
DOI: 10.1007/s00453-001-0084-9

Algorithmica (2002) 32: 521–539

Algorithmica
© 2002 Springer-Verlag New York Inc.

Improved Algorithms for Uniform Partitions of Points1

P. K. Agarwal,2 B. K. Bhattacharya,3 and S. Sen4

Abstract. We consider the following one- and two-dimensional bucketing problems: Given a set S of n

points in R
1 or R

2 and a positive integer b, distribute the points of S into b equal-size buckets so that the

maximum number of points in a bucket is minimized. Suppose at most (n/b) + 1 points lie in each bucket in

an optimal solution. We present algorithms whose time complexities depend on b and 1. No prior knowledge

of 1 is necessary for our algorithms.

For the one-dimensional problem, we give a deterministic algorithm that achieves a running time of

O(b4(12 + log n) + n). For the two-dimensional problem, we present a Monte Carlo algorithm that runs in

subquadratic time for small values of b and 1. The previous algorithms, by Asano and Tokuyama [1], searched

the entire parameterized space and required Ä(n2) time in the worst case even for constant values of b and 1.

We also present a subquadratic algorithm for the special case of the two-dimensional problem when b = 2.

Key Words. Bucketing, Hashing, Random Sampling, Arrangements.

1. Introduction. We consider geometric optimization problems that do not seem to

have any nice properties like convexity and have a large number of distinct global optimal

solutions. Consequently, it is hard to develop a search strategy that will avoid examining

all the optimum solutions (or more likely near-optimal solutions). However, if there

are few optimal solutions, we may be able to prune the search space. This may lead to

more efficient algorithms that are “output-sensitive” in the sense that the running time

of the algorithm depends on the number of optimal solutions. Since we do not know the

optimum solution to begin with, we can try to estimate the optima by some means, say,

random-sampling, and then use that to prune the search space. The success of such an

approach depends on how effectively we estimate the optima.

In this paper we consider the problem of partitioning a set of points in R
1 or R

2 into

equal-size buckets, so that the maximum number of points in a bucket is minimized.

These problems were earlier studied in [1] and [4], and they arise in the construction of

optimal hash functions; see the aforementioned references for details.

1 Work by the first author was supported by Army Research Office MURI Grant DAAH04-96-1-0013, by

a Sloan fellowship, by NSF Grants EIA-9870724 and CCR-9732787, and by a grant from the U.S.–Israeli

Binational Science Foundation. Work by the second author was supported by an NSERC grant. Part of this

work was done while the last two authors were visiting the Department of Computer Science, University of

Newcastle, Australia.
2 Center for Geometric Computing, Department of Computer Science, Box 90129, Duke University, Durham,

NC 27708-0129, USA. pankaj@cs.duke.edu.
3 School of Computing Science, Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6.

binay@cs.sfu.ca.
4 Department of Computer Science and Engineering, IIT Delhi, New Delhi 110016, India. ssen@cs.unc.edu.

Received December 16, 1999; revised September 7, 2000. Communicated by B. Chazelle.

Online publication November 28, 2001.

522 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

First we consider the following one-dimensional problem: Given a set S of n real

numbers and an integer 1 ≤ b ≤ n, partition S uniformly into b equal-size buckets, i.e.,

each bucket has the same width. The buckets are defined by real numbers βi = L + i ·w,

for 0 ≤ i ≤ b where L is the left endpoint of the leftmost bucket and w is the width

(size) of the buckets. The i th bucket Bi , 1 ≤ i ≤ b, is defined by the interval [βi , βi+1)

and S ∩ Bi is the content of the i th bucket (for a fixed choice of L and w). We wish to

minimize the maximum size of the contents in buckets. Two version of this problem are

studied: (i) the tight case in which B1 and Bb are required to be nonempty, and (ii) the

relaxed case in which they are allowed to be empty.

Next, we consider the two-dimensional problem. Given a set S of n points in R
2

and an integer b ≤ n, we again wish to partition S into b equal-size buckets so that

the maximum number of points in a bucket is minimized. We consider two types of

buckets. First, we consider the case in which the buckets are formed by equally spaced

b + 1 parallel lines, ℓ0, . . . , ℓb, with orientation θ , for some θ ∈ S
1. We require S to

lie between ℓ0 and ℓb and both ℓ0, ℓb to contain at least one point of S. The buckets

are b strips defined by consecutive lines ℓi−1 and ℓi (1 ≤ i ≤ b); see Figure 1(ii). This

bucketing problem is known as the uniform-projection problem. We next define buckets

to be the regions formed by two families of equally spaced
√

b + 1 lines. The extremal

lines in both families are required to contain at least one point of S; see Figure 1(iii).

This problem is called the two-dimensional partition problem.

Asano and Tokuyama [1] describe O(n2) and O(b2n2)-time algorithms for the tight

and relaxed cases of the one-dimensional problem. We are able to obtain an O(b4(12 +
log n)+n)-time deterministic algorithm for the tight case and an O(b5(12+log n)+bn)-

time algorithm for the relaxed case. The algorithm itself does not require the value of

1; the value is required only for the analysis. Our algorithm is faster than that of Asano

and Tokuyama for small values of b and 1, e.g., when b = o(n1/3) and 1 = O(
√

n/b),

which is the case when points are almost uniformly distributed.

Comer and O’Donnell [4] described an algorithm for the uniform-projection prob-

lem that runs in O(bn2 log n) time using O(n2 + bn) space. Asano and Tokuyama [1]

gave an O(n2 log n)-time algorithm, which uses O(n) space, by exploiting the dual

transformation of the problem. They also give alternative implementations that could

be better for smaller b, but the worst-case running time is Ä(n2) even for constant

values of b. Bhattacharya [2] also gave an alternate approach for this problem, us-

Fig. 1. (i) One-dimensional bucketing problem; (ii) uniform-projection problem; (iii) two-dimensional parti-

tioning problem.

Improved Algorithms for Uniform Partitions of Points 523

ing the angle-sweep method. We first describe a deterministic O(n4/3 log2+ε n)-time

algorithm, for any ε > 0, that computes an optimal uniform projection for the spe-

cial case b = 2, thereby improving upon the quadratic upper-bound. For larger values

of b, we describe a Monte Carlo algorithm that computes an optimal solution in time

O(min{bn5/3 log7/3 n + (b21)n log3 n, n2}), Again, our algorithm is faster for small val-

ues of b and 1. The dependence of running time on 1 is borne out by the fact that the

number of possible optimal configurations (having the same value) depends on 1.

