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Abstract

We investigate a new realization of extended quantum-mechanical supersymmetry. We first

show that an N = 2 quantum-mechanical supersymmetry is hidden in the four-dimensional

(4D) spectrum of the Kaluza–Klein decomposition for the higher dimensional Dirac field, that

is, Kaluza–Klein mode functions of 4D right-handed spinors and 4D left-handed ones form

N = 2 supermultiplets. In addition to N = 2 supersymmetry, we discover that an N-extended

supersymmetry (N = d + 2 (d + 1) for d = even (odd) extra dimensions) is further hidden in the 4D

spectrum. The extended symmetry can explain additional degeneracy of the spectrum. Furthermore,

we show that a superpotential can be introduced into the N-extended supercharges and clarify

the condition to preserve the supersymmetry. The partial breaking of the supersymmetry is also

demonstrated.
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1 Introduction

Quantum-mechanical supersymmetry (QM SUSY) has a wide range of applicable topics, e.g. exactly solvable

systems in quantum mechanics [1–5], black holes and AdS/CFT [6–10], Sachdev–Ye–Kitaev model [11–15],

and so on. Thus it is interesting and important to investigate new realizations of QM SUSY. In particular,

it is worth while constructing N-extended supersymmetry, since not so many models with arbitrary large

N-extended one are known.

The N-extended supersymmetry has N independent supercharges corresponding to the square root of

a Hamiltonian, and supercharges relate degenerate eigenstates of the Hamiltonian. In order to find a new

realization of N-extended QM SUSY, we will investigate fermions in the higher dimensional space-time,

because the 4D spectra in gauge/gravity theories with extra dimensions have been found to be governed by

N = 2 QM SUSYs [16–19]. We then expect that N = 2 QM SUSY will be hidden also in the 4D spectrum

of higher dimensional fermions. However, the degeneracy of such 4D spectrum is found to be, in general,

much larger than that expected by the N = 2 supersymmetry. This may imply that there should exist some

symmetries in addition to the N = 2 supersymmetry. The main purpose of this letter is to show that an

N-extended QM SUSY is hidden in the 4D spectrum of the higher dimensional Dirac action and can explain

the degeneracy of the 4D spectrum.

In this paper, we show that there generally exists an N = 2 QM SUSY hidden in the 4D spectrum of a

higher dimensional Dirac action after the compactification of extra space dimensions. The symmetry turns

out to connect the 4D right-handed spinors and the 4D left-handed ones. Furthermore, we find anN-extended

QM SUSY with N = d + 2 (d + 1) for d = even (odd) extra dimensions. We then show that the N-extended

supersymmetry explains the degeneracy of the 4D spectrum in the higher dimensional Dirac action. Explicit

constructions of N-extended supersymmetry algebras with higher N , have been investigated [20–27], but

what we found in this paper gives a new realization of the N-extended supersymmetry algebra.

This paper is organized as follows: In Section 2, we clarify the properties of the mode functions of the

Dirac field providing the 4D mass eigenstates. In Section 3, we reveal a hidden N = 2 QM SUSY on such

mode functions. We show a hiddenN-extended QM SUSY in Section 4. It is shown that the whole degenerate

mode functions on the hyperrectangular internal space (extra dimensions) can be explained by theN-extended

supersymmetry. In section 5, we introduce a superpotential into the extended QM SUSY. Then, we clarify the

conditions that the superpotential can preserve or (partially) break the extended supersymmetry. Section 6 is

devoted to summary and discussion.

2 Higher dimensional Dirac action and KK decomposition

In this section, we discuss the Kaluza-Klein (KK) decomposition of a higher dimensional Dirac field and

clarify the properties of the mode functions of the KK decomposition. The decomposition is executed in

such a way that the induced Dirac action at four dimensions (4D) is constructed in terms of the 4D mass

eigenstates.

Let us consider the action of a free Dirac field on the direct product of the 4D Minkowski space-time M4

and a d-dimensional flat internal space Ω given as1

S =

∫

M4

d4x

∫

Ω

ddy Ψ̄(x, y)(iΓµ∂µ + iΓyk∂yk
− M)Ψ(x, y) . (1)

1For earlier works on higher dimensional spinors, see e.g. [28–30].
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The xµ (µ = 0, 1, 2, 3) are the coordinates of the Minkowski space-time M4 and yk (k = 1, 2, · · · , d) are

the coordinates of the internal space Ω. We take the metric as ηNM = η
NM = diag(−1,+1, · · ·,+1) where

