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Abstract
We continue the previous study on the existence of different intermediate Hamiltonians in type
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contrast with theN = 2 case, we find various patterns in the existence of intermediate Hamiltonians

due to the presence of two different intermediate positions in a factorized type A 3-fold supercharge.
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I. INTRODUCTION

Recently we reported [1] on the existence of different intermediate Hamiltonians in type
A N -fold supersymmetry (SUSY) [2]. Apart from the connectivity to a wide range of
solvable and quasi-solvable potentials including not only the well-known sl(2) Lie-algebraic
models [3] but also the new extended class of completely solvable rational ones [4], type
A N -fold SUSY is of independent interest because of the rich mathematical structure it
provides (for a review, see Ref. [5]).

The main motivation of our study came from the issue of non-uniqueness of factorizing
operators as a consequence of the underlying GL(2,C) symmetry. Type A N -fold super-
charge admits of a one-parameter family of factorizations that is expressible as a product
of N first-order linear differential operators due to the aforementioned symmetry [6]. This
in turn implies that a type A N -fold SUSY can have different intermediate Hamiltonians
corresponding to different factorizations. However the existence of intermediate Hamiltoni-
ans is not guaranteed in general [2]. In Ref. [1], we investigated under what conditions type
A N -fold SUSY systems can admit intermediate Hamiltonians and that how many sets of
such Hamiltonians are plausible for the specific case of N = 2. We then concluded that the
number of admissible intermediate Hamiltonians would be a more suitable index than the
concept of reducibility introduced in Refs. [7, 8] to characterize higher-order intertwining
operators. Furthermore, we found that it naturally leads to a realization of second-order
parasupersymmetry (paraSUSY) [9] and generalized 2-fold superalgebra [10].

In this article, we pursue our investigations further and focus on the N = 3 case. In
comparison with the previous N = 2 case, there appear mainly two novel features in the
N = 3 case. The one is the fact that the functional types of type A N -fold SUSY potentials
for N ≥ 3 are strictly restricted to at most elliptic functions due to an additional constraint.
But due to this constraint, all the type A N -fold SUSY models for N ≥ 3 were completely
classified in Ref. [6]. We find that we can also classify entirely all the type A 3-fold SUSY
models which have intermediate Hamiltonians.

The other novel feature of N = 3 is concerned with the fact that there are two different
intermediate positions in each factorized 3-fold supercharge. Due to the latter fact, one can
consider different patterns in the existence of intermediate Hamiltonians. That is, in cer-
tain cases systems admit intermediate Hamiltonians at both the two intermediate positions
while in other cases systems admit them at only one of the two positions. Explorations
of the underlying conditions for each case reveal that for the former classes a system with
intermediate Hamiltonians at the two positions turns out to be always solvable and even
shape invariant. On the other hand, for the latter classes a system with an intermediate
Hamiltonian at only one position is led to quasi-solvability only.

Thanks to the aforementioned different patterns in the N = 3 case, we further find
intriguing and quite rich structure which does not exist in the N = 2 case when we consider
the existence of more than one sets of intermediate Hamiltonians. For instance, we find
that there are systems which have intermediate Hamiltonians at the two positions in one
factorization but has only one at one of the positions in another factorization. Throughout
the analyses of such systems, we realize that in contrast to the N = 2 case we must consider
not only the number of admissible intermediate Hamiltonians but also the variety in the
existence of them to characterize N th-order intertwining operators for the N ≥ 3 cases.

We also investigate a parafermionic formulation of such systems and realizations of third-
order paraSUSY [11, 12] and generalized 3-fold superalgebra [13]. We find not only that
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such realizations are indeed possible but also that variations of the latter superalgebra hold
according to the different patterns in the existence of intermediate Hamiltonians.

The article is organized as follows. In Section II, we review type A 3-fold SUSY and
discuss some of its salient features. Then, we introduce three classes according to three
different patterns in the existence of intermediate Hamiltonians. In Section III, we work out
explicitly the necessary and sufficient conditions for each of the three classes. In Section IV,
we classify exhaustively different type A 3-fold SUSY potentials with one set of intermediate
Hamiltonians. In particular, we find an intimate relation between the patterns and the degree
of solvability. That is, all the systems which have intermediate Hamiltonians at the two
positions consist of shape invariant potentials. In contrast, those which have one at only one
position comprise sextic anharmonic oscillators, deformed Pöschl-Teller or Scarf potentials,
and one-body elliptic Inozemtsev potentials, all of which are quasi-solvable. In Section V, we
discuss and study in full detail the necessary and sufficient conditions for a system to have
different sets of intermediate Hamiltonians in various patterns. In Section VI, we then give
the complete classification of the type A 3-fold SUSY models which admit simultaneously
more than one sets of intermediate Hamiltonians. In Section VII, we show that a system with
intermediate Hamiltonians at the two positions always admits a realization of third-order
paraSUSY. In addition, each system belonging to one of the three classes always admits a
realization of variant generalized 3-fold superalgebras. In the final section, we summarize
and discuss various aspects of the obtained results.

II. TYPE A 3-FOLD SUPERSYMMETRY

A type A 3-fold SUSY system is given by

H± = −1

2

d2

dx2
+

1

2
W (x)2 − 1

3

(

2E ′(x)− E(x)2
)

− R± 3

2
W ′(x), (2.1a)

P−
3 = P−

31P
−
32P

−
33, P+

3 = −(P−
3 )T = P+

33P
+
32P

+
31, (2.1b)

where the superscript T denotes the transposition in the x-space and P±
3i (i = 1, 2, 3) are

defined by

P±
31 = ∓∂ +W − E, P±

32 = ∓∂ +W, P±
33 = ∓∂ +W + E. (2.2)

In the expanded form, the type A 3-fold supercharge component P−
3 reads

P−
3 = ∂3 + 3W∂2 +

(

3W ′ + 3W 2 + 2E ′ − E2
)

∂

+W ′′ + 3WW ′ +W 3 +
(

2E ′ −E2
)

W +
1

2

(

2E ′ − E2
)′
. (2.3)

The functions E(x) and W (x) are not arbitrary but are connected with a fourth-degree
polynomial A(z) and a second-degree polynomial Q(z)

A(z) = a4z
4 + a3z

3 + a2z
2 + a1z + a0, (2.4a)

Q(z) = b2z
2 + b1z + b0, (2.4b)

through the following relations

z′′(x) = E(x)z′(x), 2A(z) = z′(x)2, Q(z) = −z′(x)W (x). (2.5)
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From these relations, we obtain in particular

W ′(x) + E(x)W (x) = −Q′(z), E ′(x) + E(x)2 = A′′(z), (2.6)

which will play important roles in later analyses. The restriction on the form of A(z) arises
in type A N -fold SUSY for all N ≥ 3 and is absent for N = 2. This strongly limits the
possible forms of potentials for N ≥ 3.