Our overall approach for both one- and two-dimensional problems is similar. Namely,

we use a sample to “localize” the search for the global optimum. Although intuitively,

this is a good heuristic, analyzing the bound on the number of “potential” candidates

for the global optimum, from the optima of the sample, is rather technical. In the one-

dimensional problem, we can simply choose a “deterministic” sample because the ele-

ments are linearly ordered, but the two-dimensional algorithms rely on random sampling.

In both cases we formulate the problem as searching a small portion of a line arrangement.

In the one-dimensional case, we localize the search to a few cells of the arrangement

while in the two-dimensional case we localize it to a few levels.

The paper is organized as follows. Section 2 describes our one-dimensional algo-

rithm, Section 3 describes the deterministic and Monte Carlo algorithms for the two-

dimensional uniform projection problem, and Section 4 describes the two-dimensional

partitioning problem in which the buckets are rectangles. We conclude in Section 5 by

mentioning a few open problems.

2. Optimal One-Dimensional Cuts. For a set S = {x1, . . . , xn} of real numbers and

an integer 1 ≤ b ≤ n, a pair c = (w, L) is called a cut if the set of b + 1 real numbers

βj = L + j · w, 0 ≤ j ≤ b, are such that β0 ≤ x1 ≤ xn < βb. The interval [βj−1, βj)

is called the j th bucket and the set of elements of S lying (strictly) in this interval is the

contents of the j th bucket. We denote the j th bucket by Bj and the size of its contents

|Bj ∩ S| by |Bc
j | for a cut c. Let

8(c, S) = max
1≤ j≤b

|Bc
j |

denote the cut value of c. Let C be the set of all cuts. The optimal cut value 8(S) is

defined as

8(S) = min
c∈C

8(c, S).

Any cut that achieves this cut value is an optimal cut. If we restrict the cuts to satisfy the

condition that |B1|, |Bb| ≥ 1, i.e., the first and the last buckets must not be empty, then

it is called a tight cut. An optimal tight cut is defined analogously as above, restricted to

the set of tight cuts. We first describe an algorithm for finding an optimal tight cut.

DEFINITION 2.1. Two cuts c1 and c2 are combinatorially distinct if there is an i , 1 ≤
i ≤ b, such that |Bc1

i | 6= |Bc2

i |.

DEFINITION 2.2. The arrangement of a set L of lines in the plane, denoted A(L), is

the planar subdivision induced by the lines of L; that is, A(L) is a planar map whose

vertices are the intersection points of lines in L, whose edges are maximal (relatively

524 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

(ii)(i)

x
2

x1

3x

x
2

x

4x

1x

x

3

4

)/b−(x4 1x x4 1

w

L

Q

w

L

x(−)/(b−1)

Fig. 2. (i) Set L and the feasible region Q; (ii) the shaded regions denote C22, C23, and C24, and the dark

region denotes C(2, 4; 2), the set of cuts for which {x2, x3, x4} lie in the second bucket B2.

open) connected portions of the lines that do not contain a vertex, and whose faces are

the connected components of R
2 −

⋃

L.

We parameterize the problem as follows. We represent each cut c = (w, L) as a point

in the plane. Abusing the notation slightly, we use the term “cut” to denote a point in the

(w, L)-plane as well as the set of buckets induced by that cut. Let

L = {xi = L + jw | 1 ≤ i ≤ n, 0 ≤ j ≤ b}

be the set of (b + 1)n lines in the (w, L)-plane, which we refer to as the event lines.

L consists of b + 1 families of parallel lines (one for each fixed j), each family

containing n lines; see Figure 2(i). Hence, every face in A(L) contains at most 2(b + 1)

edges. For all cuts c = (w, L) lying in the same face f of A(L) the cut value remains

the same; we denote this value by 8(f, S). Let 8j (f, S) = |Bc
j (S)| for any c ∈ f . The

nonempty condition of extreme buckets implies that we have to consider only those cuts

(w, L) that lie in the quadrilateral Q defined by the intersection of the following four

constraints; see Figure 2:

Q: x1 ≥ L > x1 − w and
xn − x1

b
< w <

xn − x1

b − 1
.(2.1)

The above constraint leads to the following lemma.

LEMMA 2.3. For every point xi ∈ S, there exists an integer 1 ≤ j ≤ b − 1, so that xi

lies in one of the two buckets Bj or Bj+1 for any tight cut.

PROOF. A point xi ∈ S lies in the bucket Bj of a cut c = (w, L) if and only if

L + w · (j − 1) ≤ xi < L + w · j.

Improved Algorithms for Uniform Partitions of Points 525

Suppose there are two cuts c1 = (w1, L1) and c2 = (w2, L2) and two integers 1 ≤ k1 <

k1 + 1 < k2 ≤ b such that xi lies in the bucket Bk1
of the cut c1 and in the bucket Bk2

of

c2. Then we have the following two inequalities:

xi − x1 < k1 · w1 and xi − x1 > (k2 − 1) · w2 ≥ (k1 + 1)w2.

It follows that k1w1 > (k1 + 1)w2 and therefore

w2

w1

<
k1

k1 + 1
= 1 −

1

k1 + 1
.(2.2)

On the other hand, by (2.1),

w2

w1

>
xn − x1

b
·

b − 1

xn − x1

= 1 −
1

b
.(2.3)

Comparing (2.2) and (2.3), we obtain k1 > b − 1, which contradicts the assumption that

k < k2 − 1 ≤ b − 2. Hence, the lemma is true.

This lemma immediately implies that at most n lines of L intersect Q, and that Q

intersects O(n2) faces of A(L). The lines of L that intersect Q can be determined in

O(bn) time. We can therefore search over Q∩A(L) in O(n2) time to find representatives

for all classes of combinatorially distinct optimal cuts.

LEMMA 2.4. For a set of n points, all the combinatorially distinct optimal cuts can be

computed in O(n2) time.

For an integer r ≥ 1, let R ⊆ S be the subset of r points obtained by choosing every

(n/r)th point of S. Using Lemma 2.4 for directly solving the problem, we can compute

the optimal solution for R in O(r2) time.

LEMMA 2.5. Let no, ro be the maximum size of a bucket in an optimal solution for S

and R, respectively. Then
∣

∣

∣

no

n
−

ro

r

∣

∣

∣
<

1

r
.

PROOF. Let c be an optimal cut for R. Each bucket of c contains at most ro points.