N,M = 0, 1, · · ·, yd. The gamma matrices ΓN satisfy the Clifford algebra,

{ΓN ,ΓM} = −2ηNM12⌊d/2⌋ . (2)

The Ψ(x, y) is the (d + 4)-dimensional Dirac spinor which has 2⌊d/2+2⌋ components with mass M. The symbol

⌊d/2 + 2⌋ is the maximum integer less than or equal to d/2 + 2. 1n represents the n × n unit matrix. The Dirac

conjugate is defined as Ψ̄(x, y) = Ψ†(x, y)Γ0. It turns out to be very convenient for our analysis to use the

following representation of the gamma matrices ΓN , based on the 4D chiral representation:

Γ0 = σ1 ⊗ 12⌊d/2⌋ ⊗ 12 ,

Γa = iσ2 ⊗ 12⌊d/2⌋ ⊗ σ
a (a = 1, 2, 3) ,

Γyk = −σ3 ⊗ γyk ⊗ 12 (k = 1, 2, · · · , d) , (3)

where σa denote the Pauli matrices and γyk (k = 1, 2, · · · , d) correspond to the internal space gamma matrices

which satisfy {γyk , γyh} = −2δkh12⌊d/2⌋ with (γyk )† = −γyk (see Eq. (2)).2 We define the 4D chiral matrix Γ5 and

the internal space chiral matrix Γd+1 (for even d) by3

Γ5 = iΓ0 . . . Γ3 = −σ3 ⊗ 12⌊d/2⌋ ⊗ 12 ,

Γd+1 = id/2Γy1 . . . Γyd = 12 ⊗ γd+1 ⊗ 12 (for even d) , (4)

with γd+1 = id/2γy1 . . . γyd . The 4D chiral projection matrices PR/L are given by

PL =
1 − Γ5

2
=

(

1 0

0 0

)

⊗ 12⌊d/2⌋ ⊗ 12 ,

PR =
1 + Γ5

2
=

(

0 0

0 1

)

⊗ 12⌊d/2⌋ ⊗ 12 . (5)

The eigenstates of the 4D chiral matrix Γ5 with the eigenvalue +1 (−1) are called right-handed (left-handed).

In terms of the 4D left-handed (right-handed) two component chiral spinors φ
(n)
α (x) (χ̄

(n)
α (x)),4 the KK

decomposition of the (d + 4)-dimensional Dirac field Ψ(x, y) will be given by

Ψ(x, y) =
∑

n

∑

α

{

eL ⊗ f
(n)
α (y) ⊗ φ

(n)
α (x) + eR ⊗ g

(n)
α (y) ⊗ χ̄

(n)
α (x)

}

=
∑

n

∑

α













f
(n)
α (y) ⊗ φ

(n)
α (x)

g
(n)
α (y) ⊗ χ̄

(n)
α (x)













, (6)

where eL = (1, 0)T and eR = (0, 1)T characterize the 4D chirality. The index n represents the n-th level of the

KK modes and α denotes the index that distinguishes the degeneracy of the n-th KK modes (if exist). The

mode functions f
(n)
α (y) (g

(n)
α (y)) have 2⌊d/2⌋ components and are assumed to form a complete set with respect

to the internal space associated with the 4D left-handed (right-handed) chiral spinors φ
(n)
α (x) (χ̄

(n)
α (x)).

2For the case of d = 1, γy1 is defined as i.

3In odd dimensions, there is no internal chiral matrix corresponding to Γd+1 or γd+1.

4For two component spinors, we follow the notation adopted in [31], which includes the followings: σµ = {12, σ
a}, σ̄µ = {12,−σ

a},

(φ
(n)
α (x))† = φ̄

(n)
α (x), and (χ̄

(n)
α (x))† = χ

(n)
α (x).
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Substituting this expansion (6) into the action (1), we find

S =

∫

M4

d4x
∑

n,m

∑

α,β

[

〈 f
(n)
α | f

(m)

β
〉 φ̄

(n)
α (x)iσ̄µ∂µφ

(m)

β
(x) + 〈g

(n)
α |g

(m)

β
〉 χ

(n)
α (x)iσµ∂µχ̄

(m)

β
(x)

+ 〈 f
(n)
α |Ag

(m)

β
〉 φ̄

(n)
α (x)χ̄

(m)

β
(x) + 〈g

(n)
α |A

† f
(m)

β
〉 χ

(n)
α (x)φ

(m)

β
(x)

]