Due to the underlying algebraic structure of type A N -fold SUSY systems, they are
invariant under the linear projective transformations of GL(2,C) defined by

z =
αw + β

γw + δ
, (α, βγ, δ ∈ C, ∆ = αδ − βγ 6= 0). (2.7)

The polynomials A(z) and Q(z) are then transformed under the GL(2,C) transformations
as

A(z) 7→ Â(w) = ∆−2(γw + δ)4A(z)
∣

∣

∣

z=αw+β
γw+δ

=
4

∑

k=0

âkw
k, (2.8)

Q(z) 7→ Q̂(w) = ∆−1(γw + δ)2Q(z)
∣

∣

∣

z=αw+β
γw+δ

=
2

∑

k=0

b̂kw
k, (2.9)

where the new coefficients âi (i = 0, . . . , 4) and b̂i (i = 0, 1, 2) are respectively given by













â4
â3
â2
â1
â0













= ∆−2













α4 α3γ
4α3β α2(αδ + 3βγ)
6α2β2 3αβ(αδ + βγ)
4αβ3 β2(3αδ + βγ)
β4 β3δ

α2γ2 αγ3 γ4

2αγ(αδ + βγ) γ2(3αδ + βγ) 4γ3δ
α2δ2 + 4αβγδ + β2γ2 3γδ(αδ + βγ) 6γ2δ2

2βδ(αδ + βγ) δ2(αδ + 3βγ) 4γδ3

β2δ2 βδ3 δ4

























a4
a3
a2
a1
a0













, (2.10)

and




b̂2
b̂1
b̂0



 = ∆−1





α2 αγ γ2

2αβ αδ + βγ 2γδ
β2 βδ δ2









b2
b1
b0



 . (2.11)

From the formulas (2.5), the induced transformations of functions E(x) and W (x) read

W (x) 7→ Ŵ (x) = W (x), E(x) 7→ Ê(x) = E(x)− 2γz′(x)

γz(x) − α
. (2.12)

The latter transformation rule in particular implies the invariance of the following function:

2Ê ′(x)− Ê(x)2 = 2E ′(x)− E(x)2. (2.13)
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The GL(2,C) invariance of any type A 3-fold SUSY system is now manifest since both the
pair of Hamiltonians H± in (2.1a) and the operator P−

3 in (2.3) only depend on W and
2E ′ − E2 which are both invariant under any GL(2,C) transformations.

The superHamiltonian H3 and the type A 3-fold supercharges Q±
3 introduced with the

ordinary fermionic variables ψ± as

H3 = H−ψ−ψ+ +H+ψ+ψ−, Q±
3 = P∓

3 ψ
±, (2.14)

satisfy the type A 3-fold superalgebra [6]

[

Q±
3 ,H3

]

=
{

Q−
3 ,Q

+
3

}

= 0, (2.15a)
{

Q−
3 ,Q

+
3

}

= 8(H3 +R)3 − 8

3
(i2[A]− 3D2[Q]) (H3 +R)

+
16

27
(j3[A] + 9I1,2[A,Q]) , (2.15b)

where i2[A], D2[Q], j3[A], and I1,2[A,Q] are the absolute invariants composed of A(z) and
Q(z) as the followings (cf., Ref. [6] and the references cited therein):

i2[A] = 12a0a4 − 3a1a3 + a 2
2 , D2[Q] = 4b0b2 − b 21 ,

2j3[A] = 72a0a2a4 − 27a0a
2
3 − 27a 2

1 a4 + 9a1a2a3 − 2a 3
2 ,

I1,2[A,Q] = 6a4b
2
0 − 3a3b0b1 + 2a2b0b2 + a2b

2
1 − 3a1b1b2 + 6a0b

2
2 .

(2.16)

One of the most important aspects of the type A 3-fold SUSY system (2.1) is that its
components satisfy the third-order intertwining relations:

P−
31P

−
32P

−
33H

− = H+P−
31P

−
32P

−
33, P+

33P
+
32P

+
31H

+ = H−P+
33P

+
32P

+
31, (2.17)

which are responsible for the first commutation relation in (2.15a). Before considering
the central issues on the existence of intermediate Hamiltonians, we shall refer to another
transformation property of the system. That is, the type A 3-fold SUSY system (2.1) is
transformed under W (x) → −W (x) as follows:

H− ↔ H+, P−
31 ↔ −P+

33, P−
32 ↔ −P+

32, P−
33 ↔ −P+

31, P−
3 ↔ −P+

3 . (2.18)

Hence, the system as a whole remains invariant under the transformation W (x) → −W (x).
In particular, it leaves the pair of intertwining relations (2.17) invariant. This transformation
however does not belong to the GL(2,C) transformation since it changes the sign of W (x)
while any GL(2,C) transformation does not change W (x) at all as shown in (2.12).