Since R is chosen by selecting every (n/r)th point of S, each bucket of c contains at

most (ro + 1)n/r − 1 points of S. Therefore no < (ro + 1)n/r , or

no

n
−

ro

r
<

1

r
.

Conversely, let c′ be an optimal cut for S. Then each bucket of c contains at most no

points of S, which implies that each bucket contains at most (no + (n/r) − 1)r/n points

of R. Hence,

ro <
(

no +
n

r

) r

n
or

ro

r
−

no

n
<

1

r
.

This completes the proof of the lemma.

526 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

We now describe the algorithm for computing an optimal solution for S, assuming

that we have already computed the value of ro. Let Cij denote the set of points c = (w, L)

in the (w, L)-plane so that the point x j ∈ S lies in the bucket Bi of the cut c. Then

Cij = {(w, L) | L + (i − 1)w ≤ x j < L + iw}

is the cone with apex at (0, x j); see Figure 2(ii). Given three integers 1 ≤ l ≤ r ≤ n and

1 ≤ i ≤ b, the set of points in the (w, L)-plane for which the subset {xl , xl+1, . . . , xr }
of S lies in the i th bucket Bi is C(l, r; i) =

⋂r
j=l Cij. C(l, r; i) is a cone formed by the

intersection of the halfplanes xl ≥ L + (i − 1)w and xr > L + iw.

By Lemma 2.5,

(ro − 1)
n

r
< no < (ro + 1)

n

r
.(2.4)

Set m = (ro + 1)n/r > no. We use this inequality to compute no efficiently. Define

no = (n/b) + 1 and δ = m − (n/b). Using (2.4), we obtain that δ < 1 + 2n/r .

If b2δ ≥ n, then we use the O(n2)-time algorithm described earlier to compute an

optimal cut, so assume that b2δ < n. If each bucket Bi in a cut c contains at most m

points of S, then, for any 1 ≤ i ≤ b, the first i buckets in c contain at most ri = mi

points, therefore βi < xri
. Similarly, the last b − i buckets in c contain at most (b − i)m

points, therefore βi ≥ xli
, where li = n − m(b − i). Hence, βi ∈ [xli

, xri
). Set r0 = 1;

see Figure 3. Note that ri − li = bδ for 1 ≤ i ≤ b. This implies that the subset

Si = {x j | ri−1 ≤ j < li } always lies in the i th bucket Bi (see Figure 3), for all

1 ≤ i ≤ b. Hence, if there is a cut ξ = (w, L) so that all buckets in ξ contain at most m

points, then ξ lies in the region P(m) =
⋂b

i=1 C(ri−1, li −1; i), which is the intersection

of b cones and is thus a convex polygon with at most 2b edges. For all cuts ξ 6∈ P(m),

8(ξ, S) > m. It thus suffices to search for an optimal cut within P(m).

Let Hi ⊆ L be a set of li − ri = bδ lines defined as

Hi = {x j = L + iw | li ≤ j < ri }.

Set H =
⋃b

i=1 Hi ; |H | = b2δ. The same argument as in Lemma 2.3 shows that no

line of H\L intersects the interior of the polygon P(m). We construct the arrangement

A(H) within the polygon P(m) in O(b4δ2) time. Actually, we can clip A(H) inside

P(m)∩ Q, where Q is the quadrilateral defined in (2.1). Let AP(H) denote this clipped

arrangement. By the above discussion,AP(H) is the same asA(L) clipped within P(m).

Therefore, for any two points ξ and ξ ′ in a face f ∈ AP(H), the contents of all buckets

in the cuts ξ and ξ ′ are the same. Let

ϕ(f) = 〈81(f, S), . . . , 8b(f, S)〉.

If f and f ′ are two adjacent faces of AP(H) separated by a line L + iw = x j , then the

only difference in the two cuts ξ ∈ f and ξ ′ ∈ f ′ is that x j belongs to Bi−1 in one of

Fig. 3. The boundary βi can lie in the shaded interval [li , ri).

Improved Algorithms for Uniform Partitions of Points 527

them and it belongs to Bi in the other. Therefore ϕ(f ′) and 8(f ′, S) can be computed

from ϕ(f) and 8(f, S) in O(1) time.

We compute, in time O(b4δ2), a tour 5 = 〈 f0, f1, . . . , fu〉, where u = O(b4δ2), of

the dual graph of AP(H) that visits every face of AP(H) at least once. We compute

ϕ(f0) and 8(f0, S) in O(n) time. We then visit the faces of AP(H) along 5, and for

each i ≥ 1, compute ϕ(fi) and 8(fi , S) from ϕ(fi−1) and 8(fi−1, S) in O(1) time. We

can thus compute no = 8(S) = min f ∈AP (H) 8(f, S) in O(b4δ2 + n) time. The total

time spent in computing an optimal cut is

O

(

r2 + b4
(

1 +
n

r

)2

+ n

)

.

Choosing r =
⌈

b
√

n
⌉

, we obtain the following.

LEMMA 2.6. An optimal tight cut for n points into b buckets can be found in O(b412 +
b2n) time, assuming that the points are sorted.

Instead of using the quadratic algorithm for computing ro, we can compute ro recur-

sively. Let T (r, 1′) denote the maximum running time of the algorithm for computing

an optimal cut for a subset R ⊆ S of size r chosen by selecting every (n/r)th point of S,

where r/b + 1′ is the optimal cut value of R. Then we have the following recurrence:

T (n, 1) =

{

T (r, 1′) + O
(

b4(1 + n/r)2 + n
)

if b2(1 + 2n/r) ≤ n,

O(n2) otherwise.

Choosing r = ⌈n/2⌉ and using the fact that ro ≤ nor/n + 1, we obtain that

ro ≤
r

b
+

1

2
+ 1, i.e., 1′ ≤

1

2
+ 1.

Hence, we can show that

T (n, 1) = O(b4(12 + log n) + n).

THEOREM 2.7. Given a set S of n points in R, sorted in increasing order, and an

integer 1 ≤ b ≤ n, an optimal tight cut for S with b buckets can be computed in

O(b4(12 + log n) + n) time.

REMARK 2.8. If we are interested only in computing an ε-approximate solution, for

0 < ε < 1, i.e., computing a cut c such that 8(S, c) ≤ (1 + ε)8(S), then we can

obtain a faster algorithm by choosing a sample R of size r = ⌈2b/ε⌉ as described

earlier and computing R. Using (2.4) and the fact that 8(S) ≥ n/b, we obtain that

8(R)n/r ≤ (1+ε)8(S). The running time of the algorithm is O(n+(b/ε)2), assuming

that the points in S are sorted. Otherwise, the running time is O(n log(b/ε) + (b/ε)2).

