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ABSTRACT

We present improved algorithms for maintaining transitive
closure and all-pairs shortest paths/distances in a digraph
under deletion of edges.

For the problem of transitive closure, the previous best
known algorithms, for achieving O(1) query time, require

O(min(m, n3

m
)) amortized update time, implying an upper

bound of O(n
3
2 ) on update time per edge-deletion. We

present an algorithm that achieves O(1) query time and

O(n log2 n+ n2
√

m

√
log n) update time per edge-deletion, thus

improving the upper bound to O(n
4
3

3
√

log n).
For the problem of maintaining all-pairs shortest distances

in unweighted digraph under deletion of edges, we present an

algorithm that requires O(n3

m
log2 n) amortized update time

and answers a distance query in O(1) time. This improves
the previous best known update bound by a factor of log n.
For maintaining all-pairs shortest paths, we present an algo-

rithm that achieves O(min(n
3
2

√
log n, n3

m
log2 n)) amortized

update time and reports a shortest path in optimal time
(proportional to the length of the path). For the latter prob-
lem we improve the worst amortized update time bound by

a factor of O(
√

n
log n

).

We also present the first decremental algorithm for main-
taining all-pairs (1+ǫ) approximate shortest paths/distances,
for any ǫ > 0, that achieves a sub-quadratic update time of

O(n log2 n + n2
√

ǫm

√
log n) and optimal query time.

Our algorithms are randomized and have one-sided error
for query (with probability O(1/nc) for any constant c).
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1. INTRODUCTION
The following two problems are among the most funda-

mental algorithmic problems in computer science :

• Transitive Closure : Process a given directed graph
G(V, E) so that any query of the form, “Is there a path
from u to v in the graph?”, can be answered efficiently.

• All-Pairs Shortest Paths Problem : Process a
given directed unweighted graph G(V, E) so that any
query of the form, “Report the shortest path (or dis-
tance) from vertex u to a vertex v?”, can be answered
efficiently.

There exist classical algorithms that take O(mn) time for
the two problems so that any query can be answered in O(1)
time. However, there exist algorithms based on fast matrix
multiplication that achieve sub-cubic time for the two prob-
lems. In particular, using the fastest known matrix multipli-
cation algorithms (Coppersmith and Winograd [2]), the best
bound on computing transitive closure is O(n2.376), whereas
for the all-pairs shortest paths problem, it is O(n2.575) [11].

There are a lot of applications which require efficient so-
lutions of the above problems for a dynamic graph. In these
applications, an initial graph is given, followed by an online
sequence of queries interspersed with updates which can be
insertion or deletion of edges. We have to carry out the up-
dates and answer the queries online in an efficient manner.
Each query has to be answered with respect to the present
state of the graph, i.e., incorporating all updates preceding
the query. One trivial solution for solving such a dynamic
graph problem is that we run the static graph algorithm af-
ter every update. The goal of a dynamic graph algorithm is



to update the solution efficiently after the dynamic changes,
rather than having to re-compute it from scratch each time.

For every problem defined for a static graph, there exists
its counterpart in dynamic graph. We can classify dynamic
graph problems according to the types of updates allowed. A
problem is said to be fully dynamic if the update operations
include both insertions and deletions of edges. A problem
is called partially dynamic if only one type of update, either
insertion or deletions, is allowed. If only insertions are al-
lowed, the problem is called incremental; if only deletions are
allowed, it is called decremental. We present efficient decre-
mental algorithms for the two problems mentioned above.
The algorithms are Monte-Carlo with one sided error (the
probability of error being inverse polynomial).

1.1 Previous work and our contribution
Transitive Closure : Poutre and Leeuwen [10] gave a
decremental algorithm for maintaining transitive closure with
O(m) amortized update time per edge deletion and answer-
ing each query in O(1) time. Demetrescu and Italiano [4]
gave a decremental algorithm for the problem that requires
O(n3/m) amortized update time which is better for non-
sparse graphs. For an initial complete graph, the algorithm
achieves O(n) amortized update time per edge deletion [3],
but for sparse graphs, the update time can be even O(n2).
It can be seen that a combination of these two algorithms

yields an upper bound of O(n
3
2 ) on the update time while

keeping O(1) query time. Henzinger and King [7] gave a
decremental randomized algorithm that achieves amortized
update time (n log2 n) but at the expense of increased query
time of O( n

log n
). The query has one sided error 1 with prob-

ability 1
n
. This increased (non-constant) time for answering

a query is not acceptable for many applications.
In this paper, we present an efficient algorithm that achieves

