarity threshold net-

works generated from FP2 fingerprints. Dissimilarity network-MACCS: Dissimilarity threshold networks

generated from MACCS fingerprints. α= Numeric scalar, the exponent of the fitted power-law distribution.

kmin = Numeric scalar, the minimum value from which the power-law distribution was fitted. In other words,

only values of k larger than kmin were used from the input vector. Log likelihood = Numeric scalar, the log-

likelihood of the fitted parameters. KS.stat = Numeric scalar, the test statistic of a Kolmogorov–Smirnov test

that compares the fitted distribution with the input vector. Smaller scores denote better fit. KS.p = Numeric

scalar, the p value of the Kolmogorov–Smirnov test. Small p values (less than 0.05) indicate that the test

rejects the null hypothesis. The dissimilarity graphs such as DOS118_F_tc ≤ 0.3, DOS32_F_tc ≤ 0.4,

DOS118_M_tc ≤ 0.2 and DOS32_M_tc ≤ 0.2 exhibit power-law like behavior with α value between 2

and 3

where α̂ is the KS statistic derived from data, ki , i = 1, . . . , n, are the observed values270

of k such that ki ≥ kmin . The results obtained using Eq. 3.8 are listed in Table 6.271

3.2.2 Degree distribution p(k)272

Degree distribution p(k) is the probability that a fraction of the vertices in the net-273

work has k links. However, a change in the similarity/dissimilarity threshold leads to274

variation in the edge density, which in turn changes the degree distribution. Degree275

distributions of dissimilarity threshold networks have demonstrated power law (scale276

free behavior) as shown in Fig. 1a–e. However, other distributions such as exponential,277

lognormal and Poisson may also fit the data, as demonstrated in the CDF v/s Degree278

plots (Fig. 2a–d) in Sect. 3.23. Further, at very high similarity thresholds, the resulting279

networks did not follow any conventional degree distribution, irrespective of the type280

of fingerprints used.281

3.2.3 Cumulative distribution function (CDF)282

The dissimilarity networks were found to fit various degree distributions at different283

values of kmin . Fig. 2a–d demonstrates that the CDF may be fit by power law (at the284

tail end), lognormal and exponential distributions. The trends show that dissimilarity285

networks demonstrate best fit to power law and lognormal distribution as compared286

to other statistics.287
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Fig. 1 Degree distributions of various dissimilarity networks. The DOS libraries (N = 118, 32) and Focussed

Library (N = 41) at FP2 and MACCS threshold values tc ≤ 0.3−0.4 display power law (scale free behavior)

and exponential (1a, c, e) distribution. The Focussed library (N = 41) at FP2 and MACCS threshold value

tc ≤ 0.3 − 0.5 display skewed lognormal distributions (1b and d)

Fitting a power law to a continuous or discrete data is done by testing the null288

hypothesis. The p value generated quantifies the plausibility of the hypothesis. To test289

whether they follow a power law, we used a null model (H0) as well as an Alternative290

model (H1). Null hypothesis, H0 = data follows power law distribution. Alternative291

hypothesis, H1 = data does not follow power law distribution. If the p value is > 0.1292

then one cannot reject the null hypothesis. If the p value is < 0.1 then one has to reject293

the null hypothesis. To assess the scale-free ehaviour in the network, the best way is294

to fit the data to a power law.295

From Table 6, it is evident that dissimilarity graphs such as DOS118_F_tc ≤ 0.3,296