For type A 3-fold SUSY systems, there are essentially three different patterns in the
existence of intermediate Hamiltonians according to which we shall classify them as follows:

Class (1, 1):

P−
33H

− = H i1P−
33, P+

33H
i1 = H−P+

33, (2.19a)

P−
32H

i1 = H j1P−
32, P+

32H
j1 = H i1P+

32, (2.19b)

P−
31H

j1 = H+P−
31, P+

31H
+ = H j1P+

31. (2.19c)
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Class (0, 1):

P−
32P

−
33H

− = H j1P−
32P

−
33, P+

33P
+
32H

j1 = H−P+
33P

+
32, (2.20a)

P−
31H

j1 = H+P−
31, P+

31H
+ = H j1P+

31. (2.20b)

Class (1, 0):

P−
33H

− = H i1P−
33, P+

33H
i1 = H−P+

33, (2.21a)

P−
31P

−
32H

i1 = H+P−
31P

−
32, P+

32P
+
31H

+ = H i1P+
32P

+
31. (2.21b)

That is, in Class (1, 1) we have considered a set of intermediate Hamiltonians H i1 and H j1

both at the place between P±
31 and P

±
32 and at the place between P±

32 and P
±
33 simultaneously

while in Class (0, 1) and Class (1, 0) we have considered an intermediate Hamiltonian at
only one intermediate place, at the place between P±

31 and P
±
32 in the former and at the place

between P±
32 and P±

33 in the latter.
But we easily find that the set of the intertwining relations (2.21) in Class (1, 0) is

transformed to the one (2.20) in Class (0, 1) by the transformations (2.18) which are caused
by W (x) → −W (x) provided that H i1 is transformed to H j1 simultaneously under the same
transformation. We shall hereafter call the set of the transformations (2.18) accompanied
with the interchange H j1 ↔ H i1 the reflective transformation of a type A 3-fold SUSY
system. Hence, as long as only one set of intermediate Hamiltonians is concerned, we only
need to consider Class (0, 1) without any loss of generality. When we shall examine more
than one sets of intermediate Hamiltonians, however, we must consider simultaneously both
Class (0, 1) and Class (1, 0), as we shall discuss in Sections V and VI.

III. EXISTENCE OF INTERMEDIATE HAMILTONIANS

In this section, we shall derive the necessary and sufficient conditions for the existence
of (at least) one set of intermediate Hamiltonians in each class classified in the last section.
We note that Class (1, 1) can be regarded as a special case of either Class (0, 1) or Class
(1, 0). Thus, we only consider models in Class (0, 1) and Class (1, 0) which do not belong to
Class (1, 1) without any loss of generality. In the subsequent sections, we shall investigate
each case in details.

A. Conditions for Class (1, 1)

The necessary and sufficient condition for satisfying the first formula (2.19a) is that there
exists a constant C33 such that H− and H i1 are expressed as

2H− = P+
33P

−
33 + 2C33 = −∂2 −W ′ −E ′ +W 2 + 2EW + E2 + 2C33, (3.1a)

2H i1 = P−
33P

+
33 + 2C33 = −∂2 +W ′ + E ′ +W 2 + 2EW + E2 + 2C33. (3.1b)

Similarly, the necessary and sufficient condition for satisfying the second formula in (2.19b)
is that there exists another constant C32 such that H i1 and H j1 are expressed as

2H i1 = P+
32P

−
32 + 2C32 = −∂2 −W ′ +W 2 + 2C32, (3.2a)

2H j1 = P−
32P

+
32 + 2C32 = −∂2 +W ′ +W 2 + 2C32, (3.2b)
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and the necessary and sufficient condition for satisfying the third formula in (2.19c) is that
there exists another constant C31 such that H j1 and H+ are expressed as

2H j1 = P+
31P

−
31 + 2C31 = −∂2 −W ′ + E ′ +W 2 − 2EW + E2 + 2C31, (3.3a)

2H+ = P−
31P

+
31 + 2C31 = −∂2 +W ′ − E ′ +W 2 − 2EW + E2 + 2C31. (3.3b)

Comparing (2.1a), (3.1), (3.2), and (3.3) each other, we obtain

6(W ′ + EW ) + E ′ + E2 = −6(R + C33), (3.4a)

2(W ′ + EW ) + E ′ + E2 = 2(C32 − C33), (3.4b)

2(W ′ + EW )− E ′ − E2 = 2(C31 − C32), (3.4c)

6(W ′ + EW )− E ′ − E2 = 6(C31 +R). (3.4d)

Arranging the set of formulas (3.4) and using the relations (2.6), we have

2Q′(z) = C33 − C31, A′′(z) = −3(2R + C33 + C31) = 2C32 − C33 − C31. (3.5)

In terms of the coefficients of polynomials A(z) and Q(z) in (2.4), the necessary and sufficient
conditions (3.5) are written as

a4 = a3 = b2 = 0, 2a2 = 2C32 − C33 − C31,

2b1 = C33 − C31, −3R = C33 + C32 + C31.
(3.6)

The last three equalities in (3.6) just determine the parameters C31, C32, and C33 in terms
of the parameters of the original type A 3-fold SUSY system as

C31 = −a2
3

− b1 −R, C32 =
2a2
3

− R, C33 = −a2
3

+ b1 −R. (3.7)

We note that the first equality in (3.6) is identical to the solvability condition of type A N -
fold SUSY systems (cf., Ref. [14], Eq. (6.13)), namely, the necessary and sufficient condition
for the pair of any type A N -fold SUSY Hamiltonians H± to be not only quasi-solvable
but also solvable. Hence, a type A 3-fold SUSY system with a set of two intermediate
Hamiltonians H i1 and H i2 is always solvable, and conversely a solvable type A 3-fold SUSY
system always admits a set of two intermediate Hamiltonians.

