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Universal extra dimension (UED) models tend to favor a distinctively heavier Higgs mass than in the

standard model and its supersymmetric extensions when the Kaluza-Klein (KK) scale is not much higher

than the electroweak one, which we call the weak scale UED, in order to cancel the KK-top contributions

to the T parameter. Such a heavy Higgs, whose production through the gluon fusion process is enhanced

by the KK-top loops, is a fairly model independent prediction of the weak scale UED models regardless

of the brane-localized mass structure at the ultraviolet cutoff scale. We study its cleanest possible

signature, the Higgs decay into a Z boson pair and subsequently into four electrons and/or muons, in

which all the four-momenta of the final states can be measured and both the Z boson masses can be

checked. We have studied the Higgs mass, 500 GeV (and also 700 GeV with
ffiffiffi
s

p ¼ 14 TeV), and

have found that we can observe significant resonance with the integrated luminosity 10 fb�1 for

six-dimensional UED models.

DOI: 10.1103/PhysRevD.85.035026 PACS numbers: 14.80.Ec, 04.50.Cd, 11.10.Kk, 14.80.Rt

I. INTRODUCTION

The universal extra dimension (UED) scenario [1], in

which all the standard model (SM) fields propagate in the

bulk of compactified extra dimension(s), is an attractive

possibility whose simplest five-dimensional realization on

orbifold S1=Z2, the minimal UED model (mUED), may

account for the existence of dark matter as the lightest

Kaluza-Klein particle (LKP) [2] and can give a loose gauge

coupling unification at around 30 TeV [3]. See also

Refs. [4,5] for review on mUED. For the mUED, the latest

analysis including the effects from the second Kaluza-

Klein (KK) resonances gives the preferred KK scale at

around MKK � 1:3 TeV [6]. As is mentioned in [2,6],

this result strongly depends on the brane-localized mass

structure, which is assumed to be vanishing at the UV

cutoff scale [7] in mUED.

One of the most important signatures to establish the

model would be the direct search of KK resonances at the

CERN Large Hadron Collider (LHC). See Refs. [8–14] for

mUED and Refs. [15–21] for 6D UED models. We note

that some of them also pertain to the International Linear

Collider (ILC); see also Refs. [22–27]. The LHC already

puts a lower bound on the KK scale for mUED as MKK *

500 GeV at the 95% C.L. from anMT2 analysis of cascade

decay of the first KK particles into the LKP [14,28]. It is

noted that bounds on mUED [29] and T2=Z4 UED [30]

from b ! s� processes claim MKK * 600 and 650 GeV,

respectively. Again, all the above bounds strongly depend

on the KK mass splitting and flavor mixing patterns and

hence on the boundary mass structure.1 In particular, we

cannot see a decay product unless there is enough mass

splitting among the first KK modes so that it becomes

sufficiently energetic. In this paper, we present a comple-

mentary signal that is insensitive to such detailed boundary

structure.

In the SM, the electroweak data constrain the Higgs

mass to be MH & 170 GeV at the 95% C.L.; see, e.g.,

[32,33]. On the contrary, mUED prefer heavier Higgs

when the KK scale is not much higher than the electroweak

scale vEW ’ 246 GeV, namely, the KK scale should be

MKK * 800 GeV (300 GeV & MKK & 400 GeV) at the

95% C.L. for MH ¼ 115ð700 GeVÞ [34–36]. We note

that this is a fairly model independent feature of a general

UED model since KK-top modes always contribute posi-

tively to the T parameter and such an effect requires a

heavy Higgs in order to cancel these KK-top contributions

by the ordinary negative logMH dependence. In this

paper, we call such a natural UED model without a big

mass splitting among electroweak, Higgs and KK scales:

MH�MKK�Oð102GeVÞ, the weak scale UED model.

Concretely, we will pick up the cases: MH ¼ 330, 500,
and 700 GeV. To summarize, the existence of a heavy

Higgs is a model independent prediction of the weak scale
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1A 95% C.L. bound on the KK scale MKK > 961 GeV is put
on a ‘‘UED’’ model, assuming the existence of large additional
extra dimensions compactified with a radius of order eV�1, in
which SM fields cannot propagate, so that the LKP decays into
KK gravitons [31]. In this paper, we do not assume such addi-
tional large extra dimensions.
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UED models in contrast to the relic abundance of dark

matter and the cascade decay signature of the KK particles

that are dependent on the detailed boundary mass structure

at the UV cutoff scale of the higher-dimensional gauge

theory.

In five- and six-dimensional UED models, the Higgs

production cross section via the gluon fusion process is

enhanced by the KK-top loops [37–39]. In this paper, we

analyze its cleanest possible signature, the Higgs decay,

into a Z boson pair and subsequently into four electrons

and/or muons, in which all the four-momenta of the final

states can be measured and both the Z boson masses can be

checked.

In Sec. II, we review the relevant part of all the known

5D and 6D UED models to the Higgs production process

via the gluon fusion through the KK-top loops. Considered

models are the 5D mUED model on S1=Z2 [1], the

Dirichlet Higgs (DH) model on an interval [40,41], the

6D T2-based models on T2=Z2 [1], T2=ðZ2 � Z0
2Þ [42],

T2=Z4 [43,44], RP
2 [45], and the 6D S2-based models on

the projective sphere (PS) [46], S2 (see Sect. II C 2), S2=Z2

[47].2 In Sec. III, we present the concrete computation of

the process. The cross sections for the DH, T2=Z2,

T2=ðZ2 � Z0
2Þ, RP2, and S2 UED models are newly ob-

tained. We also review the estimation of the UV cutoff

scale in the T2-based geometry [48] and extend it to the

S2-based one. In Sec. IV, we show our numerical results.

The last section is for summary and discussions. In

Appendix A, we present the relevant Feynman rules for

our computation in the DH model. In Appendix B we

explain our estimation of the UV cutoff scale for 6D

UED models, based on the renormalization group equation

(RGE) analysis in the renormalizable KK picture. In

Appendix C, we review the way to take into account the

width in the amplitude and justify our approximation.

II. REVIEW ON KNOWN 5D AND 6D

UED MODELS

In this section, we give a brief review on various UED

models. Readers who are not interested in the details of

these models may skip this section. In the first part of this

section, we briefly review the 5D minimal UED model on

S1=Z2 [1] and Dirichlet Higgs model on an interval

[40,41]. The remaining of the section is devoted to an

overview of various types of 6D UED models.

A. 5D UED models

1. Minimal UED model on S1=Z2

First we review the 5D UED model [1]. The matter

contents of the model are the same as those of the SM,

but they are living in the bulk of flat five-dimensional

space, compactified on the orbifold S1=Z2. The action S
is written down as

S¼
Z

d4x
Z �R

��R
dy½Lbulkþ�ðyÞL0þ�ðy��RÞL�R�: (1)

Usually when one says mUED model, it is implied that all

the boundary masses are zero at the UV cutoff scale and are

generated through radiative corrections [7]. Hereafter,

when we say mUED model, we do not assume any bound-

ary mass structure and concentrate on the signal that is

independent of it. In particular, we do not include the

constraints from the direct KK search [14,28] and from

the relic abundance of the LKP [6] that are dependent on

the KK mass splitting pattern.

The Z2 twist conditions on the bulk SM fields are

indicated as

B�ðx;�yÞ¼B�ðx;yÞ; B5ðx;�yÞ¼�B5ðx;yÞ;
W �ðx;�yÞ¼W �ðx;yÞ; W 5ðx;�yÞ¼�W 5ðx;yÞ;
G�ðx;�yÞ¼G�ðx;yÞ; G5ðx;�yÞ¼�G5ðx;yÞ;

(2)

Lðx;�yÞ ¼ �5Lðx; yÞ; Eðx;�yÞ ¼ ��5Eðx; yÞ;
Qðx;�yÞ ¼ �5Qðx; yÞ; Uðx;�yÞ ¼ ��5Uðx; yÞ;

Dðx;�yÞ ¼ ��5Dðx; yÞ;
(3)

and

�ðx;�yÞ ¼ �ðx; yÞ; (4)

where x and yð¼ x5Þ denote four- and extra-dimensional

coordinates, respectively.3 We can see that the wanted zero

modes remain after the twist (2)–(4). There are fixed points

of the Z2 orbifolding at y ¼ 0; �R. If the boundary

Lagrangians at y ¼ 0; �R are equal at the UV cutoff scale,

there remains an additional accidental symmetry under the

reflection �R
2 � y ! �R

2 þ y, called the KK parity, which

ensures the stability of the LKP and makes it a dark matter

candidate.

The gauge and Yukawa interactions for the KK-top

quarks, which we need for later calculation, are

LKKtop¼�ig4s
X1

n¼1

�t1 �t2
� �ðnÞ��Gð0Þ

�

t1

t2

" #ðnÞ

� mt

vEW

Hð0Þ X
1

n¼1

�t1 �t2
� �ðnÞ

� sin2�ðnÞ ��5cos2�ðnÞ

�5cos2�ðnÞ sin2�ðnÞ

" #
t1

t2

" #ðnÞ
; (5)

where g4s¼gs=
ffiffiffiffiffiffiffiffiffiffi

2�R
p

is a dimensionless 4D SUð3ÞC cou-

pling constant and vEW ’ 246 GeV is the 4D Higgs

vacuum expectation value which appears after the KK
2In [46] the terminology ‘‘real projective plane’’ is employed

for the compactified space, the sphere with its antipodal points
being identified. In order to distinguish [46] from [45], we call
the former the projective sphere. 3We follow the metric and spinor conventions of [49].
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expansion; Gð0ÞðHð0ÞÞ shows the zero-mode gluon

(zero-mode physical Higgs); tðnÞ1 and tðnÞ2 are mass eigen-

states of nth KK-top quarks and each mixing angle �ðnÞ is

determined to be cos2�ðnÞ ¼ mðnÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þm2

ðnÞ
q

, sin2�ðnÞ ¼
mt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þm2

ðnÞ
q

, with mðnÞ :¼ n=R. Each KK state is

twofold degenerate and nth KK-top mass is

mt;ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þm2

ðnÞ

q

: (6)

KK tops give the dominant contribution to the gluon fusion

process due to their large Yukawa coupling to the Higgs.We

note that �5 is put in Eq. (5) merely to arrange the sign of

both the KK masses positive.

2. Dirichlet Higgs model

The Dirichlet Higgs model is defined on an interval:

0 � y � �R. The action S is as follows:

S¼
Z

d4x
Z �R

0
dy½Lbulkþ�ðyÞL0þ�ðy��RÞL�R�; (7)

where R is a radius of the extra spacial direction. The

structure of the bulk Lagrangian, covariant derivatives

and field strength of gauge bosons are the same as that of

the mUED model. There is no difference between the

matter contents of this model and those of the mUED

model. As in the mUED model, we neglect the possible

boundary interactions in this paper. The zero-mode sector

of the UED on an interval becomes the same as that

of the mUED on the orbifold S1=Z2 when we choose

the boundary conditions for the SM degrees of freedom

�N ¼ G�;W �;B�;LL; QL;ER; UR; DR to be Neumann

(at y ¼ 0 and �R):

@5�
Nðx; 0Þ ¼ @5�

Nðx; �RÞ ¼ 0; (8)

and for other non-SM modes �D¼B5;W 5;LR;QR;
EL;UL;DL to be Dirichlet:

�Dðx; 0Þ ¼ �Dðx; �RÞ ¼ 0: (9)

We note that mode functions with Dirichlet and Neumann

boundary conditions are not orthogonal to each other,

unlike the orbifolding on S1=Z2.
4 Kinetic terms turn out

to be diagonal even though the expansion is not orthonor-

mal. We can explicitly check that the nonorthogonality

does not lead to extra mixing for spinors even after the

electroweak symmetry breaking (EWSB) because nonor-

thogonal terms drop out due to the 4D chirality.