, (7)

where 〈X|Y〉 =
∫

Ω
ddy X†(y)Y(y) and A = +iγyk∂yk

− M, A† = −iγyk∂yk
− M. We note that A and A† are the

off-diagonal components of the Dirac operator Γ0(iΓyk∂yk
− M) written as

Γ0(iΓyk∂yk
− M) =

(

0 A

A† 0

)

⊗ 12 . (8)

We require that φ
(n)
α (x) and χ̄

(n)
α (x) are mass eigenstates of the 4D spectrum and that the action (7) should be

written into the form

S =

∫

M4

dx

{

∑

α

∑

n

ψ̄
(n)
α (x)(iγµ∂µ + mn)ψ

(n)
α (x)

+
∑

α

φ̄
(0)
α (x)iσ̄µ∂µφ

(0)
α (x) + χ

(0)
α (x)iσµ∂µχ̄

(0)
α (x)

}

, (9)

where ψ
(n)
α (x) =

(

φ
(n)
α (x), χ̄

(n)
α (x)

)T
are the n-th KK 4D Dirac fields with mass mn and φ

(0)
α (x) (χ̄

(0)
α (x)) in the

second line are massless left-handed (right-handed) 4D chiral fields. This can be realized, provided the mode

functions f
(n)
α (y) and g

(n)
α (y) satisfy the following orthonormality relations:

〈 f
(n)
α | f

(m)

β
〉 = 〈g

(n)
α |g

(m)

β
〉 = δαβδ

nm ,

〈 f
(n)
α |Ag

(m)

β
〉 = 〈g

(n)
α |A

† f
(m)

β
〉 = mnδαβδ

nm . (10)

3 N = 2 quantum-mechanical supersymmetry

In this section, we show that the orthonormality relations (10) imply that the mode functions f
(n)
α (y) and

g
(n)
α (y) form supersymmetric partners (except for zero modes) in an N = 2 supersymmetric quantum

mechanics (SQM).

Since the mode functions f
(n)
α (y) and g

(n)
α (y) are assumed to form complete sets on the internal space,

Eq. (10) leads to the relations

A† f
(n)
α (y) = mn g

(n)
α (y) , Ag

(n)
α (y) = mn f

(n)
α (y) . (11)

It immediately follows that f
(n)
α (y) and g

(n)
α (y) satisfy the eigenvalue equations

(−∂2
y + M2) f

(n)
α (y) = m2

n f
(n)
α (y) ,

(−∂2
y + M2)g

(n)
α (y) = m2

n g
(n)
α (y) , (12)

and that the above relations (11) and (12) can be naturally embedded in a system of an N = 2 SQM, as

explained below.

3



Let us introduce the supercharge Q and the “fermion” number operator (−1)F such as

Q =

(

0 A

A† 0

)

, (−1)F =

(

−12⌊d/2⌋ 0

0 12⌊d/2⌋

)

, (13)

and then define the Hamiltonian by

H = Q2 . (14)

This system is known as the N = 2 SQM (see reviews [1]).5 It should be noticed that the supercharge Q and

the fermion number operator (−1)F are represented as

Γ0(iΓy∂y − M) = Q ⊗ 12 , Γ5 = (−1)F ⊗ 12 . (15)

It follows that Q and (−1)F can be interpreted as the Dirac operator on the internal space and the 4D chiral

operator, respectively.

To rewrite the relations (11) and (12) in the language of the N = 2 SQM, we introduce

Φ
(n)
α,+(y) =

(

0

g
(n)
α (y)

)

, Φ
(n)
α,−(y) =

(

f
(n)
α (y)

0

)

. (16)

Then, in terms of Φ
(n)
α,±(y), the relations (11) and (12) can be rewritten as

QΦ
(n)
α,±(y) = mnΦ

(n)
α,∓(y) , (17)

HΦ
(n)
α,±(y) = m2

nΦ
(n)
α,±(y) , (18)

with

(−1)FΦ
(n)
α,±(y) = ±Φ

(n)
α,±(y) . (19)

We call Eqs. (11) and (17), supersymmetric relations. The mode functions Φ
(n)
α,+(y) (or g

(n)
α (y)) and Φ

(n)
α,−(y)

(or f
(n)
α (y)) are (at least) doubly degenerate in the spectrum except for zero energy states (see Figure 1), and

they form N = 2 supermultiplets. Thus, the N = 2 supersymmetry turns out to be hidden in the 4D spectrum

of the higher dimensional Dirac theory, as well as higher dimensional gauge/gravity theories [16–19].