O(1) query time w.h.p. and requires O(n log2 n + n2
√

m
log n)

amortized update time per edge-deletion. Our algorithm
achieves an improvement in the update time compared to
the deterministic algorithms while ensuring O(1) query time.
By suitably combining our algorithm with [10], we obtain an

upper bound of O(n
4
3

3
√

log n) for the problem of maintain-
ing transitive closure with optimal query time.

All-pairs shortest paths :

Demetrescu and Italiano [5] gave O(n3

m
log3 n) amortized

update time algorithm for maintaining all-pairs shortest paths
under deletion of edges while achieving optimal query time
w.h.p. Their algorithm improves the previous O(n2) up-
date time of [8] for non-sparse graphs. We present two
decremental algorithms for the all-pairs shortest path prob-
lem. For distance reporting problem, we give a simpler

combinatorial algorithm that requires O(n3

m
log2 n) amor-

tized update time while achieving O(1) query time. For
shortest path reporting problem, we use the idea of filtering
search in a novel way to design an algorithm that achieves

O(min(n
3
2

√
log n, n3

m
log2 n)) update time while achieving

optimal query time. Hence we reduce the upper bound on
the worst case amortized update time for the latter problem

by a factor of O(
√

n
log n

).

1The answer to any query may be incorrect in the sense that
it may not report a path when there exists one. subsequently
we will use w.h.p. to denote probability exceeding 1 − 1

n

Furthermore, we present an efficient decremental algo-
rithm that offers a trade-off between update time and ap-
proximation factor of the shortest path. For maintaining
(1 + ǫ) approximate all-pairs shortest paths, our algorithm

achieves O(n log2 n+ n2
√

ǫm

√
log n) amortized update time per

edge-deletion for arbitrarily small ǫ > 0. We summarize our
results in Table 1.

It may be noted that our algorithms are simple to im-
plement and do not make use of any sophisticated matrix
multiplication algorithms. By using techniques from [9], we
show that the space requirement of our data structures is
O(n2).

2. OVERVIEW OF OUR ALGORITHMS
Our algorithms use an efficient data structure for main-

taining the set of vertices lying within distance d from a
given vertex under deletion of edges. This objective can be
achieved if we can maintain BFS tree up to depth d. It fol-
lows from the work of Henzinger and King et al. [7] that
BFS tree of depth d rooted at a vertex v can be maintained
under deletion of edges using a data structure T v→

d which
can support the following queries :
• Is there a path from v to w of length ≤ d ?
• Report the shortest path (or distance) from v to w of length
≤ d (if exists).
in optimal time and requires O(d) amortized update time
per edge deletion.

We will refer to the data structure T v→
d as the out tree of

depth d rooted at v. A similar data structure (T v←
d ) can also

be maintained (with matching performance) to dynamically
keep the set of vertices for whom v lies within distance d.
We shall name the data structure T v←

d as the in tree of
depth d rooted at v.

2.1 Main Idea
In order to develop efficient decremental algorithm for

transitive closure (and all-pairs shortest paths), we explore
different ways of maintaining all-pairs reachability (short-
est paths). One way is to maintain reachability (shortest
path) explicitly from each vertex. Building and maintaining
the out tree up to depth n from every vertex v ∈ V , we
can maintain all-pairs reachability (shortest paths) in O(n2)
amortized update time per edge deletion.

There is an alternate implicit way of maintaining all-pairs
reachability (shortest paths), where reachability (shortest
paths) information from u to v is maintained by keeping
a witness. Let Wuv be the set of vertices w such that
there is a path (shortest path) from u to v passing through
w. In a way, Wuv is the set of vertices that are witnesses
for reachability (shortest paths) from u to v, and the data
structures in tree and out tree of depth n built on any of
w ∈ Wuv keep this information (implicitly). The problem is
to maintain these witnesses dynamically for each pair. We
present efficient algorithm for maintaining witnesses of all-
pairs reachability (shortest paths) under deletion of edges.

