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a b s t r a c t

For Reed–Solomon codes with block length n and dimension k, the Johnson theorem

states that for a Hamming ball of radius smaller than n −
√
nk, there can be at most

O(n2) codewords. It was not known whether for larger radius, the number of codewords

is polynomial. The best known list decoding algorithm for Reed–Solomon codes due to

Guruswami and Sudan [Venkatesan Guruswami, Madhu Sudan, Improved decoding of

Reed–Solomon and algebraic-geometry codes, IEEE Transactions on Information Theory 45

(6) (1999) 1757–1767] is also known towork in polynomial time only within this radius. In

this paper we prove that when k < αn for any constant 0 < α < 1, we can overcome the

barrier of the Johnson bound for list decoding of Reed–Solomon codes (even if the field size

is exponential). More specifically in such a case, we prove that for Hamming ball of radius

n −
√
nk + c (for any c > 0) there can be at most O(n

c
2
√

α

(1−
√

α)2
+c+2

) number of codewords.

For any constant c , we describe a polynomial time algorithm for enumerating all of them,

thereby also improving on the Guruswami–Sudan algorithm. Although the improvement is

modest, this provides evidence for the first time that the n −
√
nk bound is not sacrosanct

for such a high rate.

We apply our method to obtain sharper bounds on a list recovery problem introduced

by Guruswami and Rudra [Venkatesan Guruswami, Atri Rudra, Limits to list decoding

Reed–Solomon codes, IEEE Transactions on Information Theory 52 (8) (2006) 3642–3649]

where they establish super-polynomial lower bounds on the output size when the list

size exceeds ⌈ n

k
⌉. We show that even for larger list sizes the problem can be solved in

polynomial time for certain values of k.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

An error-correcting code C over a finite alphabet Σ is an injective map e : Σk → Σn. To transmit a message m

of k symbols over a noisy channel, we send e(m) of n symbols. The Hamming distance between two sequence of letters
of the same length is the number of positions where two sequences differ. A good error-correcting code should have a
large minimum distance d, which is defined to be the minimum Hamming distance between any two codewords in e(Σk).
A received message, possibly corrupted, with no more than (d − 1)/2 errors, corresponds to a unique codeword. Thus
the original message can be recovered despite errors occur during the communication. We would like to design efficient
encoding and decoding algorithms that can correct as many errors as possible.

Reed–Solomon codes are used in a wide variety of commercial applications, most prominently in CDs and DVDs,
in data transmission technologies such as DSL and WiMAX, and broadcast systems such as DVB and ATTIC. Informally,
Reed–Solomon code is an error-correcting code that works by oversampling a polynomial constructed from the massage.
The polynomial is evaluated at several points, and these values are sent or recorded. Sampling the polynomial more often
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than is necessary makes the polynomial overdetermined. As long as it receives a certain minimum number of the points
correctly, the receiver can recover the original polynomial even in the presence of some erroneous points.

Formally, the Reed–Solomon code [n, k] (denoted by RS[n, k]) over a finite field Fq (q is number of elements in the

field) is the map from F
k
q 7→ F

n
q given by e(a0, a1, . . . , ak−1) = (P(x1), P(x2), . . . , P(xn)) where P(X) =

∑k−1
i=0 aiX

i. Here
x1, x2, . . . , xn are distinct points in Fq. Since any two different polynomials with degree k − 1 agree at at most k − 1 points,
the minimum distance of the Reed–Solomon code is n − k + 1. A Hamming ball with radius less than half of the minimum
distance contains at most one codeword. Finding the codeword is called unambiguous decoding and it can be efficiently
solved by a simple algorithm [2].

1.1. List decoding

If we gradually increase the radius, theremay be two ormore codewords lying in someHamming balls. Canwe efficiently
enumerate all the codewords in any Hamming ball of certain radius? This is the so called list decoding problem and was
introduced independently by Elias [3] and Wozencraft [18].

In other words, list decoding is a relaxation of the usual decoding procedure, wherein the decoder is allowed to output a
list of possible originalmessages. This relaxation is required to get around half the distance barrier for unique decoding. Apart
from being able to correct more errors (than the case of unique decoding), algorithms for list decoding of various codes have
played a central role in a variety of results in complexity theory. Some important applications are construction of hardcore
predicates from one-way permutations, amplifying hardness of boolean functions and construction of extractors [17].