B. Conditions for Class (0, 1)

To consider the first formula in (2.20a), we first note that the second-order operator
P−
32P

−
33 belongs to a type A 2-fold supercharge

P−
32P

−
33 =

(

∂ +W1 −
E

2

)(

∂ +W1 +
E

2

)

, (3.8)

with

W1(x) = W (x) +
E(x)

2
. (3.9)
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Hence, the necessary and sufficient conditions for satisfying the first formula (2.20a) are that
there exists a second-degree polynomial Q1(z) in z such that (cf., Ref. [6])

Q1(z) = −z′(x)W1(x),
d3

dz3
Q1(z) = 0, (3.10)

and that H− and H j1 are expressed as

2H− = − d2

dx2
+W 2

1 − E ′

2
+
E2

4
− 2R1 − 2W ′

1, (3.11a)

2H j1 = − d2

dx2
+W 2

1 − E ′

2
+
E2

4
− 2R1 + 2W ′

1, (3.11b)

where R1 is a constant. The necessary and sufficient condition for satisfying the second
formula (2.20b) is that there exists another constant C31 such that H j1 and H+ are expressed
as

2H j1 = P+
31P

−
31 + 2C31 = −∂2 −W ′ + E ′ +W 2 − 2EW + E2 + 2C31, (3.12a)

2H+ = P−
31P

+
31 + 2C31 = −∂2 +W ′ − E ′ +W 2 − 2EW + E2 + 2C31. (3.12b)

Comparing (2.1a), (3.11), and (3.12) each other, and using (3.9), we obtain

6(W ′ + EW )− E ′ − E2 = −12(R −R1) = 4(C31 +R1) = 6(C31 +R), (3.13)

which is equivalent, in view of the relations (2.6), to

−6Q′(z)−A′′(z) = −12(R− R1) = 4(C31 +R1) = 6(C31 +R). (3.14)

The condition (3.10), if combined with (2.5), leads to

A′(z) = 2 [Q(z)−Q1(z)] , (3.15)

which means that A′(z) is also a polynomial of at most second degree. In terms of the
coefficients of polynomials A(z) and Q(z) in (2.4), the necessary and sufficient conditions
(3.14) and (3.15) are written as

a4 = a3 + 2b2 = 0, a2 + 3b1 = −2(C31 +R1), 3R = 2R1 − C31. (3.16)

The last two equalities in (3.16) just determine the constants C31 and R1 in terms of the
parameters of the original type A 3-fold SUSY system as

C31 = −a2
3

− b1 − R, R1 = −a2
6

− b1
2
+R. (3.17)

We now find that a model in Class (0, 1) which satisfies (3.16) can also satisfy the condition
(3.6) and thus belong to Class (1, 1) if and only if a3 = b2 = 0. Hence, we assume a3b2 6= 0
without any loss of generality in the subsequent analyses of Class (0, 1). With the latter
assumption, however, the solvability condition cannot be satisfied inevitably. Hence, all the
models in Class (0, 1) are only quasi-solvable but may not be completely solvable.

Finally, we note that the superHamiltonian and type A 2-fold supercharges constructed
from H−, H j1, and P−

32P
−
33 form a type A 2-fold superalgebra since H− and H j1 are a type
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A 2-fold SUSY pair with respect to the operator P−
32P

−
33. In particular, the anti-commutator

of the type A 2-fold supercharges constructed in this way reads in components

P+
33P

+
32P

−
32P

−
33 = 4S

(0,1)
2 (H− +R), P−

32P
−
33P

+
33P

+
32 = 4S

(0,1)
2 (H j1 +R), (3.18)

where S
(0,1)
2 is a monic polynomial of second-degree given by

S
(0,1)
2 (t) = t2 −

(a2
3

+ b1

)

t− 2(a1 − 2b0)b2 −
2

9
(a2 − 3b1)a2. (3.19)

C. Conditions for Class (1, 0)

The analysis for Class (1, 0) is almost the same as for Class (0, 1) in the previous section.
That is, the first formula in (2.21) requires that H− and H i1 must form an ordinary SUSY
pair with respect to P±

33:

2H− = P+
33P

−
33 + 2C33 = −∂2 −W ′ − E ′ +W 2 + 2EW + E2 + 2C33, (3.20a)

2H i1 = P−
33P

+
33 + 2C33 = −∂2 +W ′ + E ′ +W 2 + 2EW + E2 + 2C33, (3.20b)

while the second formula in (2.21) requires that H i1 and H+ must form a type A 2-fold
SUSY pair with respect to P−

31P
−
32 and its conjugate:

2H i1 = −∂2 +W 2
2 − E ′

2
+
E2

4
− 2R2 − 2W ′

2, (3.21a)

2H+ = −∂2 +W 2
2 − E ′

2
+
E2

4
− 2R2 + 2W ′

2, (3.21b)

where W2(x) = W (x) − E(x)/2. By following a similar route as in the previous section, it
is straightforward to show that the above requirements are satisfied if and only if

a4 = a3 − 2b2 = 0, C33 = −a2
3

+ b1 −R, R2 = −a2
6

+
b1
2
+R. (3.22)

The last two equalities in the above just determine the constants C33 and R2 and thus only
the first formula stands essentially as the necessary and sufficient condition for a system
to belong to Class (1, 0). As in the case of Class (0, 1), we assume a3b2 6= 0 without any
loss of generality to prevent a model in Class (1, 0) from belonging also to Class (1, 1).
Hence, by the assumption, any system in Class (1, 0) is only quasi-solvable but may not
be completely solvable. In addition, the superHamiltonian and type A 2-fold supercharges
constructed from H i1, H+, and P−

31P
−
32 form another type A 2-fold superalgebra since H i1

and H+ are a type A 2-fold SUSY pair with respect to the operator P−
31P

−
32. In particular,

the anti-commutator of the type A 2-fold supercharges constructed in this way reads in
components

P+
32P

+
31P

−
31P

−
32 = 4S

(1,0)
2 (H i1 +R), P−

31P
−
32P

+
32P

+
31 = 4S

(0,1)
2 (H+ +R), (3.23)

where S
(1,0)
2 is a monic polynomial of second-degree given by

S
(1,0)
2 (t) = t2 −

(a2
3

− b1

)

t+ 2(a1 + 2b0)b2 −
2

9
(a2 + 3b1)a2. (3.24)
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IV. CLASSIFICATION: CASES OF ONLY ONE SET

We are now in a position to classify completely all the possible type A 3-fold SUSY
potentials which admit one and only one set of intermediate Hamiltonians. In the previous
section, we showed that there are three different classes, Class (1, 1), Class (0, 1), and Class
(1, 0), and that the necessary and sufficient conditions for the existence of intermediate
Hamiltonians are

Class (1, 1): a4 = a3 = b2 = 0, (4.1)

Class (0, 1): a4 = a3 + 2b2 = 0 (a3b2 6= 0), (4.2)