In the following section, we design efficient algorithms for
maintaining witnesses of all-pairs reachability and short-
est paths corresponding to paths of length in an interval
[r, 2r]. These algorithms form the basis for developing ef-
ficient decremental algorithms for the two problems. The
strategy of maintaining reachability implicitly (by keeping
witnesses) proves to be efficient for maintaining all-pairs



Table 1: All the update bounds (old and new) are amortized. Throughout this paper, our query times are
optimal but are randomized Monte-Carlo having one-sided error.

Comparison of the new and the previous update cost

Problem Query Previous New

Is v reachable from u ?
All-pairs Reachability

report a path from u to v
O
(

n
3
2

)

O
(

n
4
3

3
√

log n
)

report (1 + ǫ) approx. distance from u to v
Approximate APSP

report (1 + ǫ) approx. shortest path
none O

(

n log2 n + n2
√

ǫm

√
log n

)

report the distance from u to v O
(

n3

m
log3 n

)

O
(

n3

m
log2 n

)

Exact APSP
report the shortest path from u to v O(n3

m
log3 n) O

(

min
(

n
3
2

√
log n, n3

m
log2 n

))

reachability corresponding to long paths. On the other hand,
the strategy of maintaining reachability explicitly (by keep-
ing out tree from every vertex) proves to be efficient for
maintaining reachability corresponding to short paths. We
combine the two strategy together to achieve improved up-

date time of O(n log2 n + n2
√

m

√
log n) per edge deletion. It

turns out that our data structure for maintaining transitive
closure can be directly used to maintain all-pairs stretch-2
paths2 in unweighted digraphs.

For the problem of maintaining all-pairs shortest distances,
the strategy of maintaining witness of shortest path for ev-

ery vertex pair leads to achieving O(n3

m
log2 n) update time.

For the case when query is to report the shortest path, we
use idea of filtering search [1] to reduce the update time

further to O(min(n
3
2 log n, n3

m
log2 n)).

3. MAINTAINING TRANSITIVE CLOSURE

AND APSP FOR LENGTHS IN AN IN­

TERVAL [R
2

,R]

In this section we design efficient algorithms for maintain-
ing all-pairs reachability and shortest paths corresponding
to paths of length ∈ [ r

2
, r]. For the reachability problem, the

algorithm will maintain a witness for every pair u, v ∈ V if
there is path of length ∈ [ r

2
, r] from u to v. For the all-pairs

shortest path problem, the algorithm will maintain a wit-
ness of the shortest path for every pair u, v ∈ V among all
paths from u to v of length ∈ [ r

2
, r].

We start with the design of efficient algorithm for main-
taining all-pairs reachability (shortest paths) with respect
to a given set of vertices W ⊆ V as witnesses, i.e., the set
of paths under consideration is restricted to the paths going
through vertices of set W only. The algorithm can be used
for maintaining all-pairs reachability (shortest paths) if we
choose W = V . Subsequently to improve the update time,
we reduce the number of witnesses required using random
sampling based on the following well known observation (see,
e.g., Greene and Knuth [6]) :

Given a path of length k in a graph, a random sample of
cn

k
ln n vertices will have at least one vertex belonging to the

path with probability 1 − 1
nc for any fixed constant c > 0.

The observation mentioned above was exploited by Hen-
zinger and King [7] for designing a decremental algorithm to
maintain all-pairs reachability with O(n log2 n) update time
at the expense of O( n

log n
) query time. We extend this ap-

2Path with at most twice the length of the shortest path

proach to its full potential for maintaining all-pairs shortest
paths and transitive closure with optimal query time.

3.1 Maintaining all­pairs reachability with re­
spect to a witness set

Let W be the set of witness vertices kept in a list. There is
a path from u to v of length ≤ d passing through some w ∈
W if u and v lie respectively in the in tree and the out tree
of depth d rooted at w. Thus it takes O(1) time to test
whether w is a witness of reachability from u to v. Finding
out if there is any witness in W for reachability from u to v
will require querying in tree and out tree data structures
for each w ∈ W . Thus the query time will be O(|W |). This
scheme was employed in [7]. In order to achieve O(1) query
time, we maintain a witness matrix M . For each pair (u, v),
at every stage M [u, v] points to a vertex w ∈ W such that
u and v lie respectively in in tree and out tree of depth
d rooted at w. We initialize the matrix M as follows : The
matrix M has all entries pointing to null initially. Starting
from the first vertex in the list W , we build in tree and
out tree data structures of depth d for every vertex w ∈ W .
For every u ∈ in tree of w and for every v ∈ out tree of
w, we update M [u, v] to point to w if it was pointing to
null previously (w is a witness of reachability from u to v).
It follows easily that that it requires O(n2) time per vertex
w ∈ W to perform this task.

