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Abstract

Purpose: Mutations in receptor tyrosine kinase (RTK) genes can confer resistance to receptor-targeted

therapies. A T798M mutation in the HER2 oncogene has been shown to confer resistance to the tyrosine

kinase inhibitor (TKI) lapatinib. We studied the mechanisms of HER2-T798M–induced resistance to

identify potential strategies to overcome that resistance.

Experimental Design:HER2-T798Mwas stably expressed in BT474 andMCF10A cells. Mutant cells and

xenografts were evaluated for effects of the mutation on proliferation, signaling, and tumor growth after

treatment with combinations of inhibitors targeting the EGFR/HER2/HER3/PI3K axis.

Results:A low3%allelic frequency of the T798Mmutant shifted 10-fold the IC50of lapatinib. Inmutant-

expressing cells, lapatinib did not block basal phosphorylation of HER2, HER3, AKT, and ERK1/2. In vitro

kinase assays showed increased autocatalytic activity of HER2-T798M.HER3 association with PI3K p85was

increased in mutant-expressing cells. BT474-T798M cells were also resistant to the HER2 antibody

trastuzumab. These cells were sensitive to the pan-PI3K inhibitors BKM120 and XL147 and the irreversible

HER2/EGFR TKI afatinib but not the MEK1/2 inhibitor CI-1040, suggesting continued dependence of the

mutant cells on ErbB receptors and downstream PI3K signaling. BT474-T798M cells showed increased

expression of the EGFR ligands EGF, TGFa, amphiregulin, and HB-EGF. Addition of the EGFR neutralizing

antibody cetuximab or lapatinib restored trastuzumab sensitivity of BT474-T798M cells and xenografts,

suggesting that increased EGFR ligand production was causally associated with drug resistance.

Conclusions: Simultaneous blockade of HER2 and EGFR should be an effective treatment strategy

against HER2 gene–amplified breast cancer cells harboring T798Mmutant alleles. Clin Cancer Res; 19(19);

5390–401. �2013 AACR.

Introduction

The ErbB family of transmembrane receptor tyrosine

kinase (RTK) comprises 4 members: EGFR (ErbB1), HER2
(ErbB2), HER3 (ErbB3), and HER4 (ErbB4; ref. 1). Several
human cancers have been associated with dysregulation of

ErbB receptors.Approximately 25%of invasivebreast cancers
exhibit HER2 gene amplification and mRNA/protein over-

expression (2). Anti-HER2 therapies such as the antibody
trastuzumab are active in patients withHER2-overexpressing

breast cancer (3, 4). HER2 does not have an activating ligand
but can be transactivated by ligand-induced ErbB corecep-
tors. For example, HER2 and EGFR cooperate in the trans-
formation of mouse fibroblasts (5). Ligand-induced EGFR

forms heterodimers with HER2 (6); in turn, HER2 reduces
degradation of EGFR (7) by promoting ligand binding to
EGFR and inhibiting binding of EGFR to its ubiquitin ligase

Cbl (8). Consistent with this mutual dependence and syn-
ergy, inhibition of EGFR can reduce the growth of HER2þ
breast cancer cells both in vitro and in vivo (9–11).

The small-molecule, ATP-mimetic lapatinib blocks HER2
and EGFR kinases and downstream signaling such as PI3K/
AKT and MAPK (12). Lapatinib is also approved for the
treatment of HER2-overexpressing breast cancer and in

combination with trastuzumab is more effective than each
drug given alone (13). Activation of alternate prosurvival
pathways reduces the dependence of tumors on the targeted

oncogenic kinase, leading to acquired drug resistance that
can be overcome by combination treatments (13). In addi-
tion, the clinical benefit of small-molecule tyrosine kinase
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inhibitors (TKI) is generally limited by acquired mutations
in the targeted kinase. A common causal mechanism of
acquired resistance to TKIs is the development of kinase

domainmutations, such as those reported inBCR-ABL (14),
cKIT (15), PDGFRa (16), and EGFR (17, 18).
Mutations in the tyrosine kinase domain of HER2 have

been identified in head and neck, lung, gastric, and breast

carcinomas (19–23). An in vitro screen using a randomly
mutagenized HER2 expression library identified several
kinase domain mutations associated with resistance to lapa-

tinib (24). In this study, a T798M substitution in HER2,
analogous to the gatekeeper EGFRT790M (17), ABLT315I (14),
and cKITT670I (15) mutations, conferred the strongest resis-