Class (1, 0): a4 = a3 − 2b2 = 0 (a3b2 6= 0), (4.3)

where we have neglected the other irrelevant constraints on the parameter relations. It is
evident that these conditions explicitly break the GL(2,C) covariance of the original type A
3-fold systems. Hence, we cannot apply the same classification scheme as the one in Ref. [6]
which employs the full GL(2,C) covariance of the systems. However, we note that there
exists a residual symmetry remained intact in the present cases. In fact, the transformation
formulas (2.12) for the functions E(x) and W (x) tell us that for the set of linear projective
transformations with γ = 0 the functions E(x) and W (x) are both invariant. The latter fact
means in particular that each factor of the type A 3-fold supercharges P±

3i (i = 1, 2, 3) in (2.2)
and thus the intermediate Hamiltonians H i1 and H j1 introduced through the intertwining
relations (2.19)–(2.21) as well are all invariant under an arbitrary GL(2,C) transformation
with γ = 0. The set of linear projective transformations with γ = 0 consists of the set of
(complex) inhomogeneous linear transformations

z = αw + β (α, β ∈ C, α 6= 0), (4.4)

where we have set δ = 1 without any loss of generality. For an arbitrary inhomogeneous
linear transformation (4.4), the transformation matrices of the parameters ai (i = 0, . . . , 4)
and bi (i = 0, 1, 2) given by (2.10) and (2.11) respectively become triangle, and all of the
conditions (4.1)–(4.3) are covariant, that is,

a4 = a3 = b2 = 0 ⇒ â4 = â3 = b̂2 = 0. (4.5)

a4 = a3 ± 2b2 = 0 ⇒ â4 = 0, â3 ± 2b̂2 = α(a3 ± 2b2) = 0. (4.6)

Therefore, all type A 3-fold SUSY systems with one set of intermediate Hamiltonians are
classified by considering the equivalence class under the set of inhomogeneous linear trans-
formations (4.4). We now easily show that the representatives of A(z) under this equivalence
class in each case can be chosen, by noting the constraint a3 6= 0 in Class (0, 1) and Class
(1, 0), as listed in Table I. We note that Case II and Case II’ (Case IV and Case IV’, respec-
tively) are transformed to each other by a projective transformation of GL(2,C) but not
by any inhomogeneous linear transformation (4.4). That is the reason why we must treat
them as separate cases though they are classified as one equivalent case in the classification
of general type A N -fold SUSY models [6]. The still arbitrarily determinable constant a in
Table I can be fixed by considering the scaling relations under the scale transformations of
the parameter space spanned by {ai, bi, R}:

z(x; νai, νbi, νR) = z(
√
νx; ai, bi, R), (4.7a)
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Case Class (1, 1) Class (0, 1), (1, 0)

I a/2

II 2z

II’ 2z3

III z2/2

IV 2a(z2 − 1)

IV’ 2az2(z + 1)

V 2z3 − g2z/2 − g3/2

TABLE I: The complex classification scheme of type A 3-fold SUSY models with one set of in-

termediate Hamiltonians. In the above, g2, g3 ∈ C satisfy g 3
2 6= 27g 2

3 and a ∈ C is an arbitrary

constant.

E(x; νai, νbi, νR) =
√
νE(

√
νx; ai, bi, R), (4.7b)

W (x; νai, νbi, νR) =
√
νW (

√
νx; ai, bi, R), (4.7c)

V (x; νai, νbi, νR) = νV (
√
νx; ai, bi, R). (4.7d)

Hence, in what follows we set a = 1 in all the cases without any loss of generality. For the
classification, we recall the fact that Class (0, 1) and Class (1, 0) are connected with each
other by the reflective transformation. Hence, we shall present only models belonging to
Class (0, 1). We shall show in each case the change of variable z = z(x) and the two functions
E(x) and W (x) determined by (2.5) as well as the potential parts of the 3-fold SUSY pair
Hamiltonians H± and of the intermediate Hamiltonian(s) H i1 and/or H j1 determined by
(3.1)–(3.3) in Class (1, 1) and by (3.11)–(3.12) in Class (0, 1).

A. Classification of Class (1, 1)

I) A(z) = 1/2.

Functions :

z(x) = x, E(x) = 0, W (x) = −b1x− b0. (4.8)

Potentials :

2V −(x) = (b1x+ b0)
2 + 3b1 − 2R, (4.9a)

2V i1(x) = (b1x+ b0)
2 + b1 − 2R, (4.9b)

2V j1(x) = (b1x+ b0)
2 − b1 − 2R, (4.9c)

2V +(x) = (b1x+ b0)
2 − 3b1 − 2R. (4.9d)

In this case, all the potentials (4.9) are harmonic oscillators.
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II) A(z) = 2z.

Functions :

z(x) = x2, E(x) =
1

x
, W (x) = −b1

2
x− b0

2x
. (4.10)

Potentials :

V −(x) =
b 21
8
x2 +

(b0 − 2)(b0 − 4)

8x2
+
b1(b0 + 3)

4
− R, (4.11a)

V i1(x) =
b 21
8
x2 +

b0(b0 − 2)

8x2
+
b1(b0 + 1)

4
− R, (4.11b)

V j1(x) =
b 21
8
x2 +

b0(b0 + 2)

8x2
+
b1(b0 − 1)

4
− R, (4.11c)

V +(x) =
b 21
8
x2 +

(b0 + 2)(b0 + 4)

8x2
+
b1(b0 − 3)

4
−R. (4.11d)

In this case, all the potentials (4.11) are radial harmonic oscillators with centrifugal
potentials.

III) A(z) = z2/2.

Functions :

z(x) = ex, E(x) = 1, W (x) = −b1 − b0e
−x. (4.12)

Potentials :

2V −(x) = b0(2b1 − 3)e−x + b 20 e
−2x − 2R̄, (4.13a)

2V i1(x) = b0(2b1 − 1)e−x + b 20 e
−2x − 2R̄, (4.13b)

2V j1(x) = b0(2b1 + 1)e−x + b 20 e
−2x − 2R̄, (4.13c)

2V +(x) = b0(2b1 + 3)e−x + b 20 e
−2x − 2R̄, (4.13d)

where R̄ = R − b 21 /2 − 1/3 is a constant. In this case, all the potentials (4.13) are Morse
potentials.