Notice that as the edges are being deleted, the current
M [u, v] may cease to be the witness of reachability from u
to v. This happens when either u ceases to belong to in tree
of M [u, v] or v ceases to belong to out tree of M [u, v].

To maintain validity of entries of M after an edge dele-
tion, we process each w ∈ W (starting from the first vertex)
as follows. We update in tree and out tree rooted at w
for the edge deletion and compute the sets X, Y of vertices
that cease to belong to in tree and out tree of w respec-
tively. This step takes O(|X|+ |Y |) time in addition to O(d)
amortized time for updating the BFS trees at w. For every
u ∈ X, we find the set su of vertices such that M [u, v] is
w for each v ∈ su. (It takes O(n) time per u ∈ X to find
su). It can be seen that w has ceased to be a witness of
reachability from u to each v ∈ su and so a new witness is
to be searched for. We search the list W starting from the
vertex following w and find a witness of reachability from u
to v (spending O(1) time per vertex in W ). If we reach the
end of list, we update M [u, v] to point to null, otherwise
we update M [u, v] to point to the new witness found. In a
similar way, we process the set Y of vertices that cease to
belong to out tree of w.
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Figure 1: The search of a new witness for u → v reachability (when w ceases to be the witness) stops at vertex
x.

The following invariant is maintained throughout the series
of edge deletions.
Iτ : M [u, v] points to the first vertex in the list W that is a
witness of reachability from u to v.

The invariant holds just after the initialization of M . It
can be easily verified that the procedure described above
preserves the invariant after each edge deletion. By induc-
tion (on the number of edge deletions), therefore, we can
conclude that the invariant Iτ holds always.

Cost Analysis : As mentioned above, the total cost of ini-
tializing the witness matrix M is O(n2|W |). We now assess
the total cost over all edge deletions. It takes O(md) cost for
maintaining the in tree and the out tree of depth d rooted
at a vertex over the entire sequence of edge deletions, thus
amounting to O(md|W |) total cost for all the vertices of
W . Also for every w ∈ W , we incur O(n) cost per vertex
that ceases to belong to the in tree (or the out tree of w),
amounting to a total of O(n2) cost per vertex of W . To
assess the total cost for searching for a new witness in W ,
note that we consider a vertex of W exactly once for being
a witness for a pair (u, v). (This is because a vertex that
ceases to be witness can never become a witness again for
a given pair u, v). Hence a total of O(n2|W |) cost will be
spent in searching for a new witness over all vertex pairs.
Summing up the cost of all operations, we conclude that
total cost incurred in maintaining all-pairs reachability over
any sequence of edge deletions is O(md|W | + n2|W |).

Lemma 3.1. Given a digraph G(V, E) and a set of ver-
tices W ⊆ V , the all-pairs reachability for paths of length
≤ d with respect to the witnesses W can be maintained in

O((d+ n2

m
)|W |) amortized update time per edge-deletion and

O(1) query time.

3.2 Maintaining all­pairs shortest paths with
respect to a witness set

The algorithm we describe is analogous to the algorithm
described in the previous subsection. Let W be the set of
witness vertices kept in a list. We maintain a witness matrix
M : For each u, v ∈ V , M [u, v] points to the first vertex in
the list W which is witness of the shortest path of length
≤ d among all paths from u to v passing through any vertex
w ∈ W . It takes O(n2|W |) total time to initialize the matrix
M after building in tree and out tree from each w ∈ W .