Here, a question arises about the degeneracy of the spectrum. Although the N = 2 supersymmetry

assures a pair of eigenstates in the spectrum, as seen in Figure 1, the degeneracy of the spectrum in the higher

dimensional Dirac action is found to be much larger than that expected by the N = 2 supersymmetry (see

Figure 2), in general. This fact suggests that there should exist some symmetries in addition to the N = 2

supersymmetry. To reveal hidden symmetries on the degeneracy of the spectrum is the purpose of the next

section.

Before closing this section, we should give a comment on the Hermiticity property of the supercharge.

The supercharge Q has to be Hermitian in the N = 2 SQM but the Hermiticity of Q would not be trivial if the

internal space Ω has boundaries. To verify the Hermiticity of Q, let us examine the variational principle of the

action, δS = 0, which leads to the (d + 4)-dimensional Dirac equation and also the condition for the surface

integral, i.e.

∫

∂Ω

dd−1y















f
(ñ)
α̃

(y)

g
(m̃)

β̃
(y)















† (

0 inyk
γyk

−inyk
γyk 0

)















f
(n)
α (y)

g
(m)

β
(y)















= 0 , (20)

for any n,m, α, β and ñ, m̃, α̃, β̃. The nyk
is a normal vector at each point of the boundary ∂Ω. It turns out that

the supercharge Q is Hermitian, provided that boundary conditions on f
(n)
α (y) and g

(n)
α (y) are chosen to satisfy

Eq. (20).

5If one defines Q1 = Q and Q2 = i(−1)F Q, then they form the N = 2 supersymmetry algebra {Q j,Qk} = 2Hδ jk for j, k = 1, 2.
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En

0

Qj

Qj

(−1)F −1: f
α

+1: g
α

...
...

Figure 1: The one dimensional SQM model (known as a Witten model [32]) has the doubly degenerated

spectrum except for the zero energy state ( j = 1, 2).

mn

0

Qj

Qj

(−1)F −1: fα +1: gα

. . .

. . .

. . .

...

. . .

. . .

...

Figure 2: The eigenfunctions f
(n)
α (y) and g

(n)
α (y) of the higher dimensional Dirac field are, in general, multiply

degenerate at each KK level. An N-extended supersymmetry with the supercharges Q j ( j = 1, 2, · · · , d + 2

( j = 1, 2, · · · , d + 1) for even (odd) dimensions) is hidden in the spectrum.

4 N-extended quantum-mechanical supersymmetry

Interestingly, the previousN = 2 supersymmetry can be enlarged to anN-extended supersymmetry describing

the additional degeneracy of the spectrum. The supersymmetry has d + 2 (d + 1) supercharges for d = even

(odd) extra dimensions. The supercharges form the N-extended supersymmetry algebra such as

{Qi,Q j} = 2Hδi j , [Qi,H] = 0 , (21)

where i, j = 1, 2, · · · , d + 2 (i, j = 1, 2, · · · , d + 1) for even (odd) dimensions. The Hamiltonian H is the same

as that given in the N = 2 supersymmetry algebra. The supercharges are defined by the composition of the

reflections operators as

Qk = i(−1)F(12 ⊗ γd+1γ
yk )RkQ (k = 1, · · · , d) ,

Qd+1 = i(−1)F(12 ⊗ γd+1)PQ ,

Qd+2 = Q , (22)

for even dimensions, and

Qk = i(−1)F(12 ⊗ iγydγyk )RdRkQ (k = 1, · · · , d − 1) ,

Qd = i(−1)F(12 ⊗ iγyd )RdPQ ,

Qd+1 = Q , (23)
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for odd dimensions. The Rk (k = 1, 2, · · · , d) denotes the reflection operator for the yk direction, i.e.

(Rk f )(y1, · · · , yk, · · · , yd) ≡ f (y1, · · · ,−yk, · · · , yd) for any function f (y1, · · · , yd).6 P =
∏d

k=1 Rk represents

the point reflection (or parity) operator of the internal space. Here (when d is more than one), the element

i(−1)F Q is not included in this algebra since it is commutative with the other components except for Q.