IV) A(z) = 2(z2 − 1).

Functions :

z(x) = cosh 2x, E(x) =
2 cosh 2x

sinh 2x
, W (x) = −b1 cosh 2x+ b0

2 sinh 2x
. (4.14)

Potentials :

V −(x) =
2b0(b1 − 6) cosh 2x+ b 20 + (b1 − 4)(b1 − 8)

8 sinh2 2x
− R̄, (4.15a)

V i1(x) =
2b0(b1 − 2) cosh 2x+ b 20 + b1(b1 − 4)

8 sinh2 2x
− R̄, (4.15b)

V j1(x) =
2b0(b1 + 2) cosh 2x+ b 20 + b1(b1 + 4)

8 sinh2 2x
− R̄, (4.15c)
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V +(x) =
2b0(b1 + 6) cosh 2x+ b 20 + (b1 + 4)(b1 + 8)

8 sinh2 2x
− R̄, (4.15d)

where R̄ = R − b 21 /8 − 4/3 is a constant. In this case, all the potentials (4.15) are Pöschl–
Teller potentials. We note that a system of Scarf potentials can be obtained by the choice
A(z) = 2(z2 + 1) which is connected with the representative A(z) = 2(z2 − 1) by the
combination of a complex linear transformation (4.4) and a scale transformation (4.7).

It is interesting to observe that all the potentials given by (4.9), (4.11), (4.13), and (4.15)
are shape invariant as can be easily checked by some obvious scaling of parameters [15]. It
bears mention that the schemes of SUSY quantum mechanics [15–18] are consistent with the
factorization method [19], intertwining relationships [20], and the shape invariance condi-
tion [21]. The latter was first utilized by Gendenshtein [21] to track down solvable potentials.
To be shape invariant the partner potentials while sharing a similar coordinate dependence
can at most differ in the presence of some parameters as precisely has happened in the
potentials above.

B. Classification of Class (0, 1)

II’) A(z) = 2z3.

Functions :

z(x) =
1

x2
, E(x) = −3

x
, W (x) = − 1

2x
+
b1
2
x+

b0
2
x3. (4.16)

Potentials :

V −(x) =
b 20
8
x6 +

b1b0
4
x4 +

b 21 − 20b0
8

x2 +
3

8x2
− b1 −R, (4.17a)

V j1(x) =
b 20
8
x6 +

b1b0
4
x4 +

b 21 + 8b0
8

x2 +
35

8x2
−R, (4.17b)

V +(x) =
b 20
8
x6 +

b1b0
4
x4 +

b 21 + 16b0
8

x2 +
15

8x2
+
b1
2
−R. (4.17c)

In this case, all the potentials (4.17) are well-known quasi-solvable sextic anharmonic
oscillators [22].

IV’) A(z) = 2z2(z + 1).

Functions :

z(x) =
1

sinh2 x
, E(x) = −3 + 2 sinh2 x

sinh x cosh x
, W (x) =

b0 sinh
4 x+ b1 sinh

2 x− 1

2 sinh x cosh x
. (4.18)

Potentials :

V −(x) =
b 20
8
cosh4 x+

(2b1 − 3b0 − 12)b0
8

cosh2 x

− (b1 − b0 + 3)(b1 − b0 + 5)

8 cosh2 x
+

3

8 sinh2 x
+
b0
2
− R̄, (4.19a)

13



V j1(x) =
b 20
8
cosh4 x+

(2b1 − 3b0 + 4)b0
8

cosh2 x

− (b1 − b0 − 1)(b1 − b0 + 1)

8 cosh2 x
+

35

8 sinh2 x
− b0

2
− R̄, (4.19b)

V +(x) =
b 20
8
cosh4 x+

(2b1 − 3b0 + 12)b0
8

cosh2 x

− (b1 − b0 − 3)(b1 − b0 − 1)

8 cosh2 x
+

15

8 sinh2 x
− b0 − R̄, (4.19c)

where R̄ = R − (b1 − b0)(b1 − 3b0)/8 − 4/3 is a constant. In this case, all the potentials
(4.19) are quasi-solvable deformed Pöschl–Teller or Scarf potentials [23].

V) A(z) = 2z3 − g2z/2 − g3/2.

Functions :

z(x) = ℘(x), E(x) =
℘′′(x)

℘′(x)
, W (x) =

℘(x)2 − b1℘(x)− b0
℘′(x)

. (4.20)

Potentials :

V −(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 −
10

3
℘′′(x)

]

− 8

9
℘(x) +

91

18
℘(2x) +

3b1
2

− R, (4.21a)

V j1(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 +
2

3
℘′′(x)

]

+
40

9
℘(x)− 5

18
℘(2x)− b1

2
−R, (4.21b)

V +(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 +
8

3
℘′′(x)

]

+
10

9
℘(x) +

55

18
℘(2x)− 3b1

2
−R. (4.21c)

In the above, ℘(x) is the Weierstrass elliptic function and b̄0 = b0 − g2/12 is another pa-
rameter. The first term of each the potential is a rational function of ℘(x) by the formulas
℘′(x)2 = 4℘(x)3 − g2℘(x) − g3 and ℘′′(x) = 6℘(x)2 − g2/2. In this case, all the potentials
(4.21) are quasi-solvable one-body elliptic BC type Inozemtsev potentials (cf., Ref. [24] and
the references cited therein).