As the edges are being deleted, the current M [u, v] may
cease to be the witness for the shortest path from u to v.
This happens when u (or v) increases its distance to (from)
M [u, v] in in tree (out tree) rooted at M [u, v]. To main-
tain validity of entries of M after an edge deletion, we pro-
cess each w ∈ W (starting from the first vertex) as follows.
We update in tree and out tree rooted at w for the edge
deletion and compute the set X (Y ) of vertices whose dis-
tance to (from) w increases. This step takes O(|X| + |Y |)
time in addition to O(d) amortized time for updating the
BFS trees at w. It can be seen that for each u ∈ X, v ∈ V
(likewise u ∈ V, v ∈ Y ), the length of the shortest path going
through w has increased and so we need to search for a new
witness if M [u, v] points to w. We process each such pair
(u, v) as follows :

Let r be the shortest path distance from u to v prior to the
recent edge deletion. We scan the list W starting from the
successor of M [u, v] in search of a witness for path length
r. If we find one, we stop; otherwise we conclude that there
is no path from u to v passing through any x ∈ W with
length ≤ r. In this case, we perform another scan starting
from the head of the list W in search of a witness of path-
length r + 1. We increment r until we find one witness or r
increases beyond d. In the latter case, we conclude that there
is no path from u to v of length ≤ d that passes through any
x ∈ W .

The following invariant is maintained throughout the se-
ries of edge deletions.
IAPSP : At every stage M [u, v] points to the first vertex in
the list W that is a witness of the shortest path from u to v
among all paths from u to v passing through any w ∈ W .

From the initialization of M , it follows that the invariant
holds in the beginning. A simple inductive proof (induction
on number of edge deletion) can be used to show that the
invariant IAPSP holds always.

Cost Analysis : The total cost of initializing the matrix
M and maintaining in tree and out tree of depth d for
every vertex in W , is O(n2|W | + md|W |). For every w ∈
W , after an edge deletion we compute the set of (u, v) pair
whose shortest path length passing through w has increased.
Since we do not process a pair (u, v) whenever either of
them falls beyond distance d from w, therefore, a pair (u, v)
will be reported in this set at most 2d times for a witness
w. It follows that a total of O(n2d) time will be spent in



computing such set over the sequence of edge deletions. Also
note that for a particular distance r ≤ d and a pair u, v ∈ V ,
a vertex of the set W is considered at most once for being
a witness of path length r (from u to v). (This is because
a vertex that ceases to be witness of shortest distance r
can never become a witness of distance r for a given pair
u, v). Thus for a pair of vertices, the total cost incurred in
searching the list will be O(d|W |). Summing up the cost of
all operations, we can conclude that the total cost incurred
in maintaining all-pairs reachability is O(n2|W |+ md|W |+
n2d|W |), i.e., O(n2d|W |).

Lemma 3.2. Given a digraph G(V, E) and a set of ver-
tices W ⊆ V , all-pairs shortest paths of length ≤ d with re-

spect to the witness vertices W , can be maintained in O(n2d|W |
m

)
amortized update time per edge-deletion and O(1) query time.

3.3 Maintaining all­pairs reachability and short­
est paths for paths of length ∈ [ r2 , r]

It follows from Lemma 3.1 (and 3.2) that choosing witness
set W = V , we can maintain all pairs reachability (shortest-
paths) corresponding to paths of length ≤ d. Notice that the
update cost achieved is proportional to the size of witness
set W . Therefore, to improve the update cost, a relevant
question is : Can we maintain all-pairs reachability (short-
est paths) corresponding to paths of length ≤ d using o(n)
size witness set?. It can be observed that for maintaining
reachability (shortest paths) from u to v, it would suffice if
at every stage at least one vertex on a path (the shortest
path) from u to v is present in the witness set W . For two
vertices separated by a path of length ∈ [ r

2
, r], there are Ω(r)

witnesses and therefore with probability 1 − 1
e
, at least one

of them will be present in a random sample of 2n
r

vertices.
The success probability bound can be made arbitrarily close
to 1, as mentioned in the following Lemma.

Lemma 3.3. [6] Given a path puv of length l from u to
v, if we sample cn

l
ln n vertices (for any c > 0), then with

probability 1 − 1
nc , at least one of the vertices will be picked

from the path puv.

Therefore, for maintaining all-pairs reachability (shortest
paths) corresponding to path lengths ∈ [ r

2
, r], the algorithms

of the previous subsections would require |W | = 2n
r

ln n.
The query answered will have one sided error with proba-
bility 1

n
.