We can use a similar analysis for finding optimal cuts when relaxed cuts are also

allowed. We simply replace n by bn as there are bn event lines. Another way to view

this is that the optimal cut can be determined by trying out all nonredundant cuts for η

buckets for 2 ≤ η ≤ b and selecting the best one.

528 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

COROLLARY 2.9. An optimal (relaxed) cut for a set of n points in R with b buckets can

be found in O(b5(12 + log n) + bn) time.

3. The Uniform-Projection Problem. In this section we describe the algorithms for

the uniform projection problem. Let S = {p1, . . . , pn} be a set of n points in R
2 and let

1 ≤ b ≤ n be an integer. We want to find b + 1 equally spaced parallel lines so that all

points of S lie between the extreme lines, the extreme lines contain at least one point of

S, and the maximum number of points in a bucket is minimized; see Figure 1(ii). If the

lines have slope θ , we refer to these buckets as the θ -cut of S. For each θ , there is unique

θ -cut of S. We first describe a subquadratic algorithm for b = 2. Next, we show how the

running time of the algorithm by Asano and Tokuyama can be improved, and then we

describe a Monte Carlo algorithm that computes 8(S), the optimum value, with high

probability, in subquadratic time for small values of b and 1.

It will be convenient to work in the dual plane. The duality transform maps a point

p = (a, b) to the line p∗ : y = −ax + b and a line ℓ: y = αx + β to the point

ℓ∗ = (α, β) [5]; see Figure 4. Let ℓi denote the line dual to the point pi ∈ S, and let

L = {ℓi | 1 ≤ i ≤ n}. The dual of a strip σ bounded by two parallel lines ℓ1 and ℓ2 is

the vertical segment σ ∗ = ℓ∗
1ℓ

∗
2; a point p lies in σ if and only if the line p∗ intersects

the segment σ ∗.

Let A(L) be the arrangement of L as defined in Section 2. We define the level of

a point p ∈ R
2 with respect to L, denoted by λ(p,L), to be the number of lines in L

that lie below p (i.e., the vertical line through p intersects L below p). The level of all

points within an edge or a face of A(L) is the same. For an integer 0 ≤ k < n, we

define the k-level of A(L), denoted by Ak(L), to be the closure of the set of edges of

A(L) whose level is k. The level Ak(L) is an x-monotone polygonal chain with at

most O(n(k + 1)1/3) edges [6]. The lower and upper envelopes of A(L) are the levels

A0(L) and An−1(L), respectively. The total number of vertices on the upper and lower

envelopes of A(L) is n because every such vertex is the dual of the line supporting an

edge of the convex hull of S.

Since we require the extreme bucket boundaries to contain a point of S, the points

dual to the extreme lines lie on the upper and lower envelopes of L. For a fixed x-

coordinate θ , let s(θ) denote the vertical segment connecting the points on the lower and

h* a*

b*

b

a

primal dual

h

σ*

σ

Fig. 4. The duality transform in two dimensions. Vertical segment σ ∗ is the dual of the strip σ .

Improved Algorithms for Uniform Partitions of Points 529

β
0

1
β

2
β

3
β

4
β

Upper envelope

Lower envelope

Fig. 5. The uniform-projection problem and the bucket lines in the dual setting.

upper envelopes of L with the x-coordinate θ . We can partition s(θ) into b equal-length

subsegments s1(θ), . . . , sb(θ). Let β0(θ), . . . , βb(θ) be the endpoints of these segments.

These endpoints are dual to the bucket boundaries of the θ -cut, and si (θ) is the dual of

the j th bucket in the θ -cut. The line ℓj intersects si (θ), i ≤ b, if and only if the point

pj lies in the bucket Bi corresponding to the θ -cut. Let βi denote the path traced by the

endpoint βi (θ) as we vary θ from −∞ to +∞. If we vary θ , βi (θ), for 0 ≤ i ≤ b, traces

along a line segment, as long as the endpoints of s(θ) do not pass through a vertex of

upper or lower envelopes. Therefore each βi is an x-monotone polygonal chain with at

most n vertices; see Figure 5 for an illustration. Since we will be looking at the problem

in the dual plane from now, we call the βi ’s bucket lines. Let B = {β0, . . . , βb}. The

intersection of a bucket line βi with a line ℓj is an event at which the point pj switches

from Bj−1 to Bj or vice versa.

For an x-coordinate θ and a subset A ⊆ L, let µi (A, θ) denote the number of lines

of A that intersect the vertical segment si (θ); µi (A, θ) denotes the set of points dual

to A that lie in the i th bucket of the θ -cut. Let 8(A, θ) = max1≤i≤b µi (A, θ). Set

no = 8(S) = 8(L) = minθ 8(L, θ).

3.1. Partitioning into Two Buckets. We first describe a deterministic scheme that finds

in subquadratic time an optimal solution for partitioning S into two buckets. By our

convention, β0, β2 denote the upper and lower envelopes ofL, respectively. To determine

no, we search for an x-coordinate θo, where β1(θo) is closest to the ⌈n/2⌉-level of A(L).

First, we compute 3 = A⌈n/2⌉ in O(n4/3 log1+ε n) time [3], for any ε > 0, and check

whether β1 intersects 3. If a point β1(θo) lies on 3, then we return the θo-cut. If β1

lies below 3, we compute the highest level in the interval [1, ⌈n/2⌉ − 1] of A(L) that

β1 intersects, and set λo to this level. This can be accomplished in O(n4/3 log2+ε n)

by performing a binary search on the levels. Similarly, if β1 lies above 3, we find in

O(n4/3 log2+ε n) time the smallest level in the interval [⌈n/2⌉+1, n−1] that β1 intersects

and set λo to this level. If β1(θo) is an intersection point of β1 and Aλo
(L), then we return

the θo-cut. Chan’s algorithm computes the edges of a level incrementally from left to

right, so we can actually detect whether β1 intersects the level while computing the level

itself in O(n4/3 log1+ε n) time using O(n) space. Hence, we obtain the following.

530 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

LEMMA 3.1. The optimal uniform projection of n points in R
2 into two buckets can be

computed in O(n4/3 log2+ε n) steps, for any ε > 0, using O(n) space.