If we had put the Neumann condition on the Higgs, we

would get exactly the same zero-mode sector as in the

mUED model on S1=Z2. In the Drichlet Higgs model on

interval, the EWSB is caused by a nonzero Dirichlet

boundary condition on the SUð2ÞW-doublet Higgs field

[40,41]. We assume that the KK parity is respected by

the boundary conditions on the Higgs field too. The ad-

vantage of the Dirichlet EWSB is that we do not need to

assume the negative mass squared in the bulk Lagrangian

nor the quartic coupling which is a higher-dimensional

operator in 5D. Throughout this paper, we consider the

minimal case: V ð�Þ ¼ 0. We list the necessary Feynman

rules in Appendix A.

B. 6D UED models based on T
2

We consider a gauge theory on six-dimensional space-

time M4 � T2, which is a direct product of the four-

dimensional Minkowski spacetime M4 and two-torus T2:

0 � y � 2�Ry, 0 � z � 2�Rz. We assume that the two

radii of T2 have the same value R ¼ Ry ¼ Rz for

simplicity.5

When we use a 6D Weyl spinor for 6D UED model

construction, there is a constraint on the choice of 6D

chiralities. The origin of this constraint is the cancellation

of 6D gravitational and SUð2ÞL global anomalies that

cannot be removed by use of the Green-Schwarz mecha-

nism. This constraint requires the number of matter gen-

eration to be (multiples of) three [51]. A suitable choice of

the 6D chirality for a single matter generation is as follows:

ðQþ; U�; D�;Lþ; E�; N�Þ; (10)

where the � suffixes represent the 6D chirality of each

field. The number of d.o.f. of the 6DWeyl fermion is 4, the

same as that of a 4D Dirac fermion. Therefore, we can

construct 6D UED models on T2 following the orbifolding

method of the 5D UED model. We have several options for

the orbifolding to realize the SM chiral fermions in the

zero-mode sector of (10). Let us review them in turn. The

range for KK summation is listed in Table II.

1. Orbifold T2=Z2, T
2=ðZ2 � Z0

2Þ, and T2=Z4

We consider T2=Z2 [1], T2=ðZ2 � Z0
2Þ [42], and T2=Z4

[43,44] orbifolds. Let us write down the action,

S¼
Z

d4x
Z �R

��R
dy

Z �R

��R
dz

�

Lbulkðx;y;zÞþ
X

~y2 ~yi

�ð ~yiÞL ~yiðxÞ
�

;

(11)

where ~yi ¼ ðyi; ziÞ are orbifold fixed points. We note that

terms localized at the fixed points are induced at quantum

level even if we assume that they are vanishing at tree level

[7,52,53]. For the orbifold we consider in this paper, the

projections are

4In other words the KK mass-squared operator @25 is not
Hermitian in this setup, though the kinetic term is still positive
definite.

5In the T2=Z4 orbifold case, the condition Ry ¼ Rz is imposed
by the consistency with the Z4 discrete symmetry. See also [50]
for a realization of CP violation from the complex structure of
T2=Z4, which appears in 4D effective interactions after KK
decomposition.
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ðy; zÞ � ð�y;�zÞ for T2=Z2; (12)

ðy;zÞ�ð�y;zÞ and ðy;zÞ�ðy;�zÞ forT2=ðZ2�Z0
2Þ; (13)

ðy; zÞ � ð�z; yÞ for T2=Z4: (14)

See also Table. I. In each case, we can choose a suitable

boundary condition of 6D Weyl fermions, whose exact

forms are not discussed in this paper, to generate 4D

Weyl fermions at the zero modes.

The bulk Lagrangian, covariant derivatives, and field

strengths of gauge bosons are essentially the same as that

of the 5D mUED model except for the structure of spinors.

For 6D Weyl fermions, the kinetic and Yukawa terms are

Lkinetic ¼ �Qþ�
MDMQþ �U��

MDMU�

�D��
MDMD� � Lþ�

MDMLþ

� E��
MDME� � N��

MDMN�; (15)

LYukawa ¼ ��UU�ðQþ ��Þ � �DðQþ�ÞD�

� �EðLþ�ÞE� þ H:c:; (16)

where the contraction of SUð2Þ indices are understood.6

The resultant interactions relevant for our discussion are

LKK top ¼ �ig4s
X1

ðm;nÞ
�t1 �t2

� �ðm;nÞ��Gð0Þ
�

t1

t2

" #ðm;nÞ

� mt

vEW

Hð0Þ X
1

ðm;nÞ
�t1 �t2

� �ðm;nÞ

� sin2�ðm;nÞ ��5 cos2�ðm;nÞ

�5 cos2�ðm;nÞ sin2�ðm;nÞ

" #
t1

t2

" #ðm;nÞ
;

(17)

where g4s ¼ gs=ð2�RÞ is the dimensionless 4D SUð3ÞC
coupling constant and vEW ’ 246 GeV is the 4D Higgs

vacuum expectation value, Gð0ÞðHð0ÞÞ shows zero-mode

gluon (zero-mode physical Higgs), and tðm;nÞ
1 , tðm;nÞ

2 are

mass eigenstates of the ðm; nÞth KK-top quarks. Again,

we only consider the KK top-quark loops since contribu-

tions from other flavors are suppressed by the small

Yukawa coupling. Each mixing angle �ðm;nÞ is determined

to be cos2�ðm;nÞ ¼ mðm;nÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þm2

ðm;nÞ
q

, sin2�ðm;nÞ ¼
mt=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þm2

ðm;nÞ
q

. Each KK state is twofold degenerate

and the ðm; nÞth KK-top mass is

mt;ðm;nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þm2

ðm;nÞ

q

; (18)

with

mðm;nÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ n2
p

R
: (19)

It should be mentioned that the difference from the mUED

case appears only in the form of the KK mass and the

number of d.o.f. in each KK level when we consider the

gluon fusion process. We adoptmðnÞ as the yðzÞ-directional
KK index, whose parameter region is determined by the

way of the orbifolding. This information has a great influ-

ence on the enhancement of the Higgs production through

the gluon fusion.

2. Real projective plane ðRP2Þ
We can construct a UED model on a nonorientable

geometry: real projective plane (RP2) [45]. RP2 is defined

by two types of identifications: a� rotation r and a glide g:

r: ðy;zÞ�ð�y;�zÞ; g: ðy;zÞ�ðyþ�R;�zþ�RÞ: (20)

The system is invariant under each manipulation in

Eq. (20). Note that the shifts, y� yþ 2�R and z� zþ
2�R, can be obtained as different combinations of r and g,
respectively. Note also that no fixed point exists globally in

this background geometry.

Under r and g, Weyl fermions transforms as

r:��ðx;�y;�zÞ¼pr�r��ðx;y;zÞ; �r¼ i�5�6�7; (21)

g: ~��ðx;yþ�R;�zþ�RÞ¼pg�g��ðx;y;zÞ; �g¼�6�7;

(22)

where �7 is the 6D chirality operator and pr; pg (Z2

parities) can take the value �1. The ~�� is what we call

the ‘‘mirror’’ fermion. Equation (21) has the same form as

that of the T2=Z2 orbifold condition for 6D fermion. An

TABLE I. Fixed points which stem from each identification.

Type of orbifolding Identification Fixed points (yi; zi)

T2=Z2 ðy; zÞ � ð�y;�zÞ (0, 0), (�R; 0), (0; �R), (�R;�R)
T2=ðZ2 � Z0

2Þ ðy; zÞ � ð�y; zÞ and ðy; zÞ � ðy;�zÞ (0, 0), (�R; 0), (0; �R), (�R;�R)
T2=Z4 ðy; zÞ � ð�z; yÞ (0, 0), (�R;�R)

TABLE II. The range of the parameter (m; n) except the zero-
mode case ðm; nÞ ¼ ð0; 0Þ in each case of the orbifolding.

Type of orbifolding Range of ðm; nÞ
T2=Z2 mþ n 	 1, or m ¼ �n 	 1
T2=ðZ2 � Z0

2Þ 0 � m<1, 0 � n <1; ðm; nÞ � ð0; 0Þ
T2=Z4 1 � m<1, 0 � n <1 6We leave the neutrino sector untouched since it is irrelevant

for the Higgs signal considered in this paper.
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essential point of this model is that the condition (22) does

not generate a 4DWeyl fermion in the zero-mode sector. In

other words, the 6D chirality of both sides of

Eq. (22) are different from each other. This means

that we have to introduce new fermions ~�� which have

opposite 6D chirality and the same SM quantum number

compared to each corresponding field ��. Concretely,

mirror fermions,

Q�;Uþ;Dþ;L�; Eþ;N þ; (23)

are identified with fQþ; U�; D�;Lþ; E�; N�g, respec-

tively. The choice of 6D chiralities in Eq. (23) obeys the

condition for realizing the 6D anomaly cancellation which

we have argued before.

The bulk Lagrangian is the same as that of the T2-based

models using an orbifold, except for the existence of the

mirror fermions:

Lkinetic¼ 1
2½�Qþ�

MDMQþ�U��
MDMU��D��

MDMD�

�Lþ�
MDMLþ�E��

MDME��N��
MDMN�

�Q��
MDMQ��Uþ�

MDMUþ

�Dþ�
MDMDþ�L��

MDML�

�Eþ�
MDMEþ�N þ�

MDMN þ�; (24)

LYukawa¼ 1
2½��UU�ðQþ ��Þ��DðQþ�ÞD�

��EðLþ�ÞE���UUþðQ� ��Þ
��DðQ��ÞDþ��EðL��ÞEþþH:c:�; (25)

where we introduce the 1=2 factors for later convenience.

The neutrino sector is again left untouched as it is irrele-

vant for our discussion. By the use of Eq. (22), we can erase

all the mirror fermions and obtain the ordinary form of the

Lagrangian that is the same as the T2 cases. The form of the

� rotation r given in Eq. (21) is the same as that of the Z2

orbifolding in Eq. (12). Therefore, the interactions

of the RP2 model, needed to calculate the gluon fusion

process, take the same form as that of the T2=Z2 one given

in Eq. (17).

C. 6D UED models based on S
2

Let us review UED models based on the S2 compactifi-

cation. We span the extra dimension by the zenith and

azimuthal angles � and �, respectively. The two-sphere

S2 has a positive curvature and to stabilize the radius R, we
introduce an extra Uð1ÞX gauge field which has a

monopole-like classical configuration [54],

½Xc
�ðx�;�;�Þ�NS ¼ n

2gX
ðcos��1Þ; ðother componentsÞ¼0;

(26)

where the superscript c denotes the classical configuration,
gX is the 6D Uð1ÞX gauge coupling, the integer n is the

(negative) monopole charge, and the superscripts N and

S indicate that the field is given in north (involving the

� ¼ 0 point) and south (involving the � ¼ � point)

charts, respectively. The Uð1ÞX transition function from

the north to the south chart is given by

½XMðx�; �; �Þ�S ¼ ½XMðx�; �; �Þ�N þ 1

gX
@M�ðx�; �; �Þ;

(27)

with �ðx�;�;�Þ¼n�. Because of the monopole-like con-

figuration, the radius of S2 is stabilized spontaneously at

R2 ¼
�

n

2gXM
2



�
2
; (28)

where M
 is the 6D Planck scale.