tance to lapatinib (24). A similar random mutagenesis
approach had discovered BCR-ABL mutations that were
subsequently found in patients with chronic myelogenous

leukemia (CML) with acquired resistance to the ABL inhibi-
tors imatinib and dasatinib (25). Kancha and colleagues
cloned eight clinically observedHER2mutations. Somewere
lapatinib-sensitive whereas others, including T798M, were

resistant when expressed in cells without HER2 gene ampli-
fication. Interestingly, chronic exposure to lapatinib selected
cancer cells with acquired L755S and T862A drug resistant

mutations (26). In The Cancer Genome Atlas (TCGA) breast
cancer dataset, 8 tumors harboredmutations inHER2, oneof
which, D769H, occurred in a tumor that was also HER2-

amplified (27, 28).
To study the mechanisms by which the T798M mutation

confers resistance to lapatinib and strategies to reverse such
resistance inHER2 gene-amplifiedbreast cancer,wegenerated

BT474 cells stably expressing the mutant allele. BT474 cells
stably expressingHER2T798Mwere resistant to either lapatinib
or trastuzumab alone. HER2T798M exhibited increased auto-

catalytic activity compared with wild-type HER2. BT474-

HER2T798M cells expressed higher levels of the EGFR ligands

EGF, TGFa, amphiregulin, and HB-EGF. Consistent with a
causal role of these ligands, the addition of the neutralizing
EGFR antibody cetuximab restored sensitivity to trastuzumab

in cells and xenografts expression HER2T798M. Furthermore,
inhibition of EGFR with lapatinib also synergized with tras-
tuzumabagainst xenografts expressingHER2T798M, suggesting
simultaneous inhibition of EGFR and HER2 abrogates the

resistance induced by the gatekeeper mutation.

Materials and Methods

Generation of cells stably expressing HER2T798M

An HER2T798M expression vector was generated by sub-

cloning themutant sequence in the SalI/HindIII site ofDNR
Dual (BD Biosciences) and then recombined using Cre into
the JP1520 retroviral vector. Retroviruses expressing

HER2T798Mwere produced by transfecting Phoenix-Ampho
cells using published methods (20) and then used to
transduce BT474 andMCF10A cells. Stably transfected cells

were selected in 1 mg/mL G418.

Cell culture and proliferation assays
BT474 cells weremaintained in IMEMmedium/10% FBS

(Gibco). MCF10A cells were maintained in DMEM/F-12
supplemented with EGF (20 ng/mL, Invitrogen/Gibco),
cholera toxin (100 ng/mL, Sigma), hydrocortisone (500

ng/mL, Sigma), insulin (10 mg/mL, Invitrogen), and 5%
horse serum (Hyclone). Cell proliferation was measured
either by fixing and staining cells with crystal violet (29) or

by using MTT (Sigma) or premixed WST-1 reagent (Roche)
according to the manufacturer’s protocol. The following
inhibitors were used for various proliferation assays: 1
mmol/L lapatinib; 1 mmol/L CI-1040; 1 mmol/L BIBW2992

(all from LC Laboratories); 20 mg/mL trastuzumab; 20 mg/
mL cetuximab (both from the Vanderbilt University Phar-
macy); 1 mmol/L BKM120 (Active Biochem); and 6 mmol/L

XL-147 (provided by Exelixis). For MTT/WST-1 assays, 1 �

104 cells/well were seeded in 96-well plates. Twenty-four
hours after plating, cells were treated with dimethyl sulf-

oxide (DMSO)or inhibitors. After 5days of treatment,MTT/
WST-1 assays were conducted according to the manufac-
turer’s protocol. For growth assays following HER3 knock-
down, pooled HER3 and control siRNA (Dharmacon) were

reverse-transfected into cells using LipofectamineRNAiMax
(Invitrogen) according to manufacturer’s protocol. Briefly,
cells were plated in triplicate in 24-well plates and trans-

fectedwithHER3 or control siRNA (50 nmol/L). Seven days
posttransfection, cells were trypsinized and counted using a
Coulter counter. Alternatively, cells were treated with the

LNA oligonucleotides directed against HER3 (EZN3920) or
control (EZN4455) at a final concentration of 5 mmol/L
(30) provided by Enzon Pharmaceuticals for 7 days.

Three-dimensional Matrigel culture
Cells (5�103/well)were seeded in8-well chamber slides.