DOS32_F_tc ≤ 0.4, DOS118_M_tc ≤ 0.2 and DOS32_M_tc ≤ 0.2 demonstrate297

power-law like ehaviour with the exponent α lying between 2 and 3. However, these298

networks also fit a log-normal distribution, as shown in Fig. 2a–d.299
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Fig. 2 Fits of the cumulative distribution function (CDF) v/s degree of dissimilarity networks. The CDF

of DOS libraries (N = 118, 41) at FP2 and MACCS threshold values tc ≤ 0.3 − 0.36 fit a power law at the

tail end of the distribution besides fitting to lognormal and exponential distributions
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Fig. 3 Visual representations of similarity and dissimilarity threshold networks. The Fruchterman Reingold

layout (force field directed layout) used to visualize the undirected threshold networks. Red and blue edges

represent dissimilarity and similarity edges, respectively. Such combined representations of dissimilarity

and similarity networks can be used to conveniently visualize the characteristics of a chemical library at

a glance. The Fig. 3a–c show that the combined dissimilarity and similarity networks, DOS41_F_tc ≤

0.36 + tc ≥ 0.9 (DOS Library with 41 molecules, FP2 fingerprints with threshold tc ≤ 0.36 and tc ≥ 0.9),

DOS118_M_tc ≤ 2 + tc ≥ 9 (DOS Library with 118 molecules, MACCS fingerprints with threshold

tc ≤ 0.2 and tc ≥ 0.9) and FL41_F_tc ≤ 5+tc ≥ 995 (Focussed library with 41 molecules, FP2 fingerprints

with threshold tc ≤ 0.5 and tc ≥ 0.995) exhibit either homophily or diversity. The combined networks

demonstrate more likely sharing of similarity edges between the vertices in dissimilarity subnetworks and

less likely sharing of dissimilarity edges between the vertices in the similarity subnetworks

4 Quantitative library diversity index (QuaLDI)300

Exploring hitherto unexplored regions of chemical space is critically important for301

identifying novel diverse chemical structures with drug-like properties. Quantifying302

the diversity in a chemical library is important for optimising structural diversity303

along with other features. This helps in choosing optimal reagents and substrates for304

generating highly diverse compounds that can be further explored in drug design.305
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Over the past two decades, there have been many studies exploring various diversity306

measures for a chemical library, but none using network topology to quantify diversity307

[20–22].308

In the present study, we propose a simple, convenient and novel Quantitative Library309

Diversity Index to quantify the diversity of a chemical library based on network topol-310

ogy:311

QuaL DI % =

(

1 −

∑n
ω=1 ω

λ

)

∗ 100 (4.1)312

where ω is a scaled network topological property; λ is the total number of properties313

used for quantification. For the present study, have used the four properties: average314

clustering Coefficient C(G), average path length L(G), degree assortativity r and315

modularity Q. The values of these properties lie in the range: C(G) between (0,1);316

L(G) between (0, dG), where dG is diameter of the network G; r between (−1,1) and317

Q between (−1,1). To equalize the contributions of the different network properties318

to the index, each property ω is scaled between 0 and 1 using Eq. 4.2:319

Scale1
0ω =

xi − xmin

xmax − xmin

, (4.2)320

where xi is the value of i th property: i = {1, 2, 3, . . ., n}; xmin is the minimum of all321

values of x ; and xmax is the maximum of all values of x .322

Fig. 4 Structures of the molecules belonging to the dissimilarity network DOS118_M_tc ≤ 0.2 con-

structed from a DOS library. The dissortative nature of dissimilarity network DOS118_M_tc ≤ 0.2 with

structurally diverse compounds. Molecule 60 (hub) is structurally very dissimilar to the rest of the library,

being connected by dissimilarity edges to most of the other compounds
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Fig. 5 Structures of the molecules belonging to the dissimilarity network DOS41_F_tc ≤ 0.36 constructed

from a DOS library. The dissortative nature of dissimilarity network DOS41_F_tc ≤ 0.36 with structurally

diverse compounds. Molecules 3, 18 and 36 (hubs) are structurally very dissimilar to the rest of the library,

being connected through dissimilarity edges to many other molecules, but they do not share any edges

between them, as their similarity coefficients tc are just above 0.36

Equation 4.1 was employed for the quantification of library diversity, and the results323

are reported in the Tables 7, 8, 9 and 10. The dissimilarity sets of compounds are shown324

in Figs. 4, 5 and 6.325

5 Network visualisation326

The undirected threshold networks are visualized in the ‘Fruchterman Reingold’ force327

field directed layout. The dissimilarity networks show the absence of cliques in the328

community, which lead to the absence of the small-world property, as illustrated in 2329