V. DIFFERENT SETS OF INTERMEDIATE HAMILTONIANS

In this section, we shall study under what conditions a type A 3-fold SUSY system can
have more than one sets of intermediate Hamiltonians. The latter possibility originates from
the fact that each factor of a type A N -fold supercharge in a factorized form is not invariant
under a subset of the GL(2,C) transformations although any type A N -fold supercharge
as a whole is invariant under all the GL(2,C) transformations [6]. For the N = 3 case, we
easily check the latter fact directly from the definition (2.2) and the transformation formulas
(2.12):

P±
31[Ŵ , Ê] = P±

31[W,E] +
2γz′

γz − α
, P±

33[Ŵ , Ê] = P±
33[W,E]−

2γz′

γz − α
. (5.1)

Hence, the factors P±
31 and P±

33 in P±
3 are in fact not invariant under any GL(2,C) trans-

formation with γ 6= 0. It means in particular that intermediate Hamiltonians H i1 and/or
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H j1 defined by the relations (2.19), (2.20), or (2.21) could not be invariant under any trans-
formation with γ 6= 0, even if they exist after the transformation. In fact, the existence
of intermediate Hamiltonians after a transformation is not guaranteed automatically since
the conditions for the existence (4.1) or (4.2) are not preserved under any GL(2,C) trans-
formation with γ 6= 0 as was already discussed in Section IV. Therefore, another different
set of intermediate Hamiltonians exists if there is a GL(2,C) transformation with γ 6= 0

for which the transformed parameters âi and b̂i given by (2.10) and (2.11) also satisfy the
existence conditions (4.1) or (4.2). Furthermore, if there exist simultaneously such n(> 1)
GL(2,C) transformations characterized by the sets {αi, βi, γi, δi}ni=1 satisfying γi 6= 0 and
αi/γi 6= αj/γj for all i 6= j, then the corresponding n sets of intermediate Hamiltonians are
different from each other since the formula (2.12) tells us that the deformation is character-
ized by the one parameter α/γ. We shall hereafter say that two GL(2,C) transformations
with γi, γj 6= 0 are inequivalent if αi/γi 6= αj/γj.

In the classification of the systems which admit one set of intermediate Hamiltonians
in Section IV, we considered the two different classes, namely, Class (1, 1) where an in-
termediate Hamiltonian exists at each of the two intermediate positions in the factorized
type A 3-fold supercharge and Class (0, 1) where an intermediate Hamiltonian exists only
at one intermediate position. And any system belonging to Class (1, 0) can be obtained
from the corresponding system belonging to Class (0, 1) by the reflective transformation
W (x) → −W (x). Accordingly, we can consider a type A 3-fold SUSY system which admits
simultaneously m different sets of intermediate Hamiltonians {H ik, H jk}mk=1 of Class (1, 1)
and n different sets of an intermediate Hamiltonian {H jk}m+n

k=m+1 of Class (0, 1). We shall
call such a class of systems Class (m,m+n) with an obvious implication of the terminology.
It is evident that any system which admits simultaneously m different sets of intermediate
Hamiltonians {H ik, H jk}mk=1 of Class (1, 1) and n different sets of an intermediate Hamil-
tonian {H ik}m+n

k=m+1 of Class (1, 0), which would be called to belong Class (m + n,m), can
be obtained from the corresponding system belonging to Class (m,m+ n) by the reflective
transformation (with the obvious accompaniment of the interchanges H jk ↔ H ik for k > 1).
To investigate each class systematically, we first note that any system which belongs to Class
(m,m+ n) with m,n > 0 always belongs to Class (1, 1) since the conditions for Class (1, 1)
is stricter than for Class (0, 1). In other words, an arbitrary system in Class (m,m+n) with
m > 0 is a special case of one of the four systems in Class (1, 1) classified in Section IVA
and thus is always solvable in particular. Hence, only Class (0, n) with n > 1, which is an
abbreviation for Class (0, 0 + n), can have a quasi-solvable system which must be a special
case of one of the three systems in Class (0, 1) classified in Section IVB.

In addition to these classes, there could exist hybrid classes. That is, there is the possi-
bility that a type A 3-fold SUSY system admits simultaneously different sets of intermediate
Hamiltonians some of which belong to Class (0, 1) and the others of which belong to Class
(1, 0). These systems, if exist, could belong to neither Class (m,m + n) nor Class (0, n)
since Class (0, 1) and Class (1, 0) are, as already mentioned, connected by the reflective
transformation but not by any GL(2,C) transformation. We can thus consider a class of
systems belonging to Class (m,m + n) which admit simultaneously l additional different
sets of intermediate Hamiltonians {H ik}m+l

k=m+1 of Class (1, 0). We shall call such a class of
systems Class (m+ l, m+ n). We can assume n ≥ l without any loss of generality since the
reflective transformation interchanges Class (m + n,m + l) and Class (m + l, m + n). By
following an argument similar to in the last paragraph, we shall separate the hybrid classes
in two, the one is Class (m + l, m + n) with m, l, n > 0 which is a special case of Class
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(m,m + n) with m,n > 0 and the other is Class (l;n), which is an abbreviation for Class
(0 + l, 0 + n), with n ≥ l ≥ 1 and is a special case of Class (0, n) with n ≥ 1.

In the subsequent sections, we shall study Class (m,m + n) with m,n > 0 and Class
(0, n) with n ≥ 1 separately.

A. Conditions for Class (m,m+ n) with m,n > 0

The necessary and sufficient conditions for the existence of a set of intermediate Hamil-
tonians of Class (1, 1) are given by (4.1). A system in Class (1, 1) also belongs to
Class (m,m + n) if there exist simultaneously n inequivalent GL(2,C) transformations for
which the conditions (4.2) for Class (0, 1) are satisfied by the transformed coefficients âi
(i = 0, . . . , 4) and b̂i (i = 0, 1, 2), that is,

â4 = â3 + 2b̂2 = 0 (â3b̂2 6= 0), (5.2)

and in addition if there exist simultaneously m− 1 additional inequivalent GL(2,C) trans-

formations for which the conditions (4.1) for Class (1, 1) are satisfied by âi and b̂i, that
is,

â4 = â3 = b̂2 = 0. (5.3)

From the transformation formulas (2.10) and (2.11), we see that when the condition (4.1) is

satisfied, the transformed coefficients â4, â3, and b̂2 respectively read

∆2â4 = α2γ2a2 + αγ3a1 + γ4a0, (5.4a)

∆2â3 = 2αγ(αδ + βγ)a2 + γ2(3αδ + βγ)a1 + 4γ3δa0, (5.4b)

∆b̂2 = αγb1 + γ2b0. (5.4c)

Hence, except for the trivial case γ = 0, the conditions (5.2) are satisfied if and only if