3.2. A Deterministic Algorithm. In this section we present a deterministic algorithm

for the uniform-projection problem that has O(bn log n+ K log n) running time and uses

O(n) storage, where K denotes the number of event points, i.e., the number of intersection

points between L and B. This improves the running times of O(n2 + bn + K log n) for

general b and O(b0.610n1.695 + K log n) for b <
√

n in [1].

As in Asano and Tokuyama’s algorithm, we will sweep a vertical line through A(L),

but unlike their approach we will not stop at every intersection point of L and B.

We first compute the lower and upper envelopes of L, which are the bucket lines β0

and βb, respectively. We can then compute the rest of the bucket lines β1, . . . , βb−1

in another O(bn) time. We preprocess each βi for answering ray-shooting queries in

O(n log n) time so that a query can be answered in O(log n) time [9]. The total space used

is O(bn).

We sweep a vertical line from x = −∞ to x = +∞, stopping at the intersection

points of L and the bucket lines. At each x-coordinate θ , for 1 ≤ i ≤ b, we maintain

µi (θ), and, for 1 ≤ j ≤ n, the index of the bucket νj that contains the line ℓj in the θ -cut.

These quantities remain the same for all x-coordinates between two consecutive event

points. We also maintain an event queue Q that stores some of the event points that lie to

the right of the sweep line, but it is guaranteed to contain the next event point. Suppose

we are at an event point βi (θ) = βi ∩ ℓj and ℓj lies above βi to the right of βi (θ). Then

ℓj moves from Bi to Bi+1 at θ . We therefore decrease µi (θ) by 1, increase µi+1(θ) by

1, and set νj to i . The next intersection point of ℓ and B, if it exists, lies on either βi or

βi+1. We compute in O(log n) time the intersection points of ℓ with βi and βi+1 that lie

immediately after βi (θ), using the ray-shooting data structure and add them to Q.

On the other hand, if ℓj lies below βi to the right of βi (θ), ℓj moves from Bi+1

to Bi at θ . We decrease µi+1(θ) by 1, increase µi (θ) by 1, compute the next in-

tersection points of ℓj with βi and βi−1, and add the two intersection points (if they

exist) to Q.

We spend O(log n) time at each event point. Therefore the total running time of

the algorithm is O((bn + K) log n). The event queue Q uses O(K) space and the ray-

shooting data structures use O(bn) space. The size of Q can be reduced to O(n) using

the standard technique, namely, for each line ℓj , store only one intersection point of ℓj

with the bucket lines [7]. In particular, suppose we want to insert a point σ ∈ ℓj to Q.

We check whether Q already contains a point σ ′ on ℓj . If x(σ) ≥ x(σ ′), we do not

insert σ into Q. Otherwise, we insert σ into Q and delete σ ′ from it. The total time spent

at each event point is still O(log n), but the size of Q is now O(n). However, the ray-

shooting data structure still requires O(bn) space. In order to reduce the overall storage

to O(n), we partition the plane into u ≤ 2b vertical strips W1, . . . , Wu so that each Wi

contains at most n vertices of the bucket lines. Note that each βj contains at most n/b

vertices inside Wi . We now run the above sweep-line algorithm in each Wi separately.

While sweeping a vertical line through Wi , we have to preprocess only βi ∩ Wi for ray

shooting, for each 0 ≤ i ≤ b. Since each βi has at most n/b vertices inside Wi , the total

space used by the ray-shooting data structures is O(n). The asymptotic running time is

still O((bn + K) log n). Hence, we obtain the following.

Improved Algorithms for Uniform Partitions of Points 531

THEOREM 3.2. An optimum partitioning in the tight case can be determined in O((bn+
K) log n) time using O(n) storage, where K is the number of event points.

3.3. A Monte Carlo Algorithm. We now present a Monte Carlo algorithm that runs

in subquadratic time, with high probability, for small values of b and 1, where no =
(n/b) + 1. The overall idea is quite straightforward and similar to Section 2. From the

given set L of n lines, we choose a random subset R of size r > 20 log n (a value that

we will specify more precisely in the analysis). Let 2R be the x-coordinates of all the

intersection points of R and B, the set of bucket lines with respect to L. We compute

ro = minθ∈2R
8(R, θ). Note that we are not computing 8(R) since we are considering

buckets lines with respect to L. B can be computed in O(n log n + bn) time, and ro can

be computed in additional O(r(b + n)) = O(rn) time. We use ro to estimate the overall

optimum no with high likelihood. In the next phase we use this estimate and the ideas

used in the one-dimensional algorithm to sweep only those regions ofB that “potentially”

contain the optimal solution. In our analysis, we will show that the number of such event

points is o(n2) if b and 1 are small. This approach is similar to the randomized selection

algorithm of Floyd and Rivest.

We choose two parameters r and Var = Var(r) whose values will be specified in

the analysis below. An event point with respect to L (resp. R) is a vertex of B or an

intersection point of a line of L (resp. R) with a chain in B. The event points with respect

to R partition the chains of B into disjoint segments, which we refer to as canonical

intervals. Before describing the algorithm we state a few lemmas, which are crucial for

our algorithm.

Random sampling. In the following we assume that R is a random subset of L of size

r > 20 log n. Our first lemma establishes a relation between the event points of A(L)

and those of A(R).

LEMMA 3.3. Let α > 0 be a constant and let 1 ≤ i ≤ b be an integer. With probability

at least 1 − 1/nα , at most O((n/r) log n) event points of A(L) lie on any canonical

interval of βi .

PROOF. The proof follows along the lines of a standard random-sampling argument.

Consider any event point of A(L). The probability that more than c(n/r) log n lines of L

are not chosen before the first line is chosen to its right is no more than (1 − r/n)cn log n/r ≤
n−c. The probability that this holds for any event point of A(L) (and hence for A(R)) is

less than K · n−c. Since K = O(n2), by choosing c = α + 2, the lemma follows.

Using a classical result by Vapnik and Chervonenkis on ε-approximations (see, e.g.,

Chapter 16 of [12]), which can also be proved using Chernoff’s bound, we can establish

a relationship between the number of lines of L and of R intersecting a vertical segment.

LEMMA 3.4. Let e be a vertical segment and let Le ⊆ L be the subset of ne lines that

intersect e. There is a constant c such that with probability exceeding 1 − 1/n2,

∣

∣

∣

∣

ne

n
−

|Le ∩ R|
r

∣

∣

∣

∣

≤ c

√

log n

r
.

532 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

An immediate corollary of the above lemma is the following.

COROLLARY 3.5. There is a constant c so that, with probability exceeding 1 − 1/n,

∣

∣

∣

no

n
−

ro

r

∣

∣

∣
≤ c

√

log n

r
.