The list decoding problem of Reed–Solomon codes can also be reformulated as the problem of curve fitting or polynomial
reconstruction. In this problem, we are given n distinct points (x1, x2, . . . , xn) in Fq and another n points (which need not be
distinct) (y1, y2, . . . , yn) in Fq. The goal is to find polynomials P(x) of degree at most k− 1 that agree at at least t points (i.e.
P(xi) = yi) for at least t points. It is easy to see the connection between the problem of list decoding Reed–Solomon code and
the polynomial reconstruction problem. Finding all polynomials that agree at t points is equivalent to enumerating all the
codewords in any Hamming ball of radius n− t . In the rest of the paper, t will be used to denote the number of agreements.

We have the following two fundamental questions related to list decoding Reed–Solomon codes.

1. (Combinatorial) What is the maximum value of t for which the number of codewords in a Hamming ball of radius n − t

is polynomially bounded?

2. (Algorithmic) What is the maximum value of t for which we can enumerate all of codewords in any Hamming ball of
radius n − t in polynomial time?

We note that the bound for algorithmic version of the problem is greater than or equal to the combinatorial version of the
problem.

Since for t ≤ k it is possible that there are exponentially many solutions (there will be exactly
(

n

t

)

solutions), we will
focus on t > k in the remaining paper.

1.2. Previous related results

The Johnson bound for Reed–Solomon codes [6,4] states that there can be at most O(n2) codewords in any Hamming ball

of radius smaller than n−
√
nk. It is not knownwhether the number of codewords in a Hamming ball of radius greater than

n −
√
nk is polynomially bounded. The tightness of the Johnson bound will imply that the previous property doesn’t hold.

In [9], the authors study the following question: Given n pairs of distinct points ((x1, y1), (x2, y2), . . . , (xn, yn)) ∈ F
2
q ,

find polynomials of degree at most k−1 that agree at at least t points. Note that their construction uses (x1, x2, . . . , xn) that
are not distinct, unlike Reed–Solomon codes. They show that there exists a received codeword for which there are super-

polynomial (ω(nc) for any constant c) number of polynomials of degree at most k − 1 for t <
√

(1 − ǫ)nk. Extending this
result to distinct x′

iswould imply that Johnson bound is (nearly) tight for Reed–Solomon codes. In the samepaper, the authors

construct Reed–Solomon codes (distinct xi’s) with k = nδ for some δ > 0, and exhibit an explicit received codeword r with
a super-polynomial number of codewords that agree with it on (2 − ǫ)k points, for any ǫ > 0. This is improved in a recent
work by Ben-Sasson, Kopparty and Radhakrishnan [7], who show that for any δ ∈ (0, 1), there exist codes RS[n, k = nδ]
which have super-polynomial codewords with agreement n

√
δ . (Note that 2nδ < n

√
δ for small enough δ.) This still leaves

a fairly large gap between the bounds for distinct and non-distinct xi’s and the leaves open the question of the tightness of
the Johnson bound for Reed–Solomon codes.

Algorithmically therewas little progress on this problem for radius slightly larger thanhalf of theminimumdistance, until
Sudan [5] that was subsequently improved by Guruswami and Sudan [10]. The latter paper solves the list decoding problem

for radius as large as n−
√
nk (t >

√
nk). Note that thismatches the Johnson bound and in the remaining paper, wewill refer

to this as the GS algorithm. This surprising coincidence has led many researchers to conjecture that the Johnson bound is

tight. In particular, there may be super-polynomially many codewords in some Hamming ball of radius exceeding n−
√
nk.

In [1], the authors have proved that the list decoding cannot be done for t < g(n, k, q), otherwise the discrete logarithm

over Fqg(n,k,q)−k is easy, where g(n, k, q) is the smallest positive integer g∗ such that

(

n

g∗

)

/qg∗−k < 1 and they have proved
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that such a g∗ lies in [k,
√
nk]. While this gives strong evidence that it may be hard to list decode for t < g∗, the possible gap

between the values of g∗ and
√
nk leaves open the question of the tightness of the Johnson bound (algorithmic version). We

note that their reduction is a probabilistic reduction, which means that an algorithm for the list decoding Reed–Solomon
codes with agreement smaller than g∗ would lead to a randomized algorithm for a discrete logarithm over finite fields.