Before seeding, BT474 andMCF10A cellswere suspended in

their respectivemediumon growth factor–reducedMatrigel

Translational Relevance

Despite the effectiveness of HER2-targeted therapies
such as trastuzumab and lapatinib, most patients with
metastatic HER2 gene–amplified breast cancer treated

with these drugs eventually progress.Mutations in recep-
tor tyrosine kinase (RTK) genes have been shown as
possible mechanisms of resistance to small-molecule

tyrosine kinase inhibitors. The advent of next-generation
sequencing approaches has allowed for the detection of
low-frequency mutant alleles in HER2 gene–amplified

breast cancers. This work investigated the effects of the
"gatekeeper" (T798M) mutation in HER2. Results show
that cells expressing this lapatinib- and trastuzumab-
resistant mutant overexpress EGFR ligands. Simulta-

neous blockade of HER2 and EGFR by the combined
use of trastuzumab and lapatinib or by the addition of
the EGFR antibody cetuximab to trastuzumab reversed

drug resistance, thus identifying combinations that may
prevent the acquisition of T798M mutations in patients
with HER2þ breast cancer.

T798M HER2 Is Sensitive to Dual HER2 and EGFR Inhibition

www.aacrjournals.org Clin Cancer Res; 19(19) October 1, 2013 5391

on July 30, 2021. © 2013 American Association for Cancer Research. clincancerres.aacrjournals.org Downloaded from 

Published OnlineFirst August 15, 2013; DOI: 10.1158/1078-0432.CCR-13-1038 



(BDBiosciences) asdescribed (31). Inhibitorswere addedat

the time of cell seeding and replenished with freshmedium
every 3 days. After 12 to 14 days, images were captured from
at least 3 different fields. To quantify cell number, Matrigel

was dissolved by treatment with dispase for 2 hours at 37�C
and acini were dissociated by pipetting. Dissociated cells
were treated with trypsin and pelleted by centrifugation
before being resuspended in growth medium and counted

using a hemocytometer.

Immunoprecipitation and immunoblotting

Immunoprecipitations were conducted with a p85 anti-
body (Millipore) or a HER2 antibody (Neomarkers) fol-
lowed by Protein A beads (Sigma) as described (32).

Immune complexes and whole-cell lysates were subjected
to SDS-PAGE and transferred onto nitrocellulose mem-
branes. For immunoblot analysis, cells were lysed in 1%
NP-40 buffer containing protease and phosphatase inhibi-

tors. Sampleswere sonicated for 10 seconds and centrifuged
at 14,000 rpm for 5 minutes at 4�C; protein concentrations
were quantitated using the BCA assay (Pierce). Primary

antibodies included Y1248 P-HER2, Y1068 P-EGFR, total
EGFR, Y1197 P-HER3, total AKT, S473 P-Akt, P-Erk1/2,
Erk1/2, (Cell Signaling); HER3, EGFR (Santa Cruz Biotech-

nology); HER2 (Neomarkers); Actin (Sigma); and the 4G10
phosphotyrosine antibody (Millipore).

Cell surface biotinylation
The Cell Surface Protein Isolation Kit (Pierce) was used

for biotinylation studies according to the manufacturer’s
protocol. After treatmentwith 20 mg/mL trastuzumab for 16

hours at 37�C, cells were incubated with cold acid wash
buffer (0.5 mol/L NaCl, 0.2 mol/L Na acetate, pH 3.0) for 6
minutes to remove bound trastuzumab. The cell mono-

layerswerewashed3�with ice-coldPBS (pH8.0)before the
addition of freshly prepared Sulfo-NHS-Biotin reagent (2
mmol/L; Pierce) for 30 minutes at 4�C. The reaction was

quenched with 100 mmol/L glycine in PBS and cells were
harvested in lysis buffer (plus protease and phosphatase
inhibitors) included in the kit. After sonication for 10

seconds and centrifugation at 14,000 rpm, protein concen-
tration in the supernatants was measured using the BCA
assay (Pierce). Equal amounts of protein extracts (500 mg)
were subjected to precipitation using immobilized Neutra-

vidin gel (Pierce); eluates were next subjected to SDS-PAGE
and HER2 immunoblot analysis.

In vitro kinase assays
Five hundred micrograms of total protein from cells was

precipitated with an HER2 antibody overnight at 4�C.