We mention that any 6D field � on S2 is KK expanded

by use of the spin-weighted spherical harmonics sYjmð�;�Þ
as follows:

�ðx; �;�ÞNS ¼
X1

j¼jsj

Xj

m¼�j

	ðj;mÞðxÞfðj;mÞ
�

ð�;�ÞNS ;

fðj;mÞ
�

ð�;�ÞNS :¼ sYjmð�;�Þe�is�

R
;

(29)

where 	ðj;mÞ is the ðj; mÞth expanded 4D field, fðj;mÞ
�

is the

corresponding mode function, and s is the spin weight of

the field �. The spin-weighted spherical harmonics

sYjmð�;�Þ match the orthonormal condition as

Z 2�

0
d�

Z 1

�1
dcos�sYjmð�;�ÞsYj0m0ð�;�Þ¼�jj0�mm0 : (30)

A spin weight of a fermion is closely related to its Uð1ÞX
charge.Whenwe assignUð1ÞX charges of 6DWeyl fermions

�� as q�� , the corresponding spin weights of 4D Weyl

fermions fcþL
R
;c�L

R
g are given as follows in our convention:

sþL
R
¼ nq�þ � 1

2
; s�L

R
¼ nq�� � 1

2
: (31)

Note that if a 6DWeyl fermion takes a spin weight s ¼ 0, a
j ¼ 0 mode appears as a 4D Weyl fermion with vanishing

KK mass. This means that we can get chiral SM fermions

without orbifolding in the case of S2. When we take the

values,

ðsþR; sþL; s�R; s�LÞ ¼ ð0; 1; 1; 0Þ; (32)

we can create the same situation as in the T2-based models

discussed before. The spin weight of the 4D-vector compo-

nent of a 6D gauge boson is always s ¼ 0 and then there is a
zero-mode that can be identified as the SM gauge boson. On

the other hand, extra dimensional components of the 6D

gauge boson are expanded by the jsj ¼ 1 spin-weighted

spherical harmonics and have no zero mode.

In our configuration, any ðj;mÞth KK mode has the KK

mass:

mðj;mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðjþ 1Þ
p

R
: (33)
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An important point is that the form of the above KKmass is

independent of the index of m. This means that there are

2jþ 1 degenerate modes for each j. Note that the lightest

KK mode has the mass
ffiffiffi

2
p

=R.
As discussed above, the 4D-vector component of a 6D

gauge boson has a zero mode. This is the case for the extra

Uð1ÞX gauge boson too. Phenomenologically, the existence

of an extra Uð1Þ interaction, under which SM fields are

charged, is problematic [46]. In the following, let us see

how to get rid of this massless Uð1ÞX vector.

1. Projective sphere

We can construct a UED model compactified on the PS,

a sphere S2 with its antipodal points being identified by

ð�;�Þ � ð�� �;�þ �Þ [46]. In the UEDmodel based on

the PS, the 6D action takes a different form from that of the

6D orbifold UED models. One of the remarkable points of

this model is that there is no fixed point on the background

geometry PS. As in the RP2 model, we introduce mirror 6D

Weyl fermions:

Q�;Uþ;Dþ;L�; Eþ;N þ; (34)

which have opposite 6D chirality and opposite SM and

Uð1ÞX charges, compared to the fields fQþ; U�; D�;
Lþ; E�; N�g. Because of the existence of mirror fermions

the kinetic term takes the same form as in the RP2 model

(24) and the Yukawa interaction is modified to

L Yukawa ¼ 1
2½��UU�ðQþ ��Þ � �DðQþ�ÞD�

� �EðLþ�ÞE� � �

UUþðQ� ��Þ

� �

DðQ��ÞDþ � �


EðL��ÞEþ þ H:c:�:
(35)

Like the RP2 case, which we have discussed before, we

introduce the 1=2 factors for a later convenience. The

covariant derivatives in this model are given as

DM¼@Mþ igsG
a
MT

a
s þ igW a

MT
aþ igYBMY ðfor�Þ;

(36)

DM ¼ @M þ igsG
a
MT

a
s þ igW a

MT
a þ igYBMY

þ igXq�ðXc
M þXMÞ þ�M

ðfor Qþ; U�; D�;Lþ; E�; N�Þ; (37)

DM ¼ @M þ igsG
a
M½�Ta

s �T þ igW a
M½�Ta�T

þ igYBM½�Y� þ igXq�ðXc
M þXMÞ þ�M

ðfor Q�;Uþ;Dþ;L�; Eþ;N þÞ; (38)

where �M is the spin connection. The covariant derivative

of Higgs is the same as that in the S2=Z2 case, but there is a

difference between those of fermions and these mirror

fermions. We discuss these points shortly below.

As we mentioned before, the projective sphere is a

nonorientable manifold and has no fixed point. Let us

consider the 6D P and CP transformations. Under the

antipodal projection,

X�ðx; �� �;�þ �ÞNS ¼ XC
�ðx; �;�ÞSN;

X�ðx; �� �;�þ �ÞNS ¼ �XC
� ðx; �;�ÞSN;

fXc
�;X�gðx; �� �;�þ �ÞNS ¼ fðXc

�ÞC;XC
�gðx; �;�ÞSN;

(39)

where the superscript C denotes the 6D C transformation.

Recall that the superscript c denotes the classical configu-

ration. These conditions leave the monopole-like configu-

ration invariant under the antipodal identification and

projects out the unwanted Uð1ÞX 4D-vector zero mode.

In contrast, the identification of a SM gauge boson AðiÞ
M

should be done by another condition since we want the

corresponding 4D-vector zero mode, where i shows the

type of gauge group. We adopt the 6D P transformation

and those identifications are written as

AðiÞ
� ðx; �� �;�þ �ÞNS ¼ AðiÞ

� ðx; �;�ÞSN;
AðiÞ

� ðx; �� �;�þ �ÞNS ¼ �AðiÞ
� ðx; �;�ÞSN;

AðiÞ
� ðx; �� �;�þ �ÞNS ¼ AðiÞ

� ðx; �;�ÞSN;

(40)

where it is evident that the zero mode ofAðiÞ
� survives. We

also identify Higgs with the 6D P transformation to obtain

its zero mode:

�ðx; �� �;�þ �ÞNS ¼ �ðx; �;�ÞSN: (41)

Finally, we discuss the identification of 6D Weyl fermi-

ons. Since 6D Weyl fermions have a Uð1ÞX charge and

interact with the Uð1ÞX gauge boson, they should be iden-

tified by the 6D CP transformation. The specific form of

the 6D CP transformation, for example, in the case of U�,
is as follows:

Uþðx; �� �;�þ �ÞNS ¼ PUC
�ðx; �;�ÞSN; (42)

where the matter field U� is identified to the mirror Uþ.
We decide the forms of covariant derivatives (37) and (38)

on the criterion of invariance of the action under the

6D CP transformation. Using the identification conditions

(39)–(42), we can see that the mirror fermions drop out of

the action after the identifications and eventually we obtain

the usual type of UED model action. This can be inter-

preted such that all the modes of mirror fermions

fQ�;Uþ;Dþ;L�; Eþ;N þg are erased and no mode of

fQþ; U�; D�;Lþ; E�; N�g is projected out. The interac-

tion terms which we need for calculation in this model is

the same as those in Eq. (17). The only difference is the

number of degenerate top KK modes in each j level.

2. S2 UED with a Stueckelberg field (S2)

As a solution to the massless Uð1ÞX problem, we can

simply give a Stueckelberg mass [55,56] (see also [57,58]

for reviews) to the Uð1ÞX field. We can make the unwanted
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Uð1ÞX 4D-vector zero mode to be massive while preserving

the classical monopole structure in Eq. (26). This way, we

can formulate a UED model on S2 with no field identifi-

cation. Let us call this simple model the S2 UED model. In

the S2 UED model, the matter contents, bulk Lagrangian,

definition of field strengths, and covariant derivatives and

the configuration of the classical Uð1ÞX field are the same

as the PS model after removing the mirror fermions, except

for the Stueckelberg field part. In contrast to the S2=Z2

orbifold below, there is neither a fixed point nor a localized

Lagrangian anywhere on S2, as in the case of PS UED. The

d.o.f. of KK fermions has no difference between the S2

UED and PS one (after the antipodal projection). There is

no need for an additional computation; all we have to do is

to borrow the PS result as a whole when we are only

interested in the gluon fusion process.

3. S2=Z2 orbifold

Although the above S2 UED model with a Stueckelberg

Uð1ÞX mass is already phenomenologically viable, we may

further perform a Z2 orbifolding on it [47].7 On this orbi-

fold, the point ð�;�Þ is identified with ð�� �;��Þ. The
6D action S is as follows:

S ¼
Z

d4x
Z �

0
d�

Z 2�

0
d�

ffiffiffiffiffiffiffi�g
p �

Lbulkðx; y; zÞ þ �

�

�� �

2

�

� �ð�ÞLð�=2;0ÞðxÞ þ �

�

�� �

2

�

�ð�� �ÞLð�=2;�ÞðxÞ
�

;

(43)

where
ffiffiffiffiffiffiffi�g

p ¼ R2 sin�. This system has two fixed points of

the Z2 symmetry at ð�;�Þ ¼ ð�2 ; 0Þ; ð�2 ; �Þ and we describe
the localized terms with Lð�=2;0Þ, Lð�=2;�Þ, respectively.
Like the T2 case, we do not discuss those parts in this paper.

We can easily construct mode functions of S2=Z2

fðj;mÞ
s;t ð�;�Þ with spin weight s in both north and south

charts following the general prescription [59] as follows:

fðj;mÞ
s;t ð�;�ÞNS ¼

� 1
2R ½sYjmð�;�Þ þ ð�1Þj�s

sYj�mð�;�Þ�e�is� for t ¼ þ1
1
2R ½sYjmð�;�Þ � ð�1Þj�s

sYj�mð�;�Þ�e�is� for t ¼ �1;
(44)

where t ¼ �1 is the Z2 parity. These mode functions have

the property that fðj;mÞ
s;t¼�1ð�� �;��ÞNS ¼ �fðj;mÞ

s;t¼�1ð�;�ÞSN.
To realize the Z2 symmetry, we identify a field at ð�;�Þ in
the north chart with the same field at ð�� �;��Þ in the

south chart.

The range of the summation overm shrinks from ½�j; j�
to ½0; j� after the Z2 identification. Under the transforma-

tion of ð�;�Þ ! ð�;�þ �Þ, mode functions behave as

fðj;mÞ
s¼0;t¼þ1ð�;�þ�ÞNS ¼ð�1Þmfðj;mÞ

s¼0;t¼þ1ð�;�ÞNS ;
fðj;mÞ
s¼�1;t¼�1ð�;�þ�ÞNS ¼�ð�1Þmfðj;mÞ

s¼�1;t¼�1ð�;�ÞNS :
(45)

After some fields redefinition, we can find that each KK

field has a KK parity ð�1Þm, which is a remnant of the KK

angular momentum conservation.