TheMaximum-LikelihoodDecoding Problemof Reed–Solomon codes is: Given a integerw > 0 and a target vector y ∈ F n
q ,

is there a codeword c such that the Hamming distance between c and y is atmostw? In [12] Guruswami and Vardy show the
existence of Reed–Solomon codes for which the Maximum-Likelihood Decoding Problem with w = k + 1 is NP-complete.
The specific class of Reed–Solomon codes that they construct have an exponential field size.

In a restricted scenario where errors occur in a synchronized fashion overM − 1 consecutive codewords (errors occur in

same positions), Parvaresh andVardy [15] show that one can achieve amuch larger list decoding radius, viz., n(1−( kM

n
)
M−1
M ).

In [16], the authors show that by departing from the conventional Reed–Solomon codes, one can obtain n(1 − ( kM

n
)
M−1
M )

error correction bounds in the worst case. Building on this, Guruswami and Rudra [13] have constructed a code that they
call folded Reed–Solomon codes, that achieves (nearly) optimal (n(1 − ǫ) − k) list decoding radius.

1.3. Our results

We prove that when k < αn for any constant 0 < α < 1 then the Johnson bound is not tight for Reed–Solomon

codes. More specifically, for any c > 0, we prove that a Hamming ball of radius n −
√
nk + c (note that this exceeds

the Johnson bound), there can be at most O(n
c

2
√

α

(1−
√

α)2
+c+2

) number of codewords. Our proof is constructive leading to a
polynomial time algorithm to enumerate all of them. The reader may note that there is a trivial algorithm for increasing the
Guruswami–Sudan radius by any additive constant c. That is, we can guess the correct values for

(

n

c

)

positions before we
apply the Guruswami–Sudan algorithm. This will work in polynomial time if the field size is polynomial. Our result only uses
the fact that the field operations take polynomial time (and therefore can handle exponential size fields).

Therefore under a very mild assumption we are able to improve the Johnson bound as well as improve the algorithmic

bound of GS [10]. There could still be a large gap between g∗ and
√
nk − c for any constant c > 0.

Using the abovemethodwe obtain sharper bounds for the list recovery problem (introduced by Guruswami and Indyk [8]
and defined formally in Section 2). Guruswami and Rudra [9] establish super-polynomial lower bounds on the output size
when the list size exceeds ⌈ n

k
⌉. We show that even for larger list sizes the problem can be solved in polynomial time for

certain values of k.

2. Breaking through the barrier of n −

√

nk for Reed–Solomon code

Let Fq be a field with q elements and t be an integer such that
√
nk − 1 < t ≤

√
nk. We recall that the list decoding

problem of Reed–Solomon codes can be reformulated into the problem of curve fitting or polynomial reconstruction on
distinct points. In this problem, we are given n distinct pair of points ((x1, y1), (x2, y2), . . . , (xn, yn)) in F

2
q . The goal is to find

polynomials P(X) of degree at most k − 1 such that P(xi) = yi for at least t points. The GS [10] solves the more general

problem for t <
√
nk.

Let us sketch the idea of our construction beforeweprovide the formal details. Givenndistinct points (x1, x2, . . . , xn) inFq

and another n points (y1, y2, . . . , yn) in Fq, we try to solve the polynomial reconstruction problemwith input x2, x3, . . . , xn,
(y2−y1)

(x2−x1)
,

(y3−y1)

(x3−x1)
, . . . ,

(yn−y1)

(xn−x1)
. That is, we wish to find all polynomials P1(X) of degree at most k − 2 such that P1(xi) = (yi−y1)

(xi−x1)

for least t − 1 (of n− 1) points. Similarly we can define polynomials Pi(X)’s of degree at most k− 2 such that Pi(xj) = (yj−yi)

(xj−xi)

for least t − 1 (of n − 1) points other than xi. In other words, given an (n, k, t) instance of the problem we reduce it to an
(n − 1, k − 1, t − 1) instance of the problem. This we call as one step in the reduction process.

We note that the distinctness of xi’s is not crucial for our reduction step. Suppose x1 appears l1 times, (x1, y1), . . . (x1, yl1).
Then, when we try polynomials that pass through (x1, y1), the points (x1, y2), . . . , (x1, yl1) are already eliminated. So, we
have a problemwith l1 > 0 fewer points, degree = k−1 and still needing agreement t−1. In other words, given an (n, k, t)
instance of the problemwe reduce it to an (n− l1, k− 1, t − 1) instance of the problem. In the rest of this section li’s denote
the number of times xi’s appear in the input.