Precipitates were subjected to an in vitro kinase assay as
described (33). Briefly, precipitates were washed twice with
NP-40 lysis buffer followed by 1 washes with kinase buffer
(20mmol/LHEPES, pH7.5, 10mmol/LMgCl2, 10mmol/L

MnCl2, 1mmol/L dithiothreitol, 0.1mmol/LNa3VO4). The
immune complexes were next divided on ice into 2 equal
aliquots and ATP (final concentration, 0.1 mmol/L) was

added to one of the kinase reactions, whichwere carried out

for 5minutes at 30�C and terminated by adding 5� loading

buffer followed by boiling for 3 minutes. Kinase reaction
products were then separated on a 7.5% SDS-PAGE gel and
subjected to immunoblot analysis.

Real-time quantitative PCR
RNA isolation and real-time quantitative PCR (RT-PCR)

were carried out as described (34, 35). Primer sequences for

ErbB ligands are as follows: Heregulin (HRG): forward 50-
TGGCTGACAGCAGGACTAAC-30, reverse 50-CTGGCCTGG-
ATTTCTTC-30; EGF: forward 50-AGCTAACCCATTATGGCAA-

CA-30, reverse50-AGTTTTCACTGAGTCAGCTCCAT-30; TGFa:
forward 50-GGACAGCACTGCCAGAGA-30, reverse 50-CAGG-
TGATTACAGGCCAAGTAG-30; amphiregulin (AREG): for-

ward 50-ATATCACATTGGAGTCACTGCCCA-30, reverse 50-
GGGTCCATTGTCTTATGATCCAC-30; HB-EGF: forward 50-
GAAAGACTTCCATCTAGTCACAAAGA-30, reverse 50-GGGA-
GGCCCAATCCTAGA-30; epiregulin (EREG): forward 50-

TGCATGCAATTTAAAGTAACTTATTTGACTA-30, reverse 50-
ATCTTAAGGTACACAATTATCAAAGCTGA-30; and betacellu-
lin (BTC): forward 50-TGCCCCAAGCAATACAAGC-30, reve-

rse 50-CGTCTGCTCGGCCACC-30.

HER2T798M sequencing

Exons 19-20 of HER2 were amplified from reverse-tran-
scribed RNA isolated from BT474T798M using the primer
pair forward 50-GTAGGATCCAGCCCACGCTC-30 and reve-

rse 50-CTAGACACCACTCCACCCAG-30. The RT-PCR prod-
uct was cloned into the pCR Blunt vector (Invitrogen). A
total of 96 colonies were picked to inoculate individual
cultures in 96-well blocks, which were then pooled into 12

groups of 8 individual clones. These 12 pools were screened
for the presence of HER2T798M by direct (Sanger) sequenc-
ing. Individual plasmids from positive pools were rese-

quenced to determine the allelic frequency of HER2T798M.

Xenograft studies

Mouse experiments were approved by the Vanderbilt
Institutional Animal Care and Use Committee. Mice were
housed in the Vanderbilt Animal Care Facility. A 17b-

estradiol pellet (Innovative Research of America) was
injected subcutaneously in the dorsum of 5- to 6-week-old
athymic female mice (Harlan Sprague-Dawley) the day
before tumor cell injection. BT474 cells (5 � 106) mixed

1:1 with Matrigel (BD Biosciences) were injected s.c. in the
right flank of each mouse. Tumor diameters were measured
with calipers twice per week and volume in mm3 calculated

by the formula volume¼width2
� length/2. When tumors

reached a volume �200 mm3, mice were treated for 4 to 5
weeks with the following, either alone or in combination:

trastuzumab 30 mg/kg twice per week intraperitoneally (i.
p.), lapatinib 100 mg/kg daily via orogastric gavage, and
cetuximab 1 mg twice per week i.p.

Immunohistochemistry
Tumors were harvested at the end of treatment (after 4 to

5 weeks), fixed in formalin, and paraffin embedded. Tumor

sections (5 mm) were stained with a S473 P-Akt antibody
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(Cell Signaling) and staining intensity was scored by an
expert pathologist (M.V. Estrada) blinded to treatment
groups. Intensity of cytoplasmic staining was scored from

0 to 3þ, in 5 different fields at�400magnification for each
section. The average score from those 5 fields was then used
to calculate anH score by the following formula: 3� (% of
3þ cells) þ 2 � (% of 2þ cells) þ 1 � (% of 1þ cells). The

mean H scores � SEM for each treatment group were
compared by ANOVA.