In future, Wr will denote a witness set formed by random
sampling n

r
ln n vertices and Fr will denote the forest of

in tree and out tree of depth r from each w ∈ Wr.

Theorem 3.4. Given a graph G(V, E) and r ≤ n, there
exists a data structure (Wr, Fr) using which the witness ma-
trix M , for all-pairs reachability (or shortest paths) corre-
sponding to paths of length ∈ [ r

2
, r], can be maintained with

optimal query time w.h.p. For maintaining all-pairs reach-

ability, it requires O(n ln n + n3 ln n
rm

) amortized update time,
whereas for maintaining all-pairs shortest paths the update

time required is O(n3 ln n
m

) per edge deletion.

4. MAINTAINING TRANSITIVE CLOSURE
We use the idea of maintaining short and long paths sep-

arately. We call the paths of lengths ≤ d the short paths,

and the paths of length > d the long paths, where d will be
fixed shortly. It follows that for a pair of vertices u, v ∈ V ,
there is a path from u to v iff there is a short path or a
long path from u to v. Therefore, for maintaining all-pairs
reachability under deletion of edges it suffices to solve the
following two sub-problems.

Maintaining reachability corresponding to short paths
: It follows from the description given in section 2 that
out tree of depth d rooted at a vertex u maintains the set
of vertices reachable within distance d from u, and the amor-
tized update time for maintaining an out tree is O(d) per
edge deletion. The set of out trees of depth d from every
vertex can thus be used for maintaining all-pairs reachabil-
ity corresponding to short paths, and the amortized update
time required is

T(0,d) = O(nd) (1)

In future we shall refer to this data structure by Sd
0 .

Maintaining reachability corresponding to long paths
: The Theorem 3.4 shows that all-pairs reachability cor-
responding to paths in range [ r

2
, r] can be maintained by

keeping a witness matrix M (updated using the data struc-
ture (Wr, Fr)). In order to maintain all-pairs reachability for
paths in range [d, n], we partition the interval [d, n] into log n

d

sub-intervals : [d, 2d], · · · , [2id, 2i+1d], · · · , [n/2, n]. For each
sub-interval [2id, 2i+1d] starting from i = 0, we build the
(W2id, F2id) data structure and update the matrix M ac-
cordingly. Processing of an edge deletion involves updating
each F2id and searching for new witness for each u, v ∈ V
if M [u, v] ceases to be the witness due to the recent edge
deletion. Whenever search for witness of reachability from
u to v fails in list W2id, we start search in next list W2i+1d.
Thus the following invariant (along the lines of Iτ ) will be
maintained for each u, v ∈ V .
IR : At any time if lists Wi1 , Wi2 , · · · , Wik

: i1 < i2 · · · < ik,
have witnesses of reachability from u to v, then M [u, v] will
point to the first witness of reachability (from u to v) in the
list Wi1 .

Thus the matrix M maintains witnesses of all-pairs reach-
ability corresponding to long paths. Now, using the Theo-
rem 3.4, the update time for maintaining the witness matrix
M, using the data structures (W2id, F2id), 0 ≤ i ≤ log n

d
, will

be

T(d,n) =

log n

d
∑

i=0

(

n ln n +
n3 ln n

2idm

)

= O

(

n log2 n +
n3 ln n

dm

)

(2)

We shall denote the above data structure by Ln
d . We main-

tain all pairs reachability by keeping the data structures
Sd

0 and Ln
d simultaneously. Deleting an edge will require

updating both the data structures, and thus the amortized
update time for maintaining all-pairs reachability (transitive
closure) will be

Tτ = T(0,d) + T(d,n)

Using equations 1 and 2, it follows that



Tτ = O

(

nd + n log2 n +
n3 ln n

dm

)

= O

(

n log2 n +
n2

√
ln n√
m

)

for d =
n
√

ln n√
m

Theorem 4.1. Given a digraph G(V, E), its transitive clo-
sure can be maintained using an algorithm achieving O(1)

query time w.h.p. and O(n log2 n + n2
√

ln n√
m

) amortized up-

date time per edge deletion.