To demonstrate that the supercharges Q j can explain the degeneracy of the spectrum at each KK level

with m2
n > 0, let us consider, as an example, the d-dimensional hyperrectangle internal space:

Ω = [−L1/2, L1/2] × · · · × [−Ld/2, Ld/2] , (24)

where Lk (k = 1, 2, · · · , d) is the length of the k-th side of the hyperrectangle with the Dirichlet boundary

condition on g
(n)
α (y), i.e.

g
(n)
α (y) = 0

(

or Φ
(n)
α,+(y) = 0

)

on ∂Ω . (25)

Then, the supersymmetric relations (11) (or (17)) lead to the following boundary condition on f
(n)
α (y) [33, 34]:

A† f
(n)
α (y) = 0

(

or QΦ
(n)
α,−(y) = 0

)

on ∂Ω . (26)

It should be emphasized that the boundary conditions (25) and (26) are compatible with the N-extended

supersymmetry.

The n-th mode functions g
(n)
α (y) and f

(n)
α (y) with a KK mass m2

n > 0 are found to be of the form

g
(n)
α (y) = h(n)(y)eα , (27)

f
(n)
α (y) =

1

mn

Ag
(n)
α (y)

(

or Φ
(n)
α,−(y) =

1

mn

QΦ
(n)
α,+(y)

)

, (28)

where h(n)(y) is a scalar function. Hereafter, we adopt the following variables for representing α concretely,

where the basis vectors of the spinor space eα = es1 s2···s⌊d/2⌋ (sp = ± for p = 1, 2, · · · , ⌊d/2⌋) are the eigenvectors

of γ(p) = iγy2p−1γy2p [35, 36], i.e.

γ(p)es1···sp···s⌊d/2⌋ = spes1···sp···s⌊d/2⌋ , (29)

for all p = 1, 2, · · · , ⌊d/2⌋.7 sp represents an eigenvalue of the p-th internal chirality of γ(p). Thus, the

degeneracy at each KK level is 2× 2⌊d/2⌋. (The additional factor 2 corresponds to the degeneracy between g
(n)
α

and f
(n)
α .) The scalar function h(n)(y) is the eigenmode of the Hamiltonian H = −∂2

y + M2 with the eigenvalue

m2
n = M2 +

∑d
k=1(nkπ)2/L2

k
where nk = 1, 2, · · · (k = 1, 2, · · · , d), and is explicitly given by

h(n)(y) =

d
∏

k=1

√

2

Lk

sin

(

nkπ

Lk

(

yk +
Lk

2

)

)

. (30)

It is easy to verify that theN-extended supercharges Q j can explain the degeneracy of the mode functions,

as we expected. We can derive the following general relationships with k′ = 2p−1 or 2p (p = 1, 2, · · · , ⌊d/2⌋)

for d being even,

Qk′ Φ
(n)
s1···sp···s⌊d/2⌋,±

(y) ∝ Φ
(n)

s1···(−sp)···s⌊d/2⌋,∓
(y) , (31)

Qd+1,d+2Φ
(n)
s1···sp···s⌊d/2⌋,±

(y) ∝ Φ
(n)
s1···sp···s⌊d/2⌋,∓

(y) , (32)

6 We note that the reflection operator Rk acts on ∂l as Rk∂yl
R−1

k
= (1 − 2δkl)∂yl

.

7 Note that g
(n)
s1 s2 ···s⌊d/2⌋

are eigenvectors of γ(p), while f (n)
s1 s2 ···s⌊d/2⌋

are not. The forms of f (n)
s1 s2 ···s⌊d/2⌋

are determined by the correspond-

ing states of g
(n)
s1 s2 ···s⌊d/2⌋

through the relation (28).
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and for d being odd,

Qk′ Φ
(n)
s1···sp···s⌊d/2⌋,±

(y) ∝ Φ
(n)

s1···(−sp)···s⌊d/2⌋,∓
(y) , (33)

Qd,d+1Φ
(n)
s1···sp···s⌊d/2⌋,±

(y) ∝ Φ
(n)
s1···sp···s⌊d/2⌋,∓

(y) , (34)

where flips are observed in one of the internal chiralities for the cases of (31) and (33). Here, we adopt the

notation (being similar to that in Eq. (16))

Φ
(n)
s1···sp···s⌊d/2⌋,+

(y) =

(

0

g
(n)
s1···sp···s⌊d/2⌋(y)

)

,

Φ
(n)
s1···sp···s⌊d/2⌋,−

(y) =

(

f
(n)
s1···sp···s⌊d/2⌋(y)

0

)

. (35)

We summarize the above statements as follows. Once a single mode function g
(n)
α (y) (or f

(n)
α (y)) is given (for

fixed α), the whole mode functions can be obtained by successively operating the N-extended supercharges

on g
(n)
α (y) (or f

(n)
α (y)) as shown at Figure 3.