We focus on the m ¼ 0 modes of each j level. When we

see the concrete forms of mode functions in m ¼ 0, which
are

fðj;m¼0Þ
s¼0;t¼þ1ð�;�ÞNS ¼ 1

2R
ð1þ ð�1ÞjÞ 0Yj0ð�;�Þ; (46)

fðj;m¼0Þ
s¼þ1;t¼�1ð�;�ÞNS ¼ 1

2R
ð1þð�1ÞjÞ 1Yj0ð�;�Þe�i�; (47)

fðj;m¼0Þ
s¼�1;t¼�1ð�;�ÞNS ¼ 1

2R
ð1þð�1ÞjÞ�1Yj0ð�;�Þe�i�; (48)

we find thatm ¼ 0modes appear only in the case of even j.
Then the degeneracy of KK masses is

jþ 1 for j: even; j for j: odd; (49)

since m runs from 0 to j. Again, this mode counting is the

only important point when computing the enhancement of

the Higgs production via gluon fusion process. We do not

discuss the form of interactions which we need for calcu-

lating the gluon fusion process because there is essentially

no difference from the T2 case (17).

III. HIGGS PRODUCTION AND DECAY INTO

FOUR LEPTONS IN UED MODELS

In the SM, the cross section for the leading order (LO)

one-loop Higgs production via the gluon fusion process

and its subsequent decay into a Z boson pair: gg ! H !
ZZ is given by [60]. The LO parton-level cross section

shown in Fig. 1 is


̂ SM
gg!H!ZZ¼

�2
4s

256�3

�
mZ

vEW

�
4
�

1þðŝ�2m2
ZÞ2

8m4
Z

�

� ŝ

ðŝ�M2
HÞ2þ�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�4m2
Z

ŝ

s

jIðŝÞj2; (50)

where mW , mZ, mt, andMH are, respectively, theW;Z, top
quark, and Higgs boson masses, �4s ¼ g24s=4� is the 4D

7This extra Z2 cannot project out the Uð1ÞX gauge field. In
[47], theUð1ÞX is assumed to be broken by an anomaly. Since we
need a classical configuration of the Uð1ÞX, it would be theo-
retically preferable to break it by a tiny Stueckelberg mass.
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QCD gauge coupling, ŝ is the center-of-mass-energy-

squared of the scattering partons; we employ the normal-

ization for the Higgs vacuum expectation value: v2
EW¼

1=
ffiffiffi

2
p

GF’ð246GeVÞ2, and the loop functions are defined as

Ið�Þ ¼ �2�þ �ð1� 4�Þ
Z 1

0

dx

x
ln

�
xðx� 1Þ

�
þ 1� i�

�

;

(51)

~Ið�Þ ¼ �
Z 1

0

dx

x
ln

�
xðx� 1Þ

�
þ 1� i�

�

: (52)

The explicit result of the integral is

Z 1

0

dx

x
ln

�
xðx� 1Þ

�
þ 1� i�

�

¼

8
>>><

>>>:

�2

�

arcsin 1ffiffiffiffi
4�

p
�
2

�

for � 	 1
4

�

1
2

�

ln1þ
ffiffiffiffiffiffiffiffiffi
1�4�

p

1�
ffiffiffiffiffiffiffiffiffi
1�4�

p � i�

�
2

�

for � < 1
4

�

:
(53)

We have also defined ~I for later use for the Dirichlet Higgs
model. In Eq. (50), we have taken into account the total

decay width of the Higgs in its propagator:

� ¼ MH�H: (54)

In the current analysis, we take into account theHiggs decay

intoW;Z and top-quark pairs, which are dominant whenwe

consider the heavy SM Higgs boson: MH 	 2mW . The

explicit form is shown in Eq. (C27) in Appendix C. Note

that we take into account only the top-quark loop in the SM

cross section (50), given by the diagram shown in Fig. 1,

since the Yukawa coupling to others are negligible com-

pared to the top one.We have also ignored the contributions

from the subleading box diagrams [61]. See Appendix C for

further discussion on how to take into account the width.

A. Gluon fusion process in UED models

In this paper, we consider the KK-top-loop contributions

to the gluon fusion process in several UED models,

namely, the 5D UED model on S1=Z2 (mUED) [1], DH

[40], 6D UED model on T2=Z2 [1], T2=Z4 [43,44],

T2=ðZ2 � Z0
2Þ [42], real projective plane (RP2) [45],

S2 ¼ Z2 [47], PS [46], and S2 with a Stueckelberg field

(S2). We have given a brief review on these models in the

previous section. The contribution from KK-top loops to

the gluon fusion process is analogous to that of the top loop

in the SM and the difference resides only in the loop

function. The relevant Feynman diagram is shown in

Figs. 2 and 3. The effective vertex, which is represented

by the lined blob in the diagram, includes the contributions

to the gluon fusion from the zero-mode top quark and the

KK-top quarks. Since the zero-mode sector of the UED

model regenerates the SM configuration, the result of the

former contribution is the same as that of the SM in

Eq. (50). The forms of the latter contribution will be shown

later. We note that the letter H in Figs. 2 and 3 shows the

zero-mode physical Higgs boson in all the cases except for

the DH model where H stands for the first KK Higgs.

For each model, we get the following result, where Jmodel

indicates the corresponding loop function:


̂ model
gg!H!ZZ ¼ �2

4s

256�3

�
mZ

vEW

�
4 1þ ðŝ� 2m2

ZÞ2
8m4

Z

� ŝ

ðŝ�M2
HÞ2 þ ðMH�HÞ2

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2
Z

ŝ

s

KjJmodelðŝÞj2; (55)

with

JmUEDðŝÞ ¼ I

�
m2

t

ŝ

�

þ 2
X1

n¼1

�
mt

mtðnÞ

�
2
I

�m2
tðnÞ
ŝ

�

; (56)

FIG. 1. Feynman diagram which describes the dominant con-

tribution to the gluon fusion Higgs production process and the

subsequent decay to 2Z. Gð0Þ and Zð0Þ are gluon and Z boson

zero modes, respectively.

FIG. 2. A schematic description of the dominant contribution

to the gluon fusion Higgs production process and the subsequent

decay to 2Z. The lined blob indicates the effective vertex.

FIG. 3. The effective vertex which describes the Higgs pro-

duction from the gluon fusion.
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JDHðŝÞ ¼
ffiffiffi

2
p

"1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
								
I

�
m2

t

ŝ

�

þ 2
X1

n¼1

�
mt

mtðnÞ

�
2
I

�m2
tðnÞ
ŝ

�								

2
þ
								
2
X1

n¼1

�
mt

mtðnÞ

�
2
~I

�m2
tðnÞ
ŝ

�								

2
;

v
u
u
t (57)

JT2=Z2
ðŝÞ ¼ JRP2ðŝÞ

¼ I

�
m2

t

ŝ

�

þ 2
X

mþn	1
or m¼�n	1

�
mt

mtðm;nÞ

�
2
I

�m2
tðm;nÞ
ŝ

�

; (58)

JT2=Z4
ðŝÞ ¼ I

�
m2

t

ŝ

�

þ 2
X

m	1;n	0

�
mt

mtðm;nÞ

�
2
I

�m2
tðm;nÞ
ŝ

�

; (59)

JT2=Z2�Z0
2
ðŝÞ¼ I

�
m2

t

ŝ

�

þ2
X

m	0;n	0;
ðm;nÞ�ð0;0Þ

�
mt

mtðm;nÞ

�
2
I

�m2
tðm;nÞ
ŝ

�

; (60)

JS2=Z2
ðŝÞ ¼ I

�
m2

t

ŝ

�

þ 2
Xjmax

j¼1

�
mt

mtðjÞ

�
2
nðjÞI

�m2
tðjÞ
ŝ

�

; (61)

JPSðŝÞ ¼ JS2ðŝÞ ¼ I

�
m2

t

ŝ

�

þ 2
Xjmax

j¼1

�
mt

mtðjÞ

�
2
ð2jþ 1ÞI

�m2
tðjÞ
ŝ

�

;

(62)

where the KK-top masses are given by

mtðnÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þ

n2

R2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þ n2M2

KK

q

; (63)

mtðm;nÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þ

m2þn2

R2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þðm2þn2ÞM2

KK

q

; (64)

mtðjÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þ

jðjþ 1Þ
R2

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þ

jðjþ 1ÞM2
KK

2

s

: (65)

Here the MKK is the first KK mass, which is written as

MKK ¼ 1

R
(66)

for the compactifications based on S1=Z2, interval, and T2

[namely, the mUED, DH, T2=Z2, RP2, T2=Z4, and

T2=ðZ2 � Z0
2Þ models] and is written as

MKK ¼
ffiffiffi

2
p

R
(67)

for the S2-based ones (namely, the S2=Z2, PS, and S2

models). The gluon fusion process for mUED in S1=Z2 is

first shown in Ref. [37] and for S2=Z2 in Ref. [38]. Also, it

has been calculated for T2=Z4 and PS in Ref. [39]. The

results for DH, T2=Z2, RP
2, T2=ðZ2 � Z0

2Þ, and S2 are

newly presented in this paper. The factor
ffiffiffi

2
p

"1 in

Eq. (57) is equal to 2
ffiffiffi

2
p

=�� 0:9. The origin of this

suppression factor is nonorthonormality of mode functions

on an interval. In the case of the S2-based compactification,

there are some degenerated states, the number of which is

described with nðjÞ on S2=Z2 and ð2jþ 1Þ on PS or S2 for
each KK index j. The specific form of nðjÞ for the orbifold
S2=Z2 in Eq. (61) is as follows:

nðjÞ ¼
�
jþ 1 for j: even
j for j: odd:

(68)

Several comments are in order.

(i) The origin of the factor 2 in front of each KK

summation is the fact there are both left-and right-

handed (namely, vectorlike) KK modes for each

chiral quark zero mode.

(ii) All the KK contributions are positive and hence

always enhance the Higgs production rate via the

gluon fusion process, except for the DH model in

which the zero-mode Higgs contribution is absent.

(iii) Each value of Yukawa couplings of KK quarks to

the Higgs is the same as that of the coupling

between the corresponding zero-mode fermion

and the Higgs. We only consider triangle loop

diagrams of the SM top quark and its KK excited

modes because their Yukawa coupling to the Higgs

is dominant compared to that of other fermions.

(iv) In each KK summation, infinite numbers of KK

modes contribute to the process in principle.

In 6D, these summations are divergent and a suit-

able scheme of regularization is required. jmax in

Eqs. (61) and (62) shows an upper bound of the

summation over the index j. Further discussion will
be shown in the following subsection.

(v) K in Eq. (55) is the so-called K factor, a phenome-

nological approximation in order to naively take

into account higher-order QCD corrections. One

may take K � 2 for Tevatron and K � 1:5–1:6 for

the LHC, respectively [32]. In the limit where the

KK loop is viewed as a contribution to the effective

Higgs-gluon-gluon coupling, the QCD corrections

to Higgs production are very similar between the

SM and the new physics contributions. The reason is

that the Higgs-gluon-gluon coupling always has the

same structure, and only its coefficient changes.

This is discussed in detail, e.g., in Ref. [62] in the

context of supersymmetry (but it works the same

way in UED as in supersymmetry). Therefore, we

have included a K factor also for the new physics

terms as in Eq. (55).

(vi) When the compactification radius is too large,

namely, when the first KK W is lighter than half

the Higgs mass, the Higgs can decay into a pair of

KK particles and its decay width �H becomes
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broader. In this situation it becomes harder to find

the evidence of the Higgs boson and hence we

restrict ourselves within the region where the

Higgs mass is smaller than twice the first KK W
mass so that such a decay mode does not open up.