Previously there were two algorithms for maintaining tran-
sitive closure under deletion of edges with O(1) query time.
The first algorithm due to Poutre and Leeuwen [10] achieved
O(m) amortized update time while the second algorithm

due to Demetrescu and Italiano [4] achieved O(n3

m
) amor-

tized update time. These two algorithms together establish

an upper bound of O(n
3
2 ) on the update time. By suitably

combining our algorithm with [10], we can state the follow-
ing Corollary.

Corollary 4.2. There exists a decremental algorithm for

maintaining transitive closure that achieves O(n
4
3

3
√

log n)
amortized update time and optimal query time w.h.p.

5. MAINTAINING ALL­PAIRS APPROXIMATE

SHORTEST PATHS
We show that the algorithm for maintaining all-pairs reach-

ability described in the previous section can be used to main-
tain all-pairs shortest paths with stretch at most 2.

If the shortest path length from a vertex u to a vertex v
is ≤ d, we can even report exact shortest distance using the
out tree rooted at u. Otherwise let 2id ≤ r ≤ 2i+1d be
the shortest path distance from u to v at a given time. The
witness list W2id has a witness wuv for a path from u to
v with very high probability. The length of the path from
u to v passing through wuv is at most twice the length of
the shortest path. It follows from invariant IR that M [u, v]
will point to wuv. Hence for each pair (u, v) with short-
est path > d, M [u, v] points to a witness of path from u
to v of stretch at most 2. Thus we can maintain all-pairs
shortest paths of stretch at most 2 under deletion of edges.
To achieve a stretch of (1 + ǫ) for arbitrarily small ǫ, we
build Ln

d using a set of (Wr, Fr) for each r ∈ {d, d(1 +
ǫ), · · · , d(1 + ǫ)i, · · · , n}. The update time required will be

O(n log2 n + n2
√

m

√

log1+ǫ n)= O(n log2 n + n2
√

ǫm

√
log n).

Theorem 5.1. Given an unweighted digraph G(V, E), there
exists a data structure for maintaining all-pairs (1 + ǫ) ap-
proximate shortest paths/distance with optimal query time

w.h.p. and O(n log2 n+ n2
√

ǫm

√
log n) amortized update time.

King et al. [8] gave fully dynamic algorithm for maintain-
ing all-pairs (1 + ǫ) approximate shortest paths that require

O(n2 log3 n

ǫ2
) update time per edge deletion. For updates con-

sisting of edge deletions only, our algorithm thus improves

the update time by a factor of O(
√

m log5 n

ǫ3
).

6. MAINTAINING ALL­PAIRS SHORTEST

PATHS/DISTANCES
We maintain all-pairs shortest paths/distances by keep-

ing a witness of shortest path for each vertex pair. The
Theorem 3.4 shows that the matrix M for witnesses of all-
pairs shortest paths in the range [ r

2
, r] can be maintained

using the data structure (Wr, Fr). In order to maintain all
pairs shortest paths, we build and maintain (Wr, Fr) for
each r ∈ {1, 2, 4, · · · , 2i, · · · , n}. It follows (see subsection
3.2) that using the set {(Wr, Fr)}, the entry M [u, v] gets
initialized to a witness of the shortest path from u to v for
all u, v ∈ V in total time O(n3).

Processing of an edge deletion involves updating each F2i

and searching for new witnesses for each pair u, v ∈ V if path
length from u to v passing through M [u, v] has increased due
to the recent edge deletion. While searching for a witness
of path length r from u to v, we will confine our search
within the list W2i for 2i−1 < r ≤ 2i. Whenever search for
witness of path of length 2i in the list W2i fails, we move
onto the next list W2i+1 . We proceed in this way for each
pair, performing O(n log n) work per witness list (scanning
list of length n

2i ln n, for 2i times). Since there are now log n

lists and a total of n2 pairs, the total update cost will be
O(n3 log2 n) over any sequence of edge deletions.

Theorem 6.1. Given an unweighted digraph G(V, E), there
exists a data structure for maintaining all-pairs shortest dis-

tances in O(n3 log2 n

m
) amortized update time per edge-deletion

and taking O(1) time to answer a distance query w.h.p.

Remark : Demetrescu and Italiano [5] designed an O(n3

m
log3 n)

update time algorithm for maintaining all-pairs shortest paths
under deletion of edges. Their algorithms achieves O(1)
query time w.h.p. and improves the previous O(n2) up-
date time of King [8] for non-sparse graphs. Our algorithm
improves the update time further by a factor of O(log n).