Figure 3: The g
(n)
s1 s2 s3

and f
(n)
s1 s2 s3

(s1, s2.s3 = ±) are the degenerate n-th mode functions on the six-dimensional

hyperrectangle in the ten-dimensional space-time. The N-extended supercharges generate the whole mode

functions. The lines indicate the relationships through the N-extended supercharges, where the double

continuous, single continuous, dashed, and dotted lines correspond to Q7 or Q8, Q1 or Q2, Q3 or Q4, and Q5

or Q6, respectively.

5 Extension of supersymmetry with superpotential

Let us consider the extension of the supersymmetry with a superpotential. To this end, we replace the bulk

mass M with a scalar function W(y). Then, we can show that the N = 2 supersymmetry given in Section 3

holds with the supercharge

Q =

(

0 iγyk∂yk
−W(y)

−iγyk∂yk
−W(y) 0

)

. (36)
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It is, however, non-trivial for the whole of the extended supersymmetry to preserve with the introduction of

the superpotential W(y).

For d = even, the conditions for a realization of the full N = d + 2 extended supersymmetry are found to

be given by

(

RkW
)

(y) = W(y) for k = 1, · · · , d , (37)

or equivalently

W(y1, · · · ,−yk, · · · , yd) = W(y1, · · · , yk, · · · , yd) for k = 1, · · · , d. (38)

If the superpotential does not satisfy the above conditions, the extended supersymmetry is broken. For

instance, let us consider the case that the superpotential W(y) satisfies the relations (37) only for the directions

yk1
, · · · , ykm

(m < d), i.e.

(

RkW
)

(y) = W(y) for k = k1, · · · , km . (39)

Then, the supercharges Qk (k , k1, · · · , km) and Qd+1 in Eq.(22) become ill-defined and should be removed

from the supersymmetry algebra. Thus, the supercharges Qk (k = k1, · · · , km) and Qd+2 in Eq.(22) form the

N = m + 1 extended supersymmetry for m = odd. Interestingly, it turns out that the N = m + 1 extended

supersymmetry can be enlarged to the N = m + 2 extended one for m = even with an additional supercharge

Q(k1···km) ≡ i(−1)F(12 ⊗ im/2γyk1 · · · γykm )Rk1
· · ·Rkm

Q . (40)

The same argument can be also applied to the odd d-dimensional case.

6 Summary and discussion

In this paper, we have succeeded in constructing the new realization of the N-extended quantum-mechanical

supersymmetry. First we considered the hidden N = 2 quantum-mechanical supersymmetry in the KK

decomposition of the higher dimensional Dirac field. TheN = 2 supersymmetry shows that the mode function

f
(n)
α for the left-handed chiral spinor φ

(n)
α and g

(n)
α for the right-handed chiral spinor χ̄

(n)
α in Eq. (6) form a pair

of N = 2 supermultiplets.

Surprisingly, we further found that the N-extended quantum-mechanical supersymmetry with multiple

supercharges is hidden in the spectrum. It turns out that once a single mode function is given, the supercharges

in the N-extended supersymmetry can generate the whole degenerate mode functions of the KK spectrum on

the hyperrectangle extra dimensions with the boundary conditions (25) and (26).

Furthermore we revealed the extended supersymmetry with the superpotential. Then, we clarified the

conditions for the superpotential to preserve or partially preserve the extended supersymmetry.

Our analysis is far from being complete. We have demonstrated only the case of the boundary conditions

given in Eq. (25) and (26). Although the boundary conditions (25) and (26) are compatible with the N-

extended supersymmetry, all the supercharges given in Eq. (22) or (23) are not necessarily well-defined

for other types of boundary conditions. For example, boundary conditions with no reflection symmetry

of yk → −yk, the supercharge Qk will become ill-defined because Qk includes the reflection operator Rk

in the definition of Eq. (22) or (23). Thus, it would be of importance to determine how the N-extended

supersymmetry is broken by boundary conditions.

Allowed boundary conditions on a rectangle (as two dimensional extra dimensions) have been classified

in Refs. [33, 34]. However, general boundary conditions for Dirac fields in arbitrary higher dimensions have

8



not been obtained yet, because it is nontrivial to find general solutions to Eq. (20). So, it will be interesting to

find a class of boundary conditions consistent with Eq. (20).

Although we have introduced a superpotential into the supercharges, we have not solved any mass

spectrum of concrete models in this paper. It would be interesting to try to find a new class of exactly solvable

quantum-mechanical models with the N-extended supersymmetry. The issues mentioned in this section will

be reported in a future work.
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