In next lemma, we prove that number of polynomials Pi(X) of degree at most k − 2 such that Pi(xj) = (yj−yi)

(xj−xi)
for least

t − 1 (of n− 1) points other than xi is same as the number of polynomials P(X) of degree at most k− 1 such that P(xj) = yj
for least t of n1 points. In other words, our reduction preserves the list size.

Lemma 2.1. There is a polynomial P(X) of degree at most k − 1 such that P(xi) = yi for at least t − 1 points and P(x1) = y1 iff

there is a polynomial P1(X) of degree at most k − 2 such that P1(xi) = (yi−y1)

(xi−x1)
for at least t − 1 points.

Proof. Let P(X) be a polynomial of degree at most k− 1 such that P(xi) = yi, i > 1, for at least t − 1 points and P(x1) = y1.
Let P1(X) be the polynomial obtained by dividing P(X) by (X−xi). Since P(x1) = y1 it follows that P(X) = P1(X)(X−x1)+y1.
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Clearly P1(X) is a polynomial of degree atmost k−2 and for any i if P(xi) = yi then for such an iwe note that P1(xi) = (yi−y1)

(xi−x1)
.

By the choice of P(X), P(xi) = yi for at least t − 1 points. This implies that P1(xi) = (yi−y1)

(xi−x1)
for at least t − 1 points.

The converse follows similarly by multiplying P1(X) by (X − x1) and adding y1. �

Let Poly = {P(X) ∈ Fq[X]| deg(P(X)) ≤ k − 1, P(xi) = yi for at least t points}. That is, Poly is the set of polynomials of
degree at most k − 1 which agrees at at least t of the n points. Let Poly(i) = {Pi(X) ∈ Fq[X]| deg(Pi(X)) ≤ k − 2, Pi(xj) =
yj−yi

xj−xi
, i 6= j for at least t − 1 points}. The following lemma proves that Poly = ∪n

i=1{Pi(X)(X − xi) + yi|Pi(X) ∈ Poly(i)}.

Lemma 2.2. By solving all the (n− li, k−1, t −1) instances for computing Poly(i) 1 ≤ i ≤ n, we can solve the (n, k, t) instance
for computing Poly.

Proof. Any polynomial in the set Polymust have P(xi) = yi for some i and hence can be recovered from Poly(i) by using the
reduction described above. �

We can solve the (n− li, k−1, t−1) instance of the problem using the GS [10] algorithm provided t−1 >
√

(n − li)(k − 1).
If t − 1 <

√
(n − li)(k − 1) we apply the reduction again until we can solve the problem by using the GS algorithm. That

is, we apply the reduction s times, such that t − s >
√

(n − s)(k − s). Now by solving ns number of (n − s, k − s, t − s)
instances of the problem using the GS algorithmwe can solve the (n, k, t) instance of the problem. In the following theorem
we give an upper bound on the number of reduction steps required to achieve such an s.

Theorem 2.3. If k < αn for some 0 < α < 1 and
√
nk−1 < t ≤

√
nk then the number of polynomials of degree at most k−1

agreeing at at least t points is at most O(n
2
√

α

(1−
√

α)2
+3

) and we can enumerate all of them in O(n
2
√

α

(1−
√

α)2
+1+10

) time.

Proof. If k < αn then we apply the reduction s = 2
√

α

(1−
√

α)2
+ 1 times:

s >
2
√

α − 1/n

(1 −
√

α)2
>

2
√
nk − 1

n + k − 2
√
nk

.

H⇒
√
nk <

n + k

2
−

√
nk

s
+

1

2s
.

H⇒ t <
n + k

2
−

√
nk

s
+

1

2s
as t ≤

√
nk

H⇒ −2st > 2
√
nk − 1 − s(n + k)

H⇒ −2st > nk − t2 − s(n + k) as nk − t2 < 2
√
nk − 1(as t >

√
nk − 1)

H⇒ (t − s)2 > nk − s(n + k) + s2

H⇒ (t − s) >
√

(n − s)(k − s).

Hencewe can solve (n−s, k−s, t−s) instances of the problem by using theGS algorithm. Sowe can solve the polynomial

reconstruction problem for
√
nk − 1 < t ≤

√
nk by applying the GS algorithm O(n

2
√

α

(1−
√

α)2
+1

) times. Since the GS algorithm
takes O(n10) time [14,11] and returns a list of size O(n2), the theorem follows. Note that for k ≤ αn, the same value of s
suffices. �

We recall [7], in which the authors prove that for any δ ∈ (0, 1), there exist codes RS[n, k = nδ] which have

super-polynomial number of codewords with agreement n
√

δ . We now prove that this cannot happen for codewords with

agreement
√
nk − c < t ≤

√
nk − c + 1.