PROOF. Suppose the θ -cut is an optimal cut for R. Apply Lemma 3.4 to the segments

s1(θ), . . . , sb(θ). Since b ≤ n and each segment si (θ) intersects less than n lines of L,

the claim follows.

COROLLARY 3.6. Let ξ be a θ -cut so that every bucket of ξ contains at most m points

of S. For 1 ≤ i ≤ b − 1, let

li = r − (b − i)m
r

n
− c

√

r log n and ri = im
r

n
+ c

√

r log n,

where c is an appropriate constant. Then with probability exceeding 1 − 1/n,

li ≤ λ(βi (ξ), R) ≤ ri .(3.1)

PROOF. If each bucket of ξ contains at most m points, then the first i buckets of ξ

contain at most mi points of S and the last (b − i) buckets of ξ contain at most (b − i)m

points of S. The lemma now follows by an application of Lemma 3.4 to the segments

β0(ξ)βi (ξ) and βi (ξ)βb(ξ).

We also need the following result by Matoušek on simplex range searching.

LEMMA 3.7 [10]. Given a set P of n points in R
2 and a parameter m, n ≤ m ≤ n2,

one can preprocess P for triangle range searching in time O(m log n), to build a data-

structure of O(m) space and then report queries in O((n log2 n)/
√

m + K) time, for

output size K , where K is number of points in the query triangle.

REMARK. If m = Ä(r2 log2 n) and K ≥ (n/r) log n, then the output size dominates

the query time, so the query time becomes O(K) in this case.

First phase. We now describe the algorithm in detail. We first compute in O(n log n +
bn) time the upper and lower envelopes of L and the bucket lines β0, . . . , βb. Next, we

choose a random sample R of size r , where r > 20 log n is a parameter to be fixed later,

and compute ro = minθ 8(R, θ), where θ varies over the x-coordinates of all the event

points of B with respect to R. As mentioned earlier, we are not computing an optimal

solution for R, since the bucket lines are defined by L. We can compute ro in O(rn)

time as described in [1]. This completes the first phase of the algorithm. The total time

required by this phase is

O(n log n + bn) + O(rn) = O((r + b)n).(3.2)

Improved Algorithms for Uniform Partitions of Points 533

Second phase. In the following we assume that the set R satisfies Lemmas 3.3 and

3.4 and Corollaries 3.5 and 3.6. This holds with probability exceeding 1 − 1/n. By

Corollary 3.5,

ro

n

r
− cn

√

log n

r
≤ no ≤ ro

n

r
+ cn

√

log n

r
.

Set

mL = max

{

ro

n

r
− cn

√

log n

r
,

n

b

}

.

By testing for i = 0, 1, . . . in increasing order, we first find the smallest 0 ≤ i ≤
⌈log n⌉ such that mL + 2i < no ≤ mL + 2i+1. We then perform a binary search in the

interval [mL +2i , mL +2i+1] to compute the optimal value no. We thus need a procedure

that, given an integer m ∈ [mL + 2i , mL + 2i+1], can determine whether no ≤ m or

no > m. Suppose no = (n/b)+1 and δ = m −n/b. Since mL ≥ n/b and mL +2i < no,

we have 1 > 2i . Therefore

m ≤ mL + 2i+1 ≤ no + 2i <
n

b
+ 21.(3.3)

We run the decision algorithm O(log n) times.

We now describe the decision algorithm. If each bucket of a θ -cut contains at most

m points of S, then, by Corollary 3.6, li ≤ λ(βi (θ), R) ≤ ri . For each 1 ≤ i < b, let

X i = {θ | li ≤ λ(βi (θ), R) ≤ ri }.

Let X =
⋂b−1

i=1 X i , and let |X | be the number of connected components in X . For any

θ 6∈ X , at least one of the βi does not satisfy (3.1), so 8(L, θ) > m for any such

θ -cut. We therefore restrict our search to the θ -cuts for which θ ∈ X and compute

mo = minθ∈X 8(L, θ). If mo ≤ m, then no ≤ m. Otherwise, we conclude that no > m.

Hence, it suffices to describe an algorithm for computing mo.

For each 0 ≤ i ≤ b, let Ii be the set of canonical intervals of βi whose x-projections

intersect X (see Figure 6), and let

2i = {θ ∈ X | βi (θ) is an event point with respect to L}.

Set I =
⋃b

i=0 Ii , ν = |I|, and 2 =
⋃b

i=0 2i . Since every event point whose x-

coordinate is in2i lies on a canonical interval inIi , by Lemma 3.3, |2| = O(ν(n/r) log n).

Since the contents of buckets change only at the event points,

mo = min
θ∈X

8(L, θ) = min
θ∈2

8(L, θ).

It thus suffices to compute 8(L, θ) for all θ ∈ 2. We describe later how to compute X

and I, but we first describe how to compute 2 and an optimal cut from X and I.

534 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

X

2

β1

β

Fig. 6. X , β1, and β2. Solid lines belong to R and dashed lines belong to L\R. Shaded regions denote the

segments s1(θ) for θ ∈ X . Large (small) bullets are the intersection points of L with the bucket lines that lie

(resp. do not lie) inside X × R. Arrowed segments represent the canonical intervals in I1.

Computing 2. We preprocess S in O(r2 log2 n) time into a data structure of size

O(r2 log n) for answering triangle range queries using Lemma 3.7. For each canonical

interval I ∈ Ii , we compute the subset LI ⊆ L of lines that intersect I in O((n/r) log n)

time using the range-searching data structure, because, in the primal plane, I corresponds

to a double-wedge and it contains a point of pi ∈ S if and only if I intersects ℓi . We then

compute the intersection points of I and LI —these are the event points with respect to L

that lie on I . We repeat this step for all intervals in I. The total time spent in computing

these intersection points is O(r2 log2 n + ν(n/r) log n). We discard those event points

whose x-projections do not lie in X . Let 2 denote the set of the remaining event points.

We sort 2 in increasing order. The total time spent in computing and sorting 2 is

O(r2 log2 n + ν(n/r) log n) + O(|2| log n) = O(r2 log2 n + ν(n/r) log2 n).(3.4)

We sweep a vertical line over X from left to right, stopping at the x-values in 2. For

θ ∈ X , we maintain

µ(θ) = 〈µ1(L, θ), . . . , µb(L, θ)〉.