(vii) Although the one-loop gluon fusion process is the

dominant production channel of the Higgs, its

contribution to the Higgs total decay width is

smaller at least by 3 orders of magnitude compared

to the decay into a W pair in the case of the SM

with MH 	 300 GeV [32]. Even after the en-

hancement of Oð10Þ from KK-top contributions,

the decay into the gluon pair is still negligible.

(viii) In Eq. (55), the Higgs decay width is taken into

account by the naive Breit-Wignar formula in the

denominator. When the Higgs mass is large, say

MH ¼ 700 GeV, the Higgs decay width is as

large as 180 GeV. In some literature, the expres-

sion MH�H in the Breit-Wignar formula is re-

placed by ŝ�H=MH. In Appendix C we discuss

reliability of our treatment.

B. UV cutoff scale in six dimensions

In 6D UEDmodels, since the gluon fusion process is UV

divergent, we must consider the upper limit of the summa-

tions of the KK number in such models.8 First let us briefly

review how the naive dimensional analysis (NDA) is

applied to the higher-dimensional theory. Following the

concept of NDA, a loop expansion parameter � in the

D-dimensional SUðNÞ gauge theory at a scale � is ob-

tained as

�ð�Þ ¼ 1

2

2�D=2

ð2�ÞD�ðD=2ÞNgg
2
Dið�Þ�D�4; (69)

where Ng is a group index, gDi is a dimensionful gauge

coupling in D dimensions, and � is a UV cutoff scale. The

index i is introduced to express the type of gauge interaction
and the remaining part originates from the D-dimensional

momentum loop integral. The cutoff scale � is the scale

where the perturbation breaks down �ð�Þ � 1.
Precisely speaking, the dimensionful higher-dimensional

gauge coupling does not ‘‘run.’’ Let us explain what is

meant by the running coupling in (69), basically following

Ref. [48]. When we consider a 6D theory (D ¼ 6) with two
compact spacial dimensions, an effective 4D gauge cou-

pling g4i emerges after KK decomposition: g4i ¼ g6i=
ffiffiffiffiffiffi
V2

p
,

where V2 is the volume of two extra dimensions.

Concretely, V2 ¼ ð2�RÞ2 and 4�R2 for T2 and S2, respec-
tively. In this paper, we employ a bottom-up approach

for the running gauge coupling. At energies below the first

KK scale, the theory is purely four dimensional (after

integrating out all the massive modes of order KK scale)

and the gauge coupling runs logarithmically. Let us then

increase the energy scale. Every time we cross a KK mass

scale, there open up the corresponding KK modes to run in

the loops in the gauge boson two-point function. In all the

scales, the theory is renormalizable and the running of the

gauge coupling is logarithmic. However, due to the increase

of the number of particles in the loops, the running of the

gauge coupling becomes effectively a power law at the

energy scales much above the first KK scale. This way,

we get the effective power-law running of the gauge cou-

pling, within a purely renormalizable approach. In this

paper, we neglect possible threshold corrections at the UV

cutoff scale, since we are interested in what is the highest

possible� that can be consistentwith the low energy theory.

In the above stated strategy, we get the following run-

ning of the 4D effective gauge coupling strength �4ið�Þ,

��1
4i ð�Þ ’ ��1

4i ðmZÞ �
bSMi

2�
ln

�

mZ

þ 2C
b6Di

2�
ln

�

MKK

� C
b6Di

2�

��
�

MKK

�
2
� 1

�

; (70)

where C ¼ �=2 and 1 for T2 and S2, respectively. In

Eq. (70), we have approximated that all the masses are

degenerate in each KK level. Depending on the models,

some fraction of the KK modes are projected out, but we

assume that all of them contribute to the running, in order

to give the most conservative upper bound on the UV

cutoff scale. A more detailed explanation is given in

Appendix B.

While the described procedure gives a reasonable esti-

mate of the UV cutoff scale, one has to be aware that this is

not much more than an order-of-magnitude estimate. We

will plot our results for the maximum and minimum values

of the UV cutoff scale that are theoretically reasonable. In

Table III, we list our choice of bounds at which the KK

mode summation is truncated to regularize the process.

C. Convolution of parton distribution

Let us briefly review the standard prescription to esti-

mate the event number of the Higgs production in pp !
ZZ ! 4‘ (four leptons) via the gluon fusion process as a

function of the invariant mass of ZZ, given the parton-level
cross section, where 4‘ denotes two pairs consisting of

either e�eþ or ���þ, since a tau pair is less visible at the
LHC. That is, the final state is possibly e�eþe�eþ,
���þ���þ, or e�eþ���þ. Because of the large mass

difference between the Z boson and two electrons or two

muons, the subsequent processes, Z ! eþe� and Z !
�þ�� are well treated with on-shell approximation.

By using the parton distribution function of gluon

fgðx; ŝÞ, we give the formula of the total cross section of

pp ! ZZ:


model
pp!ZZðsÞ ¼

Z 1

0
d�
̂model

gg!H!ZZð�sÞLð�; sÞ; (71)
8In the 5D UED model, we can execute this mode summation

with no divergence.
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where we define

Lð�; sÞ :¼
Z lnð1= ffiffi

�
p Þ

� lnð1= ffiffi
�

p Þ
dyfgð

ffiffiffi
�

p
ey; �sÞfgð

ffiffiffi
�

p
e�y; �sÞ: (72)

The concrete form of 
̂model
pp!ZZ has been shown in

Eqs. (55)–(62). The invariant mass of ZZ is represented

as M2
ZZ ¼ ŝ ¼ �s. Then, the differential cross section of

pp ! ZZ ! 4‘ as a function of MZZ is written as

d
model
pp!ZZ!4‘ðMZZÞ

dMZZ

¼2MZZ

s
�
̂model

gg!H!ZZðM2
ZZÞ

�L

�
M2

ZZ

s
;s

�

�4BrðZ!2‘Þ2; (73)

where BrðZ!2‘Þ:¼BrðZ!eþe�Þ¼BrðZ!�þ��Þ¼
0:034 is the branching ratio.

IV. NUMERICAL RESULTS

We use the top-quark mass mt ¼ 172 GeV and the LO

QCD running coupling. We apply the CTEQ5 LO parton

distribution function of gluon [63]. In our analysis, we

consider only KK scales large enough not to open up the

Higgs decay channel into a pair of KK-top, Z, and W
particles. When the decay channel into two KK particles

opens up, the Higgs resonance tends to become too broad

and hard to be seen at Tevatron and LHC. We list in

Table IV the KK modes that satisfy the maximum cutoff

criterion given in Table III.

A. Tevatron

We evaluate the H ! ZZ ! 4‘ event number for each

25 GeV bin of MZZ, expected at Tevatron with an inte-

grated luminosity 8 fb�1 at
ffiffiffi
s

p ¼ 1:96 TeV in the above

mentioned UED models. We show the results for the

Higgs mass MH ¼ 330 GeV. We consider the KK scales

MKK ¼ 200, 400, and 800 GeV, except for the DH model

which does not have a zero-mode Higgs. For the DH

model, we take the first KK Higgs as the Higgs field,

that is, MKK ¼ MH ¼ 330 GeV.9 The results are shown

in Fig. 4. We see that the event number is enhanced

in all the UED models from the SM one. In particular,

the 6D projective sphere model can give a large enhance-

ment in the Higgs production by a factor as large as 100

compared to the SM when the KK scale is

low at 200 GeV.10 Two ZZ ! 4‘ events are observed in

a 300–350 GeV bin at the Collider Detecter at Fermilab

with the integrated luminosity 4:8 fb�1 [64] and two such

events are observed in 325–375 GeV bins at D0 with

6:4 fb�1 [65]. Recently, two more events are reported

around 330 GeV [66]. However, the above large cross

section to explain the Tevatron data is found to be incon-

sistent with the LHC data [67,68].

TABLE III. Our choices of maximum and minimum upper bounds for KK indices and for the

corresponding UV cutoff scale.

T2-based S2-based

max min max min

KK-index m2 þ n2 � 28 m2 þ n2 � 10 jðjþ 1Þ � 90 jðjþ 1Þ � 30
UV cutoff �6D � 5MKK �6D � 3MKK �6D � 7MKK �6D � 4MKK

TABLE IV. The region of KK summation for the maximum UV cutoff.

Geometry Allowed region of KK indices

T2=Z2 or RP2 ðm; nÞ ¼ ð1; 0Þ; ð2; 0Þ; ð3; 0Þ; ð4; 0Þ; ð5; 0Þ; ð0; 1Þ; ð1; 1Þ; ð2; 1Þ; ð3; 1Þ; ð4; 1Þ; ð5; 1Þ; ð�1; 2Þ; ð0; 2Þ; ð1; 2Þ; ð2; 2Þ;
ð3; 2Þ; ð4; 2Þ; ð�2; 3Þ; ð�1; 3Þ; ð0; 3Þ; ð1; 3Þ; ð2; 3Þ; ð3; 3Þ; ð4; 3Þ; ð�2; 3Þ; ð�1; 3Þ; ð0; 3Þ; ð1; 3Þ; ð2; 3Þ;

ð3; 3Þ; ð4; 3Þ; ð�3; 4Þ; ð�2; 4Þ; ð�1; 4Þ; ð0; 4Þ; ð1; 4Þ; ð2; 4Þ; ð3; 4Þ; ð�1; 5Þ; ð0; 5Þ; ð1; 5Þ; ð1;�1Þ; ð2;�1Þ;
ð3;�1Þ; ð4;�1Þ; ð5;�1Þ; ð2;�2Þ; ð3;�2Þ; ð4;�2Þ; ð3;�3Þ; ð4;�3Þ

T2=ðZ2 � Z0
2Þ ðm; nÞ ¼ ð1; 0Þ; ð2; 0Þ; ð3; 0Þ; ð4; 0Þ; ð5; 0Þ; ð0; 1Þ; ð1; 1Þ; ð2; 1Þ; ð3; 1Þ; ð4; 1Þ; ð5; 1Þ; ð0; 2Þ; ð1; 2Þ; ð2; 2Þ;

ð3; 2Þ; ð4; 2Þ; ð0; 3Þ; ð1; 3Þ; ð2; 3Þ; ð3; 3Þ; ð4; 3Þ; ð0; 4Þ; ð1; 4Þ; ð2; 4Þ; ð3; 4Þ; ð0; 5Þ; ð1; 5Þ
T2=Z4 ðm; nÞ ¼ ð1; 0Þ; ð2; 0Þ; ð3; 0Þ; ð4; 0Þ; ð5; 0Þ; ð1; 1Þ; ð2; 1Þ; ð3; 1Þ; ð4; 1Þ; ð5; 1Þ; ð1; 2Þ; ð2; 2Þ;

ð3; 2Þ; ð4; 2Þ; ð1; 3Þ; ð2; 3Þ; ð3; 3Þ; ð4; 3Þ; ð1; 4Þ; ð2; 4Þ; ð3; 4Þ; ð1; 5Þ
S2=Z2 j ¼ 1–9 [nðjÞ ¼ jþ 1 for j: even or nðjÞ ¼ j for j: odd]

PS or S2 j ¼ 1–9 (2jþ 1 degenerated states)

9Note that the coupling of the Dirichlet Higgs to the SM
modes is decreased by a factor 0.9 compared to the SM Higgs.
10Even if the one-loop H ! gg decay rate is enhanced by the
factor 100 from the SM one, it is still subdominant compared
with the tree levelH ! WW [32] and we neglect its contribution
to the total decay width of the Higgs.
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B. LHC

We plot the event number of H ! ZZ ! 4‘ for the

Higgs massMH ¼ 500 GeV at the LHC with an integrated

luminosity 10 fb�1 at
ffiffiffi
s

p ¼ 7 TeV in Fig. 5. When
ffiffiffi
s

p ¼
7 TeV, we have checked that we cannot see a sizable

number of events for all the UED models with MH ¼
700 GeV even for an integrated luminosity 10 fb�1, which

is expected by the end of 2012 after which the LHC is

planned to be (shut down for a year and then) upgraded to

13–14 TeV. Therefore, we show corresponding results for

MH ¼ 700 GeV at
ffiffiffi
s

p ¼ 14 TeV with an integrated lumi-

nosity 10 fb�1 in Fig. 6. We have chosen several KK scales:

400, 800, 1200 GeV.We show our plots in logarithmic scale

so that one can easily see the results for different luminos-

ities by simply shifting them upward or downward.