Theorem 2.4. If k < αn for some 0 < α < 1 and
√
nk − c < t ≤

√
nk − c + 1 for any c > 0, then the number of

polynomials of degree at most k − 1 agreeing at at least t points is at most O(n
c

2
√

α

(1−
√

α)2
+c+2

) and we can enumerate all of them

in O(n
c

2
√

α

(1−
√

α)2
+c+10

) time. In particular, for any constant c, the running time is polynomial.

Proof. We prove this by induction on c. Theorem 2.3 proves the result for the base case when c = 1. Now inductively we

assume that we can list decode for
√
nk − c < t ≤

√
nk − c + 1 and prove for

√
nk − c − 1 < t ≤

√
nk − c. We apply

the same technique that we used in proving Theorem 2.3. We apply reduction s times such the we can solve the problem
inductively. That is we can solve by induction provided (t − s) >

√
(n − s)(k − s) − c .
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If k < αn then we apply the reduction s = 2
√

α

(1−
√

α)2
+ 1 times:

s >
2
√

α − 1/n

(1 −
√

α)2
>

2
√
nk − 1

n + k − 2
√
nk

.

H⇒
√
nk <

n + k

2
−

√
nk

s
+

1

2s
.

H⇒ t + c <
n + k

2
−

√
nk

s
+

1

2s
as t + c <

√
nk

H⇒ −2s(t + c) > 2
√
nk − 1 − s(n + k)

H⇒ −2s(t + c) > nk − (t + c)2 − s(n + k) as nk − (t + c)2 < 2
√
nk − 1(as t + c >

√
nk − 1)

H⇒ (t + c − s)2 > nk − s(n + k) + s2

H⇒ (t − s) >
√

(n − s)(k − s) − c.

Now the (n − s, k − s, t − s) instance of the problem can be solved inductively. We note that we make n
2
√

α

(1−
√

α)2
+1

calls
to the inductive step. Hence the total number of polynomials of degree at most k − 1 agreeing at at least t points is at most

O(n
c

2
√

α

(1−
√

α)2
+c+2

) and we can enumerate all them in O(n
c

2
√

α

(1−
√

α)2
+c+10

) time. Clearly, the same s suffices for k < αn. Note

that k−1
n−1

< k

n
< α; hence s = 2

√
α

(1−
√

α)2
+ 1 is the upper bound for the number of reductions to be applied in the induction

step. �

Corollary 2.5. Let k = nδ for any δ > 0 and n1−δ > 16. If
√
nk − 1 < t ≤

√
nk then the number of polynomials of degree at

most k − 1 agreeing at at least t points is at most O(n3) and we can enumerate all them in O(n11) time.

Proof. We want to prove that s = 1 in Theorem 2.3 will work in this case.

n1−δ > 16 H⇒ 4n
1+δ
2 < n < n + nδ + 1

H⇒ 4
√
nk < n + k + 1

H⇒
√
nk <

n + k + 1

2
−

√
nk

H⇒ t <
√
nk <

n + k + 1

2
−

√
nk

H⇒ t − 1 >
√

(n − 1)(k − 1) (This step follows by using s = 1in the proof of Theorem 2.3.).

By applying the reduction n times we can solve this problem using the GS algorithm. Hence then number of polynomials
of degree at most k − 1 agreeing at at least t points is at most O(n3) and we can enumerate all of them in O(n11) time. �

Corollary 2.6. Let k = nδ for any δ > 0 and n1−δ > 16. If
√
nk − c < t ≤

√
nk − c + 1 then the number of polynomials of

degree at most k − 1 agreeing at at least t points is at most O(nc+2) and we can enumerate all of them in O(nc+10) time.

The proof follows from induction (the same as in Theorem 2.4).

3. List recovery

We recall the list recovery problem as introduced by Guruswami and Indyk [8]: We say that a code C is α, ℓ, L (α ≤ 1)
recoverable if for any given a set Si ⊆ Fq of possible symbols, 1 ≤ i ≤ n, where each Si has at most ℓ elements and number
of codewords 〈c1, c2, . . . , cn〉, such that ci ∈ Si for at least αn symbols, is at most L.