Results

T798M mutation in HER2 confers resistance to HER2
antagonists in HER2-amplified breast cancer cells

BT474 cells were stably transduced with a retroviral
vector encoding either HER2T798M or GFP. Expression of
the T798M mutant isoform increased the IC50 to lapati-

nib by 10-fold compared with GFP-expressing cells
(Fig. 1A). Treatment with 1 mmol/L lapatinib blocked
phosphorylation of HER2, HER3, AKT, and Erk1/2 in

BT474GFP but not in BT474T798M cells (Fig. 1B). Presence
of the mutation also resulted in continued association of
HER3 with the p85 regulatory subunit of PI3K in the
presence of lapatinib (Fig. 1C). Lapatinib or trastuzumab

inhibited growth of BT474GFP cells, but BT474T798M cells
were resistant to both inhibitors (Fig. 1D). Treatment
with trastuzumab inhibited AKT phosphorylation in

BT474GFP but not in BT474T798M cells (Fig. 1E). Trastu-
zumab binds to domain IV of HER2 (36) and induces
receptor internalization and downregulation from the

cell surface, thus attenuating downstream signal trans-
duction (37). As trastuzumab did not inhibit down-
stream signaling in cells expressing T798M (Fig. 1E), we
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Figure 1. Cells expressing

HER2
T798M are resistant to lapatinib

and trastuzumab. A, BT474GFP and

BT474T798M cells were treated with

increasing concentrations of

lapatinib for 5 days.MTT assaywas

conducted at the end of treatment

and dose inhibition curves

produced by Graphpad Prism

software. IC50 values were

calculated according to the formula

Y ¼ 100/[1 þ 10(X � logIC50)]. B,

BT474GFP and BT474T798M cells

were treated with increasing

concentrations of lapatinib for 3

hours. Protein extracts were

prepared and subjected to

immunoblot analyses with the

antibodies indicated on the left. C,

cells were treated with lapatinib for

3 hours, and protein extracts were

subjected to immunoprecipitation

with a p85 antibody. Immune

complexes associated with p85

were separated by SDS-PAGE

followed by immunoblot with the

indicated antibodies. D, cells were

treated with either 1 mmol/L

lapatinib or 20 mg/mL trastuzumab

for 9 days. Crystal violet assays

were conducted on days 6 and 9,

and images captured using the Li-

Cor Odyssey System. E, cells were

treatedwith 1mmol/L lapatinib or 20

mg/mL trastuzumab for 3 hours.

Protein extracts were prepared and

subjected to immunoblot analyses

withantibodies indicatedon the left.

F, cells were treated with 20 mg/mL

trastuzumabovernightand thencell

surface proteins were biotinylated

as described in Methods.

Biotinylatedproteinswerecaptured

with Neutravidin gel and analyzed

by immunoblot with a HER2

antibody. Bottom, HER2 and actin

immunoblots of whole-cell lysates

to control for gel loading.
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investigated whether this mutation would impair trastu-

zumab-induced receptor internalization. Cell surface
biotinylation followed by precipitation of labeled pro-
teins with neutravidin showed that trastuzumab marked-

ly downregulated cell surface HER2 in both BT474GFP

and BT474T798M cells (Fig. 1F).
We next examined whether the T798Mmutant allele was

required for growth and survival of mutant-expressing cells

by using the covalent irreversible HER2/EGFR small mol-
ecule inhibitor BIBW2992 (afatinib). Afatinib has been
shown to bind to and inhibit the EGFR T790M gatekeeper

mutant (38). Treatment with BIBW2992 but not with
lapatinib eliminated phosphorylation of HER2 and EGFR
as measured with site-specific receptor antibodies (Fig. 2A)

and potently inhibited growth of both BT474GFP and
BT474T798M cells (Fig. 2B). BIBW2992 also disrupted the
association of p85 with HER3 and inhibited P-AKT levels in
both cell lines (Fig. 2C). Similar results were observed with

treatment with the pan-ErbB irreversible inhibitor CI-1033
(39), which inhibited HER2 phosphorylation and growth
of both BT474GFP and BT474T798M cells (Supplementary

Fig. S1). These results suggest that HER2T798M-expressing
cells rely on themutant allele for activation of the PI3K/AKT
pathway and their survival.

HER2T798M has increased autocatalytic activity

compared to wild-type HER2
Expression of T798M resulted in increased HER3 phos-

phorylation and its association with the p85 subunit of PI3K
(Supplementary Fig. S2), suggesting that the mutant HER2

might be catalytically more active than wild-type HER2. To

examine this possible gain of function, we stably expressed

HER2WT or HER2T798M in MCF10A human mammary epi-
thelial cells that normally express low levels ofHER2. Expres-
sion of both HER2WT and HER2T798M resulted in increased

phosphorylation of HER2, HER3, AKT and ERK1/2 com-
pared to controls (Fig. 3A). Treatment with lapatinib inhib-
ited pHER2 and pHER3 as well as growth in 3-dimensional
(3D)Matrigel ofMCF10AWTbut notMCF10AT798M cells (Fig.