For initial complete graph, the new algorithm achieves
O(n log2 n) amortized update time. But for sparse graphs
the update time may be O(n2). So there is still no decre-
mental algorithm for maintaining all-pairs shortest distances
that achieves sub-quadratic update time for all digraphs and
takes O(1) time to answer distance query. However, for the
case of shortest path reporting problem, we are able to de-

sign a decremental algorithm that requires O(n
3
2

√
log n) up-

date time for any digraph and answers any query in optimal
time. The improvement is achieved by combining the con-
cept of filtering search [1] with the data structures Sd

0 , Ln
d

in a novel way as follows.
Recall the data structures Sd

0 and Ln
d described earlier.

If the shortest path is of length luv ≤ d, we are able to an-
swer the distance query exactly in O(1) time using out tree
rooted at u. Otherwise 2i−1d ≤ luv < 2id holds for some
2 ≤ i < log n

d
. Note that w.h.p. the list W2id of sampled

vertices has a witness of the shortest path from u to v. But
finding the witness may take O(|W2id|) = O( n

2id
log n) time

(since it takes O(1) time to find length of the shortest path
from u to v going through a witness w). This forced us
to change our approach for achieving O(1) query time for
distance reporting problem. However, for a shortest-path
reporting query, we must in any case spend O(luv) time to
report all the edges on the path. Therefore, if we spend addi-
tional O(luv) time to find shortest path witness, we will still
be achieving O(luv) query time for path reporting (which is



optimal). This is indeed the idea of filtering search [1]. Now
choosing d =

√
n log n ensures that |W2id| ≤ d < luv for all

i. Our algorithm employs the data structures Sd
0 and Ln

d for
d =

√
n log n and processes a shortest-path (say, from u to

v) reporting query in optimal time as follows :
First inquire if v is present in the out tree rooted at u.

This operation takes constant time. If the answer is yes,
we can report the shortest path using the out tree rooted
at u; otherwise inquire if v is reachable from u or not, us-
ing the witness matrix M . If M [u, v] is pointing to null,
we report in O(1) time that there is no path from u to v.
Otherwise, it can be concluded that the shortest path length
luv ∈ [

√
n log n + 1, n − 1]. In this case, at least one of the

vertex of the shortest path from u to v must be present w.h.p.
in the sampled set of witnesses. We search the entire set of
witnesses to find the witness of shortest path. The size of
the witness set being

√
n log n, we can thus find the witness

of the shortest path from u to v in O(
√

n log n) time and
then report the shortest path from u to v passing through it
in additional O(luv) time. Since luv >

√
n log n, the total

time taken for processing a shortest path reporting query is
O(luv) (and hence optimal).

The amortized update time per edge deletion for the two

data structures Sd
0 and Ln

d will be O(nd + n3

md
log n), which

is O(n
3
2

√
log n) for d =

√
n log n.

Theorem 6.2. An unweighted digraph G(V, E) can be pre-
processed to build a data structure that answers any online
shortest path reporting query in optimal time w.h.p. while

ensuring O(min(n
3
2

√
log n, n3 log2 n

m
)) amortized update time

per edge-deletion.

7. SPACE REQUIREMENT OF OUR ALGO­

RITHMS
It can be seen that all the algorithms given in this paper

employ a witness matrix M and O(n) number of in trees
and out trees. The matrix M clearly occupies θ(n2) space.
Although the earlier scheme given in [8] required θ(m) space
for maintaining an in tree (or an out tree), it was later
improved to O(n) by King and Thorup [9]. Thus the total
space requirement for maintaining O(n) number of in trees
or out trees is O(n2). Hence the space requirement of all
the algorithms given in this paper is O(n2).

8. CONCLUSION AND OPEN PROBLEMS
In this paper, we gave improved decremental algorithms

for maintaining transitive closure and All-pairs shortest paths
with optimal query time. We pose the following problem :

Can a given graph G(V, E) be preprocessed so that the
set of vertices lying within distance d from a vertex can be
maintained under deletion of edges while taking o(md) total
update time?

An answer to the above problem will lead to improved
upper bound on the update time for the decremental prob-
lem of transitive closure (and all-pairs approximate shortest
paths).
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