In Fig. 5, with an integrated luminosity 10 fb�1, we can

see in total a few events in 5D UED models (mUED and

DH) andOð1Þ �Oð10Þ events for each 25 GeV bin for 6D

UED models. Note that even if we can only see at best in

total a few events for 5D UED by the end of 2012, this

ZZ ! 4‘ channel is virtually background free at 500 GeV

and the result would be still significant.

In Fig. 6, for MH ¼ 700 GeV, we have plotted the

results for the upgraded energy
ffiffiffi
s

p ¼ 14 TeV. We see

that even with the integrated luminosity 10 fb�1, 6D

UED models can have a few events for each 25 GeV bin

if the KK scale is relatively lowMKK ¼ 400 GeV. The 6D
T2=Z2,RP

2, S2, and PS models can have in total few events

for the higher KK mass MKK ¼ 800 GeV. When the inte-

grated luminosity adds up to 100 fb�1, we can see a few

events for each bin for 5D mUED and DH models, and

even for the SM (though the SM itself cannot satisfy the

electroweak constraints on the S; T parameters, contrary to

the UED models). We see that the Dirichlet Higgs model

has a slightly smaller cross section than the standard

model. This is because the KK scale is fixed to be large,

700 GeV, and hence the enhancement of the KK top loop is

small, while the Yukawa coupling of the (first KK) Higgs

to the top quark is decreased by the factor 2
ffiffiffi

2
p

=� ’ 0:9.
Let us emphasize that the enhancement of Higgs pro-

duction gg ! H in UED does not depend on the details of

the model such as the mass structure at the orbifold fixed

points. Parameter dependence is only on the Higgs mass

and the KK scale. In this sense, this Higgs channel signal is

complementary to the direct search of the KK modes

decaying into LKP [14,28], which is nice because of the

directness but is dependent on the details of the KK mass

splitting from the boundary terms.

FIG. 4 (color online). The H ! ZZ ! 4‘ event number for each 25 GeV bin ofMZZ forMH ¼ 330 GeV, expected at Tevatron with
an integrated luminosity 8 fb�1 at

ffiffiffi
s

p ¼ 1:96 TeV. The grey (uppermost), black (middle), and magenta (lowermost) lines represent the

expected event number with MKK ¼ 200, 400, and 800 GeV, respectively. For 6D UED models, we consider dependency on the UV

cutoff, whose range is from minimum (lower side of band) to maximum (upper side of band) given in Table III.
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FIG. 5 (color online). The H!ZZ!4‘ event number for each 25 GeV bin of MZZ for MH¼500GeV, expected at the LHC with an

integrated luminosity 10 fb�1 at
ffiffiffi
s

p ¼7TeV. The black (uppermost), magenta (middle), and cyan (lowermost) lines represent the expected

event number withMKK¼400, 800, and 1200 GeV, respectively. Dependence on the 6DUV cutoff scale is shown to be the same as in Fig. 4.

FIG. 6 (color online). TheH!ZZ!4‘ event number for each25GeVbinofMZZ forMH¼700GeV, expectedatLHCwith an integrated

luminosity 10 fb�1 at
ffiffiffi
s

p ¼14TeV. The black (uppermost), magenta (middle), and cyan (lowermost) lines represent the expected event

number withMKK¼400, 800, and 1200 GeV, respectively. Dependence on the 6D UV cutoff scale is shown to be the same as in Fig. 4.
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V. SUMMARYAND DISCUSSIONS

We have presented a review on the known 5D and 6D

UED models focusing on the relevant part to the gluon

fusion process. We have explained our computation of the

gluon fusion process including the KK-top-quark loops,

which is new for the T2=Z2, T
2=ðZ2 � Z0

2Þ, RP2, and S2

UED models. For 6D UED models, we have shown an

NDA analysis of the highest possible UV cutoff scale in the

S2-based compactification, extending the analysis of

Refs. [3,48] on the T2 compactification.

For Higgs mass, MH ¼ 500 GeV, we can see a few

(virtually background free) H ! ZZ ! 4‘ events in 5D

UED models with 10 fb�1 of integrated luminosity. The

6D UED models can further exhibit the shape of

the resonance if the KK scale is relatively low. When

the Higgs mass is as large as MH ¼ 700 GeV, we

found no parameter region that can be seen within the

integrated luminosity of Oð10Þ fb�1 at
ffiffiffi
s

p ¼ 7 TeV. We

have also studied the event rate for the upgraded energy
ffiffiffi
s

p ¼ 14 TeV when MH ¼ 700 GeV. We see that the 5D

and 6D UED models typically require 100 fb�1 and

10 fb�1 of data, respectively, in order to establish the

existence of the resonance. As is reported in Ref. [39],

the 6D UED model on the projective sphere (or S2)
shows the greatest enhancement of the Higgs production

via gluon fusion process, among all the known UED

models.

Let us again emphasize that the presented Higgs signal

of UED needs only the Higgs mass and KK scale as input

parameters, is independent of the detailed KK mass split-

ting, and hence is unaffected by the boundary or fixed-

point mass structures. Therefore, this Higgs signal of

UED is complementary to the direct KK resonance pro-

duction and to the dark matter signal. As the enhancement

of the Higgs production via the gluon fusion process can

be so large, recent data from the LHC [67,68] can already

significantly exclude the parameter space of the UED

models. This analysis is presented in a separate publica-

tion [69]. We will also show a combined bound from the

triviality and the electroweak precision constraints in

addition to that of Ref. [69]. (The triviality bound would

lower the maximum allowed UV cutoff scale when the

Higgs mass is heavy.) In this paper, we have studied the

cleanest possible signature H ! ZZ ! 4‘. It is expected
that a combined analysis, including other decay channels

such as H ! WW and H ! ZZ ! ‘‘

, will provide a

large gain over all individual analyses [68]. Such a com-

bined analysis for the UED models will be presented

elsewhere.
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APPENDIX A: FEYNMAN RULES FOR

DIRICHLET HIGGS MODEL

In this appendix, we describe the Feynman rules that are

necessary for our computation. The mass terms of KK

fermions are

�
X1

n¼1

�Qt
�Ut

� �ðnÞ
n
R

mt

mt � n
R

" #

Qt

Ut

� �ðnÞ
; (A1)

where Qt is an upper component of the quark doublet in

third generation and Ut is the top-quark singlet.

Transforming each KK states by the following unitary

transformation including chiral rotation:

t1

t2

" #

ðnÞ¼ �5

1

" #

cos�ðnÞ �sin�ðnÞ

sin�ðnÞ cos�ðnÞ

" #

Qt

Ut

� �ðnÞ
; (A2)

we can obtain the ordinary diagonalized Dirac mass terms,

where tðnÞ1 and tðnÞ2 aremass eigenstates of nth KK-top quarks

and each mixing angle �ðnÞ is determined to be cos2�ðnÞ ¼
ðn=RÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þ n2=R2

p

, sin2�ðnÞ ¼ mt=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þ n2=R2

p

. Each

KK state is twofold degenerate and nth KK-top mass is

mt;ðnÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2
t þ n2=R2

p

. The corresponding interaction

terms are

LKK top ¼ �ig4s
X1

n¼1

�t1 �t2
� �ðnÞ��Gð0Þ

�

t1

t2

" #ðnÞ

� mt

vEW

X1

n;m¼1

�t1 �t2
� �ðnÞHðmÞ

�
�

ffiffiffi

2
p

"m þ 1
ffiffiffi

2
p ð"2nþm � "2n�mÞ�5

�

� sin2�ðnÞ ��5 cos2�ðnÞ

�5 cos2�ðnÞ sin2�ðnÞ

" #
t1

t2

" #ðnÞ
; (A3)

where g4s is a dimensionless 4D SUð3ÞC coupling constant

and vEW is the 4D Higgs vacuum expectation value which

appears after the KK expansion.Gð0Þ
� is a massless gluon and

HðmÞ is mth KK Higgs bosons. The concrete shape of the

factor of
ffiffiffi

2
p

"n is 2
ffiffiffi

2
p

=n�, whose origin is the nonorthonor-
mality ofmode functions in theDirichlet Higgsmodel. In the

Dirichlet Higgs model there is no zero-mode Higgs because

of choosing Dirichlet boundary condition in Higgs field. The

first KKHiggs boson behaves like a heavy SMHiggs except

that its interactionwith the SMfields aremultiplied by
ffiffiffi

2
p

"1.
The explicit form of the Feynman rules is
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where a is a gluon (adjoint) color index and �a are the

Gell-Mann matrices. It is noted that we can find an inter-

action which is proportional to the �5 matrix at the KK

Higgs Yukawa couplings to KK-top quarks, which gener-

ates another type of contribution to the Higgs production

through the gluon fusion process.11 This type of contribu-

tion does not exist in ordinary 5D or 6D UED models.

APPENDIX B: UV CUTOFF BASED ON RGE

ANALYSIS IN KK PICTURE

In this appendix, we show the details of the renormaliza-

tion group analysis, based on the strategy stated in Sec. III B

that follows Ref. [48]. We note that we do not need

any regularization of the infinite KK sum, employed in

Ref. [48], in our bottom-up approach. Ahigher-dimensional

gauge theory is equivalent to the corresponding 4D theory

with an infinite tower of KK modes. It suggests that all we

have to do for deriving a running effect of the 4D effective

gauge coupling at leading order is to count the d.o.f. of fields

whose masses are lower compared to a reference energy�.

This important information is encoded into the coefficient

bi. The formula for the running coupling of 4D SUðNÞ or
Uð1Þ gauge theory is well known as follows:

d

d ln�
��1
4i ¼ � 1

2�
bi; (B1)

b SUðNÞ ¼
�

� 11

3

X

4D vectors

C2ðAdjointÞ þ
2

3

X

4D Weyl
fermions

CðrÞ

þ 1

3

X

4D Higgs

CðrÞ þ 1

6

X

4D adjoint
scalars

C2ðAdjointÞ
�

; (B2)

b Uð1Þ ¼
�
2

3

X

4D Weyl
fermions

Y2
f þ

1

3

X

4D Higgs

Y2
H

�

; (B3)

where �4i is a 4D gauge coupling strength, whose group is

discerned by i; CðrÞ is defined by tr½Ta
r T

b
r � ¼ CðrÞ�ab for

each representation of the SUðNÞ group and the specific

value is 1=2 for the fundamental representation.