3B and C). In addition, MCF10AT798M acini were larger and
more invasive than MCF10AWT acini and proliferated faster
than MCF10AWT cells (Fig. 3D) in both full-serum and

serum-free conditions, further supporting a gain of HER2
function conferred by themutant allele. Finally, to test HER2
kinase activity, HER2WT and HER2T798M were immunopre-

cipitated fromboth cell types and the pull-downswere tested
in an in vitro kinase reaction (Fig. 3E). Immunoprecipitates
from parental MCF10A were used as controls. HER2T798M

showed markedly higher tyrosine phosphorylation than

HER2WT, suggesting that themutant allelehashigher catalytic
activity (Fig. 3E).

HER2T798M expressed at low frequency is sufficient to
confer resistance

It has been shown that a very low allele frequency of the
EGFRT790M gatekeeper mutation is enough to confer resis-
tance to the EGFR-TKI gefitinib (40). Using dilutional

cloning, we found that approximately 3.1% of HER2 alleles
contain T798M in lapatinib-resistant BT474T798M cells
(Supplementary Fig. S3). This is consistent with earlier
reports which showed that T790M mutation in EGFR can

render cells resistant to gefitinib with an allele frequency of
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3.3% (40). To support further that this low frequency of
expressionwas sufficient to confer resistance, we carried out

co-culture experiments wherein varying proportions of
BT474GFP (green) and BT474T798M cells (unlabeled) were
mixed and then subjected to selection with lapatinib. We

found that lapatinib-resistant acini emerge when as low as
5% of the total cell population is BT474T798M (Supplemen-
tary Fig. S4). In this experiment, expansion of the mutant

population of cells was indicated by loss of the GFP fluo-
rescence from the resistant acini.

HER2T798M-expressing cells rely on HER3-PI3K for

survival
In HER2 gene–amplified breast cancer cells, HER2 potent-

ly activates the PI3K prosurvival pathway mainly by dimer-

izing with and phosphorylating the HER3 coreceptor (41,

42). To determine whether cells bearing the T798M mutant
remain dependent on PI3K/AKT, we treated BT474GFP and

BT474T798M cells with the pan-PI3K inhibitor BKM120 (43).
Treatment with BKM120 blocked phosphorylation of AKT in
S473 (Fig. 4A) and inhibited growth of both BT474GFP and

BT474T798M cells (Fig. 4B and C). Amplified HER2 signaling
also hyperactivates the RAS/MEK/ERK pathway (44). Treat-
ment with the MEK1/2 inhibitor CI-1040 (45) blocked

phosphorylation of ERK1/2 in both cell types (Fig. 4A) but
did not inhibit their growth (Fig. 4B and C). These data
suggest that expression of HER2T798M does not dispense with
the dependence of HER2-overexpressing cells on PI3K. We

next examined whether treatment with a second pan-PI3K
inhibitor, XL-147 (46), would overcome resistance to tras-
tuzumab of cells expressing HER2T798M. The combination of

trastuzumab and XL-147 was more potent than either drug
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alone at inhibiting BT474T798M cell growth (Fig. 4D). Immu-

noblot analyses confirmed that XL-147 inhibited S473 P-AKT
in both BT474GFP and BT474T798M cells (Fig. 4E). Because
HER3 is the major activator of PI3K in HER2-dependent
cells, we next tested the effects of HER3 inhibition. RNA

interference-induced knockdown of HER3 resulted in growth
inhibition of both BT474GFP and BT474T798M cells (Supple-
mentary Fig. S5A). Furthermore, knockdown of HER3 using

an HER3-specific locked nucleic acid (LNA) antisense oligo-
nucleotide (30) markedly reduced S473 P-AKT in
BT474T798M cells (Supplementary Fig. S5B). These results

suggest BT474T798M cells remain dependent on the HER3-
PI3K axis for survival.