Figs. 3a–c and 4, 5, 6. The molecule 60 (hub) in Fig. 4, and molecules 3, 18 and 36330

(hubs) in Fig. 5, are structurally dissimilar to the rest of their respective libraries. The331

maximally diverse set of compounds in the focussed library (Fig. 6) seems to be less332

diverse in comparison to the dissimilarity subsets of the DOS libraries.333

The vertices in the dissimilarity network display dissortative hubs characterised334

by star graphs. The dissimilarity network also show second order clustering char-335

acterised by minimal ring size of four. However, the high similarity networks show336

high clustering coefficient and low average path length within the islands/small-world337

communities in comparison to the corresponding Erdös–Renyi random networks at338

equivalent edge density, as in Fig. 3a–b. As previously discussed, a chemical library339

is a combination of threshold networks exhibiting properties that reflect homophily or340

diversity in the subnetworks of the chemical library. Fig. 3a–b illustrates the common341
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Fig. 6 Structures of the molecules belonging to the dissimilarity network FL41_F_tc ≤ 0.5 constructed

from a Focused library. The dissortative nature of dissimilarity network FL41_F_tc ≤ 0.5 identifying the

maximally diverse set of compounds within the library, but these are less diverse in comparison to the

dissimilarity subsets of the DOS libraries

motif of sharing of similarity edges between the vertices in dissimilarity networks and342

the rarer sharing of dissimilarity edges between the vertices in the similarity network343

communities.344

6 Conclusion345

In the present research, we studied the design and properties of various dissimilarity346

and similarity threshold networks generated from DOS and focussed libraries using347

FP2 and MACCS fingerprints. The dissimilarity networks show the absence of small-348

world behavior, as evidenced by very low average clustering coefficients and high349

average path lengths in comparison to the Erdös–Renyi networks. The dissimilarity350

networks exhibit scale-free topology compatible with power-law, exponential and log-351

normal distributions. Both similarity and dissimilarity networks show the presence of352

hubs. The hubs in dissimilarity networks reveal dissortative behavior, whereas the353

hubs in similarity networks show assortative behavior. The dissimilarity networks354

display pseudo random network behavior, while the similarity networks demonstrate355

small-world behavior. High average clustering coefficient, assortativity and high mod-356

ularity of the network are hallmarks of a high similarity threshold network of a357

chemical library. Low average clustering coefficient, dissortativity and low modularity358

(Q < QE) of the network are the signatures of a high dissimilarity threshold network359

123

Journal: 10910-JOMC Article No.: 0657 TYPESET DISK LE CP Disp.:2016/6/24 Pages: 26 Layout: Small-X

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f

J Math Chem

of a chemical library. In dissimilarity networks, the mixing of degrees of vertices is360

more dissortative, in contrast to the assortative behavior of similarity networks.361

Quantifying the diversity in a virtual chemical library prior to synthesis is highly362

desirable when building a diverse library of molecules for screening, for which we363

propose a diversity measure QuaLDI based on network properties.The diversity of364

small DOS and Focussed libraries were assessed and quantified, based on the prop-365

erties of similarity and dissimilarity threshold graphs of the chemical libraries. As366

illustrated in the present study, QuaLDI may be used to quantify the diversity in small367

chemical libraries (∼30 to 120 compounds). Employing network measures to quan-368

tify diversity in a chemical library provides a systematic and unbiased way to prune369

or grow a library such that each molecule adds maximum information content to a370

structure-activity relationship. Similar network measures have been used in feature371

selection [44] to systematically drop inter-correlated descriptors in an unbiased man-372

ner while retaining maximum information content in the remaining ones. Our future373

goal is to construct predictive models for diversity in chemical libraries using network374

topological properties as descriptors along with other molecular descriptors.375
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