C2ðAdjointÞ is the quadratic Casimir operator for the adjoint

representation, whose value is N; YfðYHÞ shows the Uð1Þ
charge of the 4D Weyl fermion (Higgs). The contribution

from KK vector bosons is included in the first term in Eq.

(B2). We note that a 6D gauge field has two extra-

dimensional components and that a 4D adjoint scalar is

left as a physical mode after the KK decomposition.

[When counting the number of adjoint scalar degrees of

freedom in the running (B1), it is two rather than one in our

treatment.]

We can obtain the solution of Eq. (B1) by the integration

of the both sides over the region ½mZ; ��. The essential

point is that the coefficient bi becomes altered when the

reference energy � crosses a threshold and the number of

the effectively massless d.o.f. of fields under the �
changes. Neglecting the KK mass splitting from the elec-

troweak symmetry breaking, the threshold correction from

lth KK particles arises simultaneously when� exceeds the

value of the lth KK mass. This approximation simplifies

the calculation to estimate the effect from lth KK particles

all at once. The values of bi in the zero modes (b SM
i ) and

lth KK modes (b6Di ) from the bulk SM matter contents are

summarized in Table V.12

11This situation is similar to the famous fact that �0 ! 2�
decay is enhanced through a chiral anomaly [70].

12Note that we do not employ the grand unified theory normal-
ization for the Uð1ÞY coupling and the beta function.
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This way, the shape of �4ið�Þ is determined as

��1
4i ð�Þ ¼ ��1

4i ðmZÞ �
bSMi

2�
ln

�

mZ

� b6Di

2�

X

l

ln
�

mðlÞ
; (B4)

where mðlÞ shows lth KK mass and the upper bound of the

summation is

mðlÞ � �: (B5)

In the case of S1 in five dimensions, where the spectrum of

KK masses is equally spaced, the above calculation is

executed with no difficulty. In 6D cases, by contrast, the

KK mass spectrum is not equally spaced and we use the

following approximation.

(i) T2 case: In the T2 case, the form of the ðm; nÞth KK

mass ismðm;nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2 þ n2
p

=R and eventually that of

the first (lightest) KKmass isMKK ¼ 1=R. The exact
form of the summation is as follows:

X

ðm;nÞ
ln

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m2þn2
p

MKK

for 1�m2þn2�
�

�

MKK

�
2
:

(B6)

We approximate the summation over m and n by

integral over r and � in two-dimensional polar coor-

dinates:

X

ðm;nÞ

�

ln
�

MKK

� 1

2
lnðm2 þ n2Þ

�

’
Z �=MKK

1
2�dr � r

�

ln
�

MKK

� lnr

�

¼ �

2

��
�

MKK

�
2
� 1� 2 ln

�

MKK

�

; (B7)

which results in

��1
4i ð�Þ ’ ��1

4i ðmZÞ �
bSMi

2�
ln

�

mZ

� b6Di

2�
� �
2

�
��

�

MKK

�
2
� 1� 2 ln

�

MKK

�

: (B8)

(ii) S2 case: In the S2 case, the form of ðj; mÞth KKmass

is mðj;mÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jðjþ 1Þ
p

=R and that of the first (light-

est) KK mass is MKK ¼
ffiffiffi

2
p

=R. There are

2jþ1 numbers of degenerated states in each j level.
The exact form of the summation is as follows:

Xjmax

j¼1

ð2jþ 1Þ ln
�

�
ffiffiffiffiffiffiffiffiffiffiffi
jðjþ1Þ

2

q

MKK

�

for 2 � jðjþ 1Þ � 2

�
�

MKK

�
2
:

(B9)

When we use the approximation: jðjþ 1Þ ’ j2, jmax

and jmin are determined as

jmax ’
ffiffiffi

2
p �

mKK

; jmin ’
ffiffiffi

2
p

: (B10)

Let us approximate the summation over j by an

integral over j:

Xlmax

j¼1

ð2jþ1Þln
�

�
ffiffiffiffiffiffiffiffiffiffiffi
jðjþ1Þ

2

q

MKK

�

’Rjmax
jmin

djð2jÞln
�

jmax

j

�

¼
�

�

MKK

�
2
�1�2ln

�

MKK

: (B11)

Thereby we obtain the final form:

��1
4i ð�Þ’��1

4i ðmZÞ�
bSMi

2�
ln

�
�

mZ

�

�b6Di

2�
�1
��

�

MKK

�
2
�1�2ln

�

MKK

�

: (B12)

Combining Eq. (B8) and (B12), we get the final

form (70). Neglecting the logarithmic terms in

Eq. (70), we obtain

��1
4i ð�Þ � ��1

4i ðmZÞ �
Cb6Di
2�

�2

M2
KK

: (B13)

We note that the coefficient of the quadratic term for

T2 coincides with that in Ref. [48] obtained from a

different regularization scheme. Putting Eq. (B13)

into the condition �ð�Þ � 1, we get

�2 � 4�M2
KK

CðNg þ 2b6Di Þ�4iðmZÞ
; (B14)

where we have used V2 ¼ 8�C=M2
KK. Concretely,

we get

� &

�
5:3MKK for T2

6:6MKK for S2;
(B15)

from the Uð1ÞY cutoff.

In addition to this analysis, we also make a consideration

for the Landau poles of the gauge interactions. If the value

of the energy where a Landau pole emerges is smaller

than that of the cutoff which we have discussed before,

we should treat the position of the Landau pole,

��1
4i ð�LandauÞ ¼ 0, which is easily obtained with leading

order approximation as

�2
Landau �

2�M2
KK

Cb6Di �4iðmZÞ
; (B16)

TABLE V. RGE coefficients in Eq. (C3).

Gauge group SM contribution (bSMi ) KK contribution (b6Di )

SUð3ÞC �7 �2
SUð2ÞW �19=6 3=2
Uð1ÞY 41=6 27=2

NISHIWAKI et al. PHYSICAL REVIEW D 85, 035026 (2012)

035026-16



as a cutoff scale instead. The concrete forms of each value

are shown in Table VI.

In the analysis above, we have taken values ofNg as 3, 2,

and 1 in each case of SUð3ÞC, SUð2ÞW and Uð1ÞY , respec-
tively, and have employed the values,

��1
Uð1ÞY ðmZÞ¼97:9; ��1

SUð2ÞW ðmZÞ¼29:4;

��1
SUð3ÞCðmZÞ¼8:44;

(B17)

at mZ ¼ 91:1 GeV. We do not consider a TeV-scale gauge

coupling unification condition as a UV cutoff in this paper.

In both T2 and S2 cases, the most stringent bounds come

from the Uð1ÞY cutoff scales, which restrict the effective

range of the perturbation the most severely. It is natural that

the scale emerging from the Uð1ÞY Landau pole is near the

upper limit of the perturbativity but a little bit higher.

APPENDIX C: BREIT-WIGNAR FORMULA

We review how the Breit-Wigner formula emerges from

the resummation of the one-particle irreducible (1PI)

Higgs two-point function, in order to be careful of possible

systematic errors when the width becomes broad. In this

paper, we assume that the Higgs mass is larger than twice

the W KK mass so that it is sufficient to limit ourselves to

the SM case when discussing the Higgs total width. It is

straightforward to extend the result for the UED when one

wants to take the KK loops into account.

In the SM, the Higgs production cross section via the

gluon fusion process is obtained as


̂ gg!H ¼ �2

8MH

�H!ggðMHÞ�ðŝ�M2
HÞ; (C1)

where

�H!ggðMHÞ ¼
�2
s

8�3

M3
H

v2
EW

								
I

�
m2

t

M2
H

�								

2
: (C2)

Then we get


̂ gg!H!ZZ ’ 
̂gg!HBrH!ZZðMHÞ

¼ �2

8MH

�H!ggðMHÞBrH!ZZðMHÞ�ðŝ�M2
HÞ;

(C3)

where

Br H!ZZðMHÞ ¼
�H!ZZðMHÞ
�HðMHÞ

¼
M3

H

32�v2
EW

½1� 4m2
Z

M2
H

þ 12m4
Z

M4
H

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2
Z

M2
H

r

�HðMHÞ
: (C4)

The expression (C1) is obtained in the limit of the vanish-

ing decay width �H ! 0. We may introduce a narrow

width in Eq. (C3) by the Breit-Wigner type replacement,

�ðŝ�M2
HÞ !

1

�

�

ðŝ�M2
HÞ2 þ �2

; (C5)

to get


̂ gg!H!ZZ’
�

8MH

�H!ggðMHÞ�H!ZZðMHÞ
�HðMHÞ

� �

ðŝ�M2
HÞ2þ�2

: (C6)

When we want to reproduce the delta function, � in

Eq. (C5) cannot depend on ŝ, otherwise we cannot get the
correct normalization:

R
dŝ�ðŝ�M2

HÞ ¼ 1. One should

then perform the replacement of the delta function (C5) as

� ! MH�HðMHÞ (C7)

in Eqs. (C1)–(C3). In the literature, see, e.g., [32]; � in

Eq. (C6) is sometimes replaced as

� ! ŝ

MH

�HðMHÞ: (C8)

Instead of the truncation (C3), we have already obtained

the full gg ! H ! ZZ cross section (50) by the naive

Breit-Wignar type replacement � ! mH�H in and only

in the denominator of the Higgs propagator,

i

Q2 �M2
H þ i�

: (C9)

Hereafter, let us see that this treatment gives a sufficiently

good approximation to the full result (C28).

1. Resummed propagator

First let us review how the resummed propagator is

obtained in the SM. We write the bare Higgs mass and

field in terms of the renormalized ones and the counter

terms as

M2
B¼M2

Hþ�M2
H; HB¼

ffiffiffiffiffiffiffi

ZH

p
H; ZH¼1þ�ZH: (C10)

The resummed bare propagator reads

DB ¼ i

Q2 �M2
B þ	HðQ2Þ ; (C11)

whereMB and	HðQ2Þ are the bare mass and the 1PI two-

point function, respectively, both of which contain UV

divergences, and Q2 :¼ �q2 for a Higgs four-momentum

TABLE VI. The values of the cutoff scales and the positions of

the Landau poles in T2 and S2 cases.