Nowwe consider the special casewhen α = 1, i.e. we are given a set Si ∈ Fq (of size ℓ) of possible symbols, 1 ≤ i ≤ n, and
the goal is to output all codewords 〈c1, c2, . . . , cn〉 such that ci ∈ Si, ∀i. The GS [10] algorithm of list decoding Reed–Solomon
codes can be used to solve the list recovery problem as long as the input list size ℓ is less than ⌈ n

k
⌉.

In [9], Guruswami and Rudra demonstrate that this latter performance is the best possible with surprising accuracy.
Specifically, they have shown that when l = ⌈ n

k
⌉, there are instances of the problem for which the list of output polynomials

will be super-polynomially large in n. More specifically they proved the following result.

For every prime power q ≥ 3 and integer m > 1 and for the choice n = qm and k = qm−1

q−1
(note that ⌈ n

k
⌉ = q),

there are Reed–Solomon codes of dimension k + 1 and block length n, such that list recovering with ℓ = ⌈ n

k
⌉ results in

super-polynomial size output.
Note that in the above result k ≫ ℓ- below we show that when k and ℓ have comparable values, one can list recover in

polynomial time even when ℓ > ⌈ n

k
⌉.
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Theorem 3.1. Let l = n

k
+ ∆ where ∆ > 0. The list recovery problem with input lists of size ℓ can be solved in O(nγ+c) time for

k2 ≤ nc

∆
for any c > 0 where γ is a constant.

Proof. We apply our reduction method to the list recovery problem. After fixing s points, we obtain a smaller problemwith
n − s sets each with ℓ elements. So, if ℓ < n−s

k−s
, that is, s > kℓ−n

ℓ−1
, then we can list the polynomials using the GS algorithm.

When ℓ = n

k
+ ∆ the list recovering problem with input lists of size ℓ can be solved in polynomial time provided

s >
kℓ − n

ℓ − 1
=

k
(

n

k
+ ∆

)

− n
n

k
+ ∆ − 1

=
k2∆

n + k(∆ − 1)
.

But we have k2 ≤ nc

∆
, which implies c ≥ k2∆

n
> k2∆

n+k(∆−1)
. Now we can choose s such that c ≤ s < c + 1 which implies

s ≥ k2∆

n
> k2∆

n+k(∆−1)
.

Since we have to solve
(

n

s

)

instances of the problem, and each instance is solved by applying the GS algorithm which

takes O((nl)10) time, since
(

n

s<ns<nc+1

)

and l < n the result follows. �

Using the above result we can improve the bounds for a special class (n, ℓ) polynomial reconstruction problem where each
(of n) xi’s repeats exactly ℓ times.

Corollary 3.2. If k2 ≤ nc

∆
for any c > 0, ∆ > 0 then the (n, ℓ) polynomial reconstruction problem can be solved for agreement

parameter t, t >
√
nk − k∆

2
, in O(nγ+c) time where γ is a constant.

Proof. Using the notation of Guruswami and Rudra in [9] (page 6), and using ℓ = n

k
+ ∆,

√

nk( n

k
+ ∆) − k∆

2
=

√
n2 + nk∆ − k∆

2
< n + k∆

2
− k∆

2
= n = t . The result follows from Theorem 3.1. �

4. Concluding remarks

In this paper, we have shown that for k ≤ αn for any constant 0 < α < 1, for Reed–Solomon codes a Hamming ball of

radius n−
√
nk+ c , (for any c > 0) contains at most O(n

c
2
√

α

(1−
√

α)2
+c+2

) number of codewords. We also describe a polynomial
time algorithm for enumerating all of them, thereby also improving on the Guruswami–Sudan algorithm. We note that the
number of codewords grows very rapidly with α and in particular for α = 1 − o(1), our construction fails to provide a
polynomial bound.

The most obvious question is that of whether one can obtain more significant improvement of the Johnson bound. For
example, can we do it when c = nδ or c = log n or for any non-constant c?

Even if this was possible wemay not be able to match it algorithmically, because of the reduction to a discrete logarithm
problem [1]. The recent results in [9,7] show the existence of super-polynomial size lists for some received message but
their construction works when n = q.

Another significant direction to explore is relaxing the Reed–Solomon decodability for any evaluation point
(x1, x2, . . . , xn)F

n
q . Even if we can find one evaluation point for which the decoding radius is significantly larger, it will suffice

for our purpose. In this context, we may want to analyse the situation for a random evaluation tuple.
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