The vector µ(θ) remains the same for all x-values in X lying between two consecutive

values in 2. Suppose we are at a point θ ∈ 2, which belongs to 2i . Let I be the connected

component of X that contains θ . If θ is the leftmost event point in I , we compute the

number of lines in L intersecting the vertical segment si (θ) (i.e., the points of S lying

in the i th bucket of the θ -cut), for 1 ≤ i ≤ b, using the range-searching data structure

in time O((n/r) log n), and set µi (L, θ) to this value. We can therefore compute µ(θ)

for such an event point in O(b(n/r) log n) time. If θ is not the first event point in I ,

then we update µ(θ) as follows. Suppose βi (θ) = βi ∩ ℓj and ℓj lies above βi after

βi (θ). Then the point pj moves from the bucket Bi to Bi+1 at θ . We decrease µi (L, θ)

by 1 and increase µi+1(L, θ) by 1. Similarly, if ℓj lies below βi to the right of βi (θ),

we increase µi (L, θ) by 1 and decrease µi+1(L, θ) by 1. The total time spent by the

sweep-line algorithm is

O

(

bn

r
log n

)

· |X | + O(|2|) = O
(

(b|X | + ν)
n

r
log n

)

.(3.5)

Improved Algorithms for Uniform Partitions of Points 535

Computing X and I . Finally, we describe how to compute X and Ii . Set

li = r − (b − i)m
r

n
− c

√

r log n and

ri = im
r

n
+ c

√

r log n,

and define

σ = ri − li = bm
r

n
− r + 2c

√

r log n

≤
br

n

(n

b
+ 21

)

− r + 2c
√

r log n

(by (3.3))

≤ 2b1
r

n
+ 2c

√

r log n.

Recall that X i is the x-projection of the portion of βi that lies between Ali
(R) and

Ari
(R). We compute Ali

(R) and Ari
(R) and clip the portion of βi between these two

levels; see Figure 7. Ali
(R) and Ari

(R) have O(r4/3) vertices. Since βi has n vertices, X i

consists of O(n + r4/3) connected components and can be computed within this bound.

We set X =
⋂b−1

i=1 X i ; |X | = O(b(n + r4/3)). Next, we compute the levels Aj (R),

li ≤ j ≤ ri . Let Mi be the resulting planar subdivision induced by the edges and vertices

of Ali
(R), . . . ,Ari

(R). By a result of Dey [6],

|Mi | = O(r4/3(ri − li)
2/3) = O(r4/3σ 2/3).

Clearly, Mi can be computed in time O(r log r +|Mi |) = O(r4/3σ 2/3) [8]. Since βi is an

x-monotone polygonal chain and Mi consists of σ edge-disjoint x-monotone polygonal

chains, the number of intersection points between βi and Mi is O(nσ +|Mi |) = O(nσ +
r4/3σ 2/3), and they can be computed within that time bound. We can thus compute the

set I ′
i of all canonical intervals of βi whose x-projections intersect X i in time O(nσ +

r4/3σ 2/3). We discard those canonical intervals of I ′
i whose x-projections do not intersect

X . The remaining intervals of I ′
i gives the set Ii . Therefore

ν ≤
∑

i

|I ′
i | = O(b(nσ + r4/3σ 2/3)).

i
β

i
l

i
r

Fig. 7. The bucket line βi and the planar subdivision Mi . The shaded region denotes Mi .

536 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

Repeating this procedure for all bucket lines, the total time in computing |X | and I is

O(b(nσ + r4/3σ 2/3)).(3.6)

Summing up (3.2), (3.4), (3.5), and (3.6); substituting the values of ν and X ; and using

the fact that we run the decision algorithm O(log n) times, the total time in computing

no is thus

T (n) = O((r + b)n) + O(r2 log3 n) + b(nσ + r4/3σ 2/3)
n

r
log3 n

+ O
(

b2(n + r4/3) ·
n

r
log2 n + b(nσ + r4/3σ 2/3)

)

·
n

r
log2 n

+ O(b(nσ + r4/3σ 2/3)) log n

= O(rn) + O(b(nσ + r4/3σ 2/3))
n

r
log3 n + O

(

b2(n + r4/3) ·
n

r
log2 n

)

.

Substituting the value of σ , we obtain

T (n) = O(rn)

+ O

(

bn2

r

(

b1
r

n
+

√

r log n
)

log3 n+br1/3n log3 n

(

1
br

n
+

√

r log n

)2/3
)

+ O

(

b2

(

n2

r
+ nr1/3

)

· log2 n

)

= O((b21)n log3 n) + O

(

rn +
bn2

√
r

log7/2 n + br2/3n log10/3 n

)

+ O

(

b2

(

n2

r
+ nr1/3

)

· log2 n

)

.

Setting r = ⌈b2/3n2/3 log7/3 n⌉, we obtain the following.

THEOREM 3.8. There is a Monte Carlo algorithm to compute the optimal uniform

projection of a set of n points in R
2 onto b equal-size buckets in time

O(min{bn5/3 log7/3 n + (b21)n log3 n, n2}),

with probability at least 1 − 1/n, where the optimal value is (n/b) + 1. In particular,

our algorithm can detect in O(min{bn5/3 log7/3 n, n2}) time whether 1 = 0.

REMARK 3.9. As in Remark 2.8, we can obtain a fast ε-approximation algorithm. We

choose a random subset R of size r = α ⌈b/ε⌉2 log n, where α is a sufficiently large

constant, and compute r0 = minθ 8(R, θ). Corollary 3.5 and the fact that no ≥ n/b

implies that ron/r ≤ (1 + ε)8(S). From (3.2), the running time of the algorithm is

O((r + b) · n) which is O((b · (1 + ε)/ε)2n log n) for the above choice of r .

Improved Algorithms for Uniform Partitions of Points 537

4. Two-Dimensional Partitioning. In this section we consider the problem of par-

titioning a set S of n points in R
2 into “rectangular” buckets. More precisely, given S

and an integer b ≥ 1, we want to compute two families of equally spaced
√

b + 1 lines

L = {ℓ0, . . . , ℓ
√

b} and L′ = {ℓ′
0, . . . , ℓ

′√
b
}, so that the following conditions hold:

(i) If the orientation of the lines in L is θ ∈ [0, π/2), then the orientation of the lines

in L′ is π/2 + θ .

(ii) S lies between ℓ0 and ℓ√
b as well as between ℓ′

0 and ℓ′√
b
.

(iii) Each of the extreme lines ℓ0, ℓ
′
0, ℓ

√
b, ℓ

′√
b

contains at least one point of S.