Type of geometry

Types T2-based S2-based

SUð3ÞC cutoff no cutoff no cutoff

SUð2ÞW cutoff 6:9MKK 8:6MKK

Uð1ÞY cutoff 5:3MKK 6:6MKK

SUð3ÞC Landau pole no cutoff no cutoff

SUð2ÞW Landau pole 8:9MKK 11MKK

Uð1ÞY Landau pole 5:4MKK 6:8MKK
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q. The renormalized propagator then becomes

DR ¼ DB

ZH

¼ i

Q2 �M2
H þ 
̂HðQ2Þ

; (C12)

where


̂ HðQ2Þ :¼ 
HðQ2Þ � ZH�M
2
H þ �ZHðQ2 �M2

HÞ
(C13)

is the renormalized (finite) 1PI two-point function, with


HðQ2Þ :¼ ZH	HðQ2Þ being the 1PI two-point function

that is given in terms of the renormalized fields but still

contains UV divergences. Note that it is sufficient to con-

sider the case Q2 > 0 for our purpose since we have only

s-channel Higgs propagator, though Q2 can be negative

when the Higgs is virtual, e.g., when exchanged in the t
channel. The Higgs two-point function in the SM is given

by [71]


HðQ2Þ ¼ � 1

16�2v2

�

6m2
t ½2A0ðm2

t Þ þ ð4m2
t �Q2ÞB0ðQ2; m2

t Þ� � 2

��

6m4
W � 2Q2m2

W þM4
H

2

�

B0ðQ2; m2
WÞ

þ
�

3m2
W þM2

H

2

�

A0ðm2
WÞ � 6m4

W

�

�
��

6m4
Z � 2Q2m2

Z þ
M4

H

2

�

B0ðQ2; m2
ZÞ þ

�

3m2
Z þ

M2
H

2

�

A0ðm2
ZÞ � 6m4

Z

�

� 3

2
½3M4

HB0ðQ2;M2
HÞ þM2

HA0ðM2
HÞ�




; (C14)

where the loop functions are

A0ðm2Þ ¼ m2

�

�� ln
m2

�2
þ 1

�

; (C15)

with � :¼ 2
�
� �þ ln4� for D ¼ 4� �, and

B0ðQ2; m2Þ ¼ ��
Z 1

0
dx ln

Q2xðx� 1Þ þm2 � i"

�2
¼ �� ln

m2

�2
þ I

�
4m2

Q2

�

; (C16)

where

I ð�Þ :¼
Z 1

0
dx

xð2x� 1Þ
ðx� 1

2Þ2 � 1��
4 � i"

¼
Z 1

0
dx

2x2 � x

x2 � xþ �
4 � i"

: (C17)

For concreteness we write down

Ið�Þ ¼

8
><

>:

2

�

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

�� 1
p

arctan

�

1ffiffiffiffiffiffiffi
��1

p
��

ð� 	 1 or Im � � 0Þ

2�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

ln

�

1þ
ffiffiffiffiffiffiffi
1��

p

1�
ffiffiffiffiffiffiffi
1��

p
�

þ i�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

ð0< � � 1Þ;
(C18)

I 0ð�Þ ¼

8
><

>:

1
�
� arctanð 1ffiffiffiffiffi

��1
p Þ

ffiffiffiffiffiffiffi
��1

p ð� > 1 or Im � � 0Þ

1
�
þ 1

2
ffiffiffiffiffiffiffi
1��

p ln

�

1þ
ffiffiffiffiffiffiffi
1��

p

1�
ffiffiffiffiffiffiffi
1��

p
�

� i�
2
ffiffiffiffiffiffiffi
1��

p ð0< �< 1Þ:
(C19)

Note that when Im� ¼ 0,

ImIð�Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p

�ð1� �Þ; ImI 0ð�Þ ¼ � �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� �
p �ð1� �Þ: (C20)

In particular,

I ð4Þ ¼ 6�
ffiffiffi

3
p

�

3
’ 0:18; I 0ð4Þ ¼ � 2

ffiffiffi

3
p

�� 9

36
’ �0:052; (C21)

and for small and large �,

I ð�Þ ¼ 2þ ln
�

4
þ i�þOð� ln�Þ ð� � 1Þ; (C22)

I ð�Þ ¼ 2

3�
þOð��2Þ ð� � 1Þ: (C23)
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2. On-shell scheme renormalization

In the on-shell scheme, we put the following renormalization conditions:

Re 
̂HðQ2ÞjQ2¼M2
H
¼ 0; Re

@

@Q2

̂HðQ2ÞjQ2¼M2

H
¼ 0; (C24)

which gives


̂HðQ2Þ ¼ 
HðQ2Þ � Re
HðM2
HÞ � Re
0

HðM2
HÞðQ2 �M2

HÞ

¼ � 1

16�2v2

�

6m2
t

�

ð4m2
t �Q2Þ

�

I
�
4m2

t

Q2

�

� ReI
�
4m2

t

M2
H

��

þ ð4m2
t �M2

HÞ
4m2

t

M4
H

ReI 0
�
4m2

t

M2
H

�

ðQ2 �M2
HÞ



� 2

��

6m4
W � 2Q2m2

W þM4
H

2

��

I
�
4m2

W

Q2

�

� ReI
�
4m2

W

M2
H

��

þ
�

6m4
W � 2M2

Hm
2
W þM4

H

2

�

� 4m2
W

M4
H

ReI 0
�
4m2

W

M2
H

�

ðQ2 �M2
HÞ



�
��

6m4
Z � 2Q2m2

Z þ
M4

H

2

��

I
�
4m2

Z

Q2

�

� ReI
�
4m2

Z

M2
H

��

þ
�

6m4
Z � 2M2

Hm
2
Z þ

M4
H

2

�
4m2

Z

M4
H

ReI 0
�
4m2

Z

M2
H

�

ðQ2 �M2
HÞ



� 9M4
H

2

��

I
�
4M2

H

Q2

�

� Ið4Þ
�

þ 4

M2
H

I 0ð4ÞðQ2�M2
HÞ

�

;

(C25)

and hence,

Im
̂HðQ2Þ¼� 1

16�2v2

�

�6m2
tQ

2�

�

1�4m2
t

Q2

�
3=2

�

�

1�4m2
t

Q2

�

�M4
H

�
12m4

W

M4
H

�4Q2m2
W

M4
H

þ1

�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�4m2
W

Q2

s

�

�

1�4m2
W

Q2

�

�M4
H

2

�
12m4

Z

M4
H

�4Q2m2
Z

M4
H

þ1

�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�4m2
Z

Q2

s

�

�

1�4m2
Z

Q2

�

�9M4
H

2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�4M2
H

Q2

s

�

�

1�4M2
H

Q2

�


: (C26)

We can compare this result with the tree-level Higgs decay width,

�tree
H ðMHÞ ¼

M3
H

16�v2
EW

�

1� 4m2
W

M2
H

þ 12m4
W

M4
H

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2
W

M2
H

s

�ðMH � 2mWÞ

þ M3
H

32�v2
EW

�

1� 4m2
Z

M2
H

þ 12m4
Z

M4
H

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2
Z

M2
H

s

�ðMH � 2mZÞ þ
3MHm

2
t

8�v2
EW

�

1� 4m2
t

M2
H

�
3=2

�ðMH � 2mtÞ: (C27)

We see from Eq. (C16) that the leading term for the Q�MH � 2mt limit is not proportional to Q2 for the W and Z
contributions and therefore the replacement (C12), namely,

DR ! i

Q2 �M2
H þ i Q2

MH
�H

; (C28)

does not give a good fit.

When computing the full cross section for the process gg ! H ! ZZ, we may employ the resummed propagator (C12).

Neglecting the contributions from box diagrams, we get the cross section,


̂ gg!H!ZZ ¼ �2
s

256�2

�
mZ

vEW

�
4
�

1þ ðŝ� 2m2
ZÞ2

8m4
Z

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2
Z

ŝ

s
								
I

�
m2

t

ŝ

�								

2 1

�

ŝ

ðŝ�M2
H þ Re
̂HðŝÞÞ2 þ ðIm
̂HðŝÞÞ2

: (C29)

In Fig. 7, we show the results for various replacements. We

see that any replacement suffices when the Higgs mass is

not very large, MH ¼ 300 GeV (left). (This is the case for

the Higgs mass above the top threshold mH * 2mt too.)

For the large Higgs mass (right), the decay width becomes

larger and we see that our approximation (50) with a

Breit-Wignar type replacement in the denominator

� ! MH�H gives a good fit to the cross section with the

full two-point function (C29).

Finally, just for comparison with Eq. (C6), let us

present the resummed cross section (C29) in a rewritten

form,
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̂ gg!H!ZZ ¼ �

8MH

�2
sM

3
H

8�3v2
EW

								

ŝ

M2
H

I

�
m2

t

ŝ

�								

2
ŝ

MH
�HðMHÞ

ðŝ�M2
H þ Re	HðŝÞÞ2 þ ðIm	HðŝÞÞ2

M3
H

32�v2
EW

½1� 4m2
Z

ŝ
þ 12m4

Z

ŝ2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 4m2
Z

ŝ

q

�HðMHÞ
:

(C30)

3. Pole-scheme renormalization

Let us review the pole-scheme renormalization [72].

Instead of the on-shell condition (C24), the pole-scheme

renormalization condition fixes the pole of the propagator

(C11) at �Q2, which we parametrize by two real constants

mH and �H as �Q2 ¼ m2
H � imH�H, namely,

�Q 2 �M2
B þ	Hð �Q2Þ ¼ 0: (C31)

As the pole position of the bare propagator (C11) is the

same as that of the renormalized one (C12), we see that the

on-shell renormalized two-point function satisfies

�Q 2 �M2
H þ 
̂Hð �Q2Þ ¼ 0; (C32)

that is,

M2
H¼m2

HþRe
̂Hð �Q2Þ; mH�H¼ Im
̂Hð �Q2Þ: (C33)

We see that the real and imaginary parts determine the

pole-scheme mass mH and decay rate �H as functions of

the on-shell scheme mass MH. Note that the renormalized

two-point function 
̂H has an implicit dependence on the

on-shell mass MH.

In Fig. 8, we plot the ratio of the pole to on-shell mass

mH=MH (left) and the pole-scheme width �H to the tree-

level width (C27) (right) as functions of the on-shell mass

MH, computed within the SM.

It is known that the on-shell scheme mass is gauge

dependent at the next-to-next-to-leading order; see refer-

ences in [72]. In contrast, the pole position of the

amplitude is a gauge independent physical notion.

Therefore, in principle, we should utilize the pole-

scheme mass and width. However, the on-shell mass

and the pole mass are identical at consistent 1-loop order

(which is the highest order considered here), and they

start differing only at 2-loop order and above. We see

from Fig. 8 that both schemes agree within 1% accuracy

in our approximated treatment neglecting nonresonant

box contributions, which are the same order as Oð�Þ
corrections to the resonant ones.13 We safely utilize the
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FIG. 7 (color online). Parton-level cross section for the process gg ! H ! ZZ with mH ¼ 300 GeV (left) and 700 GeV (right). The

inclusion of a full two-point function (C28) (blue solid line), the full one (50) with � ! MH�H (red dashed), and the truncated one

(C6) with � ! ŝ�H=MH (yellow dot-dashed) are shown. In the right figure, the full one (50) with � ! ŝ�H=MH (thin dot-dashed) and

the truncated one (C6) with � ! MH�H (thin dotted) are also drawn.
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FIG. 8 (color online). Ratio of the pole mass mH to the on-

shell one MH as a function of the on-shell mass (left); same for

the ratio of the pole-scheme width �H to the tree-level one �tree
H

(right).

13The difference in Fig. 8 stems from the fact that a complex
value is inserted for �Q2 in Eq. (C33), i.e., �Q2 ¼ m2

H � imH�H.
However, �H is formally a higher-order term, since it corre-
sponds to the imaginary part of the self-energy, which first
occurs at one-loop order. Therefore, when inserted into the
one-loop self-energies in Eq. (C33), this leads to a contribution
that is formally at the next-to-next-to-leading order level, which
causes the small numerical difference between the two schemes
in Fig. 8.
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on-shell mass and the tree-level width (C27) even though

the Higgs decay width becomes as large as 180 GeV

when MH ¼ 700 GeV.
Note that our treatment to include the decay width in the

numerical calculation (50) with (54) corresponds to the

(gauge invariant) complex-mass scheme; see, e.g.,

Refs. [73,74], where the real Higgs mass is replaced by a

complex value everywhere in the amplitude, which in our

case leads to a replacement of the Higgs mass in its

propagator only.
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