BT474T798M cells overexpress EGFR ligands and
combined blockade of EGFR and HER2 inhibits their
growth

We speculated that another explanation for both the
increased intracellular signaling generated by HER2T798M

(Figs. 1C and 3B; Supplementary Fig. S2) and the acquired

resistance to trastuzumab would be enhanced activation of
HER2 by ligand-induced ErbB coreceptors. Therefore, we
carried out quantitative PCR with mRNA isolated from
BT474GFP and BT474T798M cells using primers specific for

the ErbB receptor ligands heregulin, EGF, TGFa, amphir-
egulin, HB-EGF, epiregulin, and betacellulin. BT474T798M

cells expressed >2-fold higher levels of the EGFR ligands

EGF, TGFa, amphiregulin, and HB-EGF compared with
BT474GFP cells (Fig. 5A). Consistent with enhanced ErbB
ligand production, HER2 antibody pull-downs contained

moreHER3 andEGFR inBT474T798M than in BT474GFP cells
in the absence of exogenous TGFa (Fig. 5B and C). If
overexpression of EGFR ligands is causal to the resistance
to HER2 inhibitors, we proposed that blockade of ligand

binding with the EGFR antibody cetuximab should over-
come resistance to lapatinib and trastuzumab. However,
treatment of BT474T798M cells with cetuximab did not add

to the modest growth inhibition by lapatinib, although
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EGFR phosphorylation was inhibited. In addition, P-HER2,

P-HER3, P-AKT, and P-Erk1/2 were maintained following
treatment with this combination (Fig. 5D and E). We
speculate that this activation reflects EGFR-independent

HER2 signaling, which is maintained because of the inabil-
ity of lapatinib to bind HER2T798M with high affinity and
inhibit its kinase activity.

In 3DMatrigel, theHER2T798Mmutant–expressing cells

were resistant to single-agent cetuximab or trastuzumab.
However, the combination of trastuzumab and cetuximab
blocked BT474T798M cell growth (Fig. 5F andG). Consistent

with the growth-inhibitory effect of the combination,
immunoblot analysis showed that treatment with both
antibodies markedly inhibited S473 P-AKT (Fig. 5H). To

test the effect of the combination in vivo, we injected
BT474T798M cells into athymic nudemice and treated estab-
lished tumors with trastuzumab, cetuximab, or the combi-
nation for 5weeks. Trastuzumabor cetuximab alonehadno

effect on tumor growth. However, treatment with both
antibodies resulted in complete response in 3 of 7 (43%)
mice (Fig. 5I). Immunohistochemical analysis of tumors

after about 5 weeks of treatment showed that cetuximab

alone or in combination with trastuzumab resulted in a
slight decrease in cytoplasmic P-Akt intensity (Supplemen-
tary Fig. S6). These observations suggest that dual inhibition

of HER2 and EGFR limits the growth of trastuzumab-resis-
tant cells in tumors bearing HER2T798M.

Finally, we hypothesized that as lapatinib also inhibits the
EGFR tyrosine kinase, BT474T798M cells should be sensitive to

dual HER2 blockade with trastuzumab and lapatinib. In this
combination, trastuzumab should partially downregulate
mutant HER2 and lapatinib should inhibit transactivation

of HER2 (and HER3) by ligand-induced EGFR. Indeed, the
combination of trastuzumab and lapatinib inhibited
BT474T798M cell growth in 3DMatrigel even though the cells

were resistant to each drug alone (Fig. 6A and B). Treatment
with the combination also inhibited Y1068-pEGFR and
Y1197-pHER3. Treatment with trastuzumab had no effect,
whereas lapatinib modestly inhibited HER2/HER3 hetero-

dimers. However, treatment with both inhibitors markedly
reduced HER2/HER3 heterodimers potentially explaining
the inhibition of S473 P-AKT (Fig. 6C). Furthermore,
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treatment with both inhibitors but not each drug alone

induced regression of BT474T798M xenografts established in
athymic mice (Fig. 6D). There was a modest reduction in
S473 P-Akt levels as measured by immunohistochemistry

(IHC) in tumors in all treatment arms at the endof 4weeksof
therapy (Supplementary Fig. S7). These results suggest that
even though HER2T798M confers resistance to lapatinib or
trastuzumabwhenusedas single agents, simultaneousblock-

ade of HER2 and EGFR with both of these inhibitors is
effective against HER2-overexpressing breast cancer cells
bearing HER2T798M alleles.

Discussion

In this report, we studied cellular and biochemical effects
of the gatekeeper T798M mutation in the HER2 kinase
domain inbreast cancer cells. Expressionof T798Mconferred

resistance to both lapatinib and trastuzumab. As the T790M
gatekeeper mutation in EGFR has increased affinity for ATP
(47), we speculate the corresponding T798M mutation in

HER2 may similarly stabilize HER2 in an active conforma-
tion (26). Consistent with this, we observed that HER2T798M

has increased catalytic activity compared to HER2WT. In

addition, structural modeling of T798M suggests that the
methionine substitution at T798 sterically inhibits drug
binding and/or further destabilizes the inactive conforma-

tion of HER2. As lapatinib binds preferentially the inactive
confirmation of HER2, this further contributes to drug resis-
tance (24). Thismay also explain themarked shift in the IC50

of lapatinib against HER2T798M cells.