(iv) The buckets are rectangles Bij defined by ℓi−1, ℓi , ℓ
′
j−1, ℓ

′
j , for any pair 1 ≤ i, j ≤√

b. The maximum number of points in a bucket is minimum.

See Figure 1(iii) for an example. If the slope of lines in L is θ (and of lines in L′ is

−1/θ), we refer to the resulting buckets as the θ -cut. Let µij(L, θ) be the number of

points in the bucket Bij of the θ -cut.

In the dual setting, the strip formed by the lines ℓi−1 and ℓi of the θ -cut is the vertical

segment si (θ) as defined in the previous section. Similarly, the dual of the strip formed

by ℓ′
j−1 and ℓ′

j is the segment sj (−1/θ). Hence, a point pk belongs to the bucket Bij

of the θ -cut if ℓk intersects both si (θ) and sj (−1/θ). Let B = {β0, . . . , β
√

b} be the

set of bucket lines as defined in Section 3.2 (a vertical segment s(θ) whose endpoints

lie on the lower and vertical envelopes of A(L) is partitioned into
√

b equal segments

s1(θ), . . . , s√
b(θ)).

As noted by Asano and Tokuyama, we can still compute an optimal solution by a

sweep-line algorithm. We sweep two vertical lines L and L ′. The line L sweeps the

plane from x = 0 to x = +∞. When L is at x = θ , L ′ is at x = −1/θ . We stop when

either L or L ′ crosses an intersection point of L and B. At each θ , we maintain, for every

1 ≤ i, j ≤
√

b, the number of points of S that lie in the bucket Bij of the θ -cut, and for

each line ℓk ∈ L, the pair (i, j) if pk ∈ Bij. If L passes through an event point lying

on βi , then a line moves from a bucket Bij to B(i+1) j at θ , or vice versa. Similarly, if L ′

passes through an event point lying on βj , then a line moves from a bucket Bij to the

bucket Bi(j+1) at θ , or vice versa. As in Section 3.2, we can update the invariant and the

event queue at each event point in O(log n) time. Hence, we conclude the following:

THEOREM 4.1. An optimum two-dimensional partitioning in the tight case can be de-

termined in O((bn+ K) log n) time using O(n) storage, where K is the number of event

points.

We can also extend the Monte Carlo algorithm to this problem. If 8(S, θ) ≤ m, then

the strips defined by two consecutive lines ofL (orL′) contain at most
√

bm points. If we

choose a random sample R as in Section 3.3 and define ro = minθ maxi, j µij(R, θ) and

compute it using the deterministic algorithm, then Lemmas 3.3 and 3.4 and Corollary 3.5

still hold. Corollary 3.6 can now be restated as follows.

COROLLARY 4.2. Let ξ be a θ -cut so that every bucket of ξ contains at most m points

of S. For 1 ≤ i ≤
√

b − 1, let

li = r − (
√

b − i)
√

bm
r

n
− c

√

r log n and ri = i
√

bm
r

n
+ c

√

r log n,

538 P. K. Agarwal, B. K. Bhattacharya, and S. Sen

where c is an appropriate constant. Then with probability exceeding 1 − 1/n,

li ≤ λ(βi (ξ), R), λ(βi (−1/ξ), R) ≤ ri .(4.1)

We can now proceed along the same lines as in Section 3.3. In order to determine

whether no ≤ m for a given integer m, we first define the set

X = {θ | li ≤ λ(βi (θ), R), λ(βi (−1/θ), R) ≤ ri , ∀1 ≤ i ≤
√

β}.

We sweep two vertical lines through X as in the deterministic algorithm, but using the

ideas from Section 3.3 to compute event points, to move directly from one connected

component of X to another, and to compute X and I. Since there are
√

b+1 bucket lines

in this case, we have ν =
∑

√
b

i=0 |Ii | = O(
√

b(nσ + r4/3σ 2/3)), where σ = ri − li ≤
2b1(r/n) + 2c

√
r log n. Carrying out the analysis of Section 3.3 with the new value of

ν, we can conclude the following.

THEOREM 4.3. Given a set of n points in R
2 and an integer b, there exists a Monte Carlo

algorithm to find an optimal two-dimensional partition in time O(min{b1/2n5/3 log7/3 n+
(b3/21)n log3 n, n2}), with probability at least 1 − 1/n, where the optimal value is

(n/b) + 1.

5. Conclusions. We presented bucketing algorithms in one and two dimensions whose

running times depend on how “nonuniform” the optimal partition is. Intuitively, the

algorithm searches in a small neighborhood of an optimal solution, and the size of this

neighborhood depends on the maximum size of a bucket in an optimal partition. We

conclude by mentioning a few interesting open problems:

• Can the dependence on b and 1 in the running time of the one-dimensional algorithm

be improved?

• Can the n5/3 logO(1) n term in the running time of the uniform projection algorithm be

removed?

• We assume in Sections 3 and 4 that the extremal lines contain at least one of the

input points. Can this assumption be relaxed without affecting the running time of the

algorithms?

References

[1] T. Asano and T. Tokuyama. Algorithms for projecting points to give the most uniform distribution with

applications to hashing. Algorithmica, 9, (1993), 572–590.

[2] B. Bhattacharya. Usefulness of angle sweep over line sweep. Proc. Foundations of Software Technology

and Theoretical Computer Science, 1991, pp. 390–419.

[3] T. Chan. Remarks on computing the level in line arrangements. Manuscript, 1999.

[4] D. Comer and M. J. O’Donnell. Geometric problems with applications to hashing. SIAM Journal on

Computing, 11 (1982), 217–226.

[5] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Geometry: Algorithms

and Applications. Springer-Verlag, Berlin, 1997.

Improved Algorithms for Uniform Partitions of Points 539

[6] T. K. Dey. Improved bounds for planar k-sets and related problems. Discrete and Computational

Geometry, 19 (1998), 373–382.

[7] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, Heidelberg, 1987.

[8] S. Har-Peled. Taking a walk in a planar arrangement. Proc. 40th IEEE Annual Symposium on Foundations

of Computer Science, 1999, pp. 100–110.

[9] J. Hershberger and S. Suri, A pedestrian approach to ray shooting: Shoot a ray, take a walk, Journal of

Algorithms, 18 (1995), 403–431.

[10] J. Matoušek. Efficient Partition trees. Discrete and Computational Geometry, 8 (1992), 315–334.

[11] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, New York, 1995.

[12] J. Pach and P. K. Agarwal. Combinatorial Geometry. Wiley, New York, 1995.