Trastuzumab is unable to block transactivation of HER2
by ligand-induced ErbB coreceptors (48). Exogenous and
endogenous ligands of EGFR andHER3have been shown to

rescue from the growth-inhibitory effect of the antibody
(9, 35, 49). Furthermore, HER2þ xenografts selected in vivo

for acquired resistance to trastuzumab exhibit higher levels

of P-EGFR and EGFR/HER2 heterodimers as well as over-
expression of EGFR, TGFa, HB-EGF, and heregulin RNAs
compared with parental trastuzumab-sensitive tumors

(50). Finally, expression of drug-resistant mutants of EGFR
(38) and HER2 (33, 51) also results in overproduction of
ErbB receptor ligands. Thus, we examined expression of
ErbB receptor ligands in cells expressing the HER2 mutant.

BT474T798M cells overexpressed EGF, TGFa, amphiregulin,
and HB-EGF mRNAs and exhibited higher levels of HER2-
containing heterodimers compared toBT474GFP cells. Addi-

tionof cetuximab, an antibody that blocks ligandbinding to
EGFR, overcame the resistance to trastuzumab (Fig. 5),
suggesting that ligand overexpression was causal to this

resistance. These data suggest that although HER2T798M is
intrinsically sensitive to trastuzumab-induced downregula-
tion similar to HER2WT (Fig. 1F), its expression increases
ligand-induced HER2-containing heterodimers (Fig. 5B

and C), potentially explaining how T798M contributes to
trastuzumab resistance. Further studies are required to
determine themechanisms bywhich amplification ofHER2

signaling results in enhanced production of ErbB receptor
ligands.

The HER2T798M kinase was exquisitely sensitive to submi-

cromolar concentrations of BIBW2992 (afatinib). This is an
irreversible small-molecule inhibitor that covalently binds
Cys805 and Cys773 in the ATP pocket of HER2 and EGFR,

respectively, and potently inhibits the receptors’ kinase activ-
ity (52). Afatinib is also effective against the analogous drug-
resistant T790M mutation in EGFR and has shown clinical
activity in lung cancers harboring this mutation (53). Cells

expressing HER2T798M were also sensitive to HER3 knock-
down and to 2 pan-PI3K inhibitors currently in clinical
development. These results suggest that cells expressing the

mutant continue to rely on the HER2/HER3/PI3K axis for
growthand survival. Therefore, afatinibandother irreversible
HER2TKIs,HER3 antibodies, PI3K inhibitors, and drugs that

disrupt ligand-induced HER2-HER3 dimers (i.e., pertuzu-
mab) represent clinical approaches and combinations cur-
rentlyused inpatientswithHER2-overexpressingcancers that
may prevent the acquisition or the effects of HER2T798M.

Mutations inHER2arepresent inbreast tumors,but, toour
knowledge, with very few exceptions, they have all been
reported in breast cancers without HER2 gene amplification

(23, 27, 52). One possibility is that allelic dilution may
render it difficult to identify this drug resistant mutant by
conventional direct sequencing in cancers with HER2 gene

amplification. It is also possible that thismutantmay require
enrichment after treatment of a clinically sensitive tumor
with lapatinib, analogous to the enrichment of imatinib-

resistant gatekeeper mutants in BCR-ABL in patients with
CML (14). To detect low-frequency mutations, direct
sequencing will need to be combined with methodologies
which are more sensitive to detect rare mutations, especially

in highly amplified genes such as HER2. This has been
observed in lung cancer, where use of SURVEYOR but not
Sanger sequencing (40) detected the EGFR T790Mmutation

in gefitinib-resistant primary lung tumors. This suggests next-
generation massively parallel sequencing that can provide
deep gene coverage may be required to detect HER2 muta-

tions in patients with HER2 gene–amplified breast cancer.
This is also consistent with our findings that a low frequency
of expression of the mutant allele (�3%) was sufficient to

confer drug resistance. Finally, sequencing efforts to date
have focused on pretreatment samples. We speculate that
many resistance-associated mutations are acquired (or
enriched from a small and undetectable pre-existing popu-

lation). As such, they may only be detected following treat-
ment and progression of clinically resistant disease.
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