α2a2 + αγa1 + γ2a0 = 0, 2αa2 + γa1 − 2αb1 − 2γb0 = 0, (5.5)

with â3b̂2 6= 0, and the conditions (5.3) are satisfied if and only if

α2a2 + αγa1 + γ2a0 = 0, 2αa2 + γa1 = 0, αb1 + γb0 = 0. (5.6)

In addition, a system of Class (m,m+ n) also belongs to Class (m+ l, m+ n) if there exist
simultaneously additional l inequivalent GL(2,C) transformations for which the transformed

coefficients âi and b̂i satisfy the conditions (4.3) for Class (1, 0), namely,

â4 = â3 − 2b̂2 = 0 (â3b̂2 6= 0). (5.7)

By the transformation formulas (5.4), they are satisfied if and only if (with â3b̂2 6= 0)

α2a2 + αγa1 + γ2a0 = 0, 2αa2 + γa1 + 2αb1 + 2γb0 = 0. (5.8)

In Section VIA, we shall investigate the conditions (5.5), (5.6), and (5.8) in each case
separately.
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B. Conditions for Class (0, n) with n > 1

The necessary and sufficient conditions for the existence of an intermediate Hamiltonian
of Class (0, 1) are given by (4.2). A system in Class (0, 1) also belongs to Class (0, n) if there
exist simultaneously n− 1 inequivalent GL(2,C) transformations for which the transformed

coefficients âi and b̂i satisfy the condition for Class (0, 1), namely, Eq. (5.2). From the
transformation formulas (2.10) and (2.11), we see that when the condition (4.2) is satisfied,

the transformed coefficients â4, â3, and b̂2 respectively read

∆2â4 = α3γa3 + α2γ2a2 + αγ3a1 + γ4a0, (5.9a)

∆2â3 = α2(αδ + 3βγ)a3 + 2αγ(αδ + βγ)a2 + γ2(3αδ + βγ)a1 + 4γ3δa0, (5.9b)

∆b̂2 = −α2a3/2 + αγb1 + γ2b0. (5.9c)

Hence, we obtain

∆2(â3 + 2b̂2) = 4α2βγa3 + 2αγ(αδ + βγ)a2 + γ2(3αδ + βγ)a1 + 4γ3δa0

+ 2∆αγb1 + 2∆γ2b0. (5.10)

Therefore, the condition (5.2) is satisfied, except for the trivial case γ = 0, if and only if

α3a3 + α2γa2 + αγ2a1 + γ3a0 = 0, (5.11a)

4α2a3 + 2αγa2 + γ2a1 − 2αγb1 − 2γ2b0 = 0, (5.11b)

with â3b̂2 6= 0. The second condition is derived by the elimination of a0. On the other hand,
a system in Class (0, n) also belongs to Class (l;n) if there exist simultaneously l additional

inequivalent GL(2,C) transformations for which the transformed coefficients âi and b̂i satisfy
the conditions for Class (1, 0), namely, Eq. (5.7). By the transformation formulas (5.9) they

are satisfied if and only if (with â3b̂2γ 6= 0)

α3a3 + α2γa2 + αγ2a1 + γ3a0 = 0, (5.12a)

2α2a3 + 2αγa2 + γ2a1 + 2αγb1 + 2γ2b0 = 0. (5.12b)

In Section VIB, we shall investigate the conditions (5.11) and (5.12) in each case separately.

VI. CLASSIFICATION: CASES OF MORE THAN ONE SETS

Now that we have derived the existence conditions for another different set of intermediate
Hamiltonians in a general form, we are in a position to proceed a detailed analysis for each
case classified in Section IV. In what follows, we first investigate the systems which belong
to Class (m,m+n) with m,n > 0 and next the ones which belong to Class (0, n) with n > 1.
All the former models are not only quasi-solvable but also solvable since they are special
cases of Class (1, 1). On the other hand, all the latter models are merely quasi-solvable since

we have excluded either cases of a3 = b2 = 0 or of â3 = b̂2 = 0 in Class (0, n).
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A. Classification of Class (m,m+ n) with m,n > 0

I) A(z) = 1/2:

In this case, both the conditions (5.5) and (5.6) only have a trivial solution γ = 0. Thus,
the system admits no different sets of intermediate Hamiltonians.

II) A(z) = 2z:

In this case, the conditions (5.6) only have a trivial solution but the conditions (5.5) have
one set of non-trivial solutions

α = 0, b0 = 1 with â3 = −2b̂2 = 2γ/β( 6= 0). (6.1)

Thus, the system admits another set of an intermediate Hamiltonian of Class (0, 1) and
belongs to Class (1, 2), which is an abbreviation for Class (1, 1+ 1). On the other hand, the
conditions (5.8) also have one set of non-trivial solutions

α = 0, b0 = −1 with â3 = 2b̂2 = 2γ/β( 6= 0). (6.2)

However, the latter GL(2,C) transformation α = 0 is equivalent to the one in (6.1), and
the latter solution b0 = −1 is not compatible with b0 = 1 in (6.1). Hence, the system does
not admit a realization of Class (1 + 1, 1 + 1).

Functions :

z(x) = x2, E(x) =
1

x
, Ê(x) = −3

x
, W (x) = Ŵ (x) = −b1

2
x− 1

2x
. (6.3)

Potentials :

V −(x) =
b 21
8
x2 +

3

8x2
+ b1 −R, (6.4a)

V i1(x) =
b 21
8
x2 − 1

8x2
+
b1
2
− R, V j1(x) =

b 21
8
x2 +

3

8x2
− R, (6.4b)

V j2(x) =
b 21
8
x2 +

35

8x2
−R, (6.4c)

V +(x) =
b 21
8
x2 +

15

8x2
− b1

2
− R. (6.4d)

It is interesting to note that the formulas (3.1) and (3.2) are not valid with Ê(x) and Ŵ (x)
given in (6.3); the potential term V i2(x), for instance, calculated by (3.1) and calculated by
(3.2) do not coincide with each other. Hence, the system admits only H j2 but not H i2 as
the second set of intermediate Hamiltonians. All the potentials (6.4) including the newly
appeared intermediate one V j2(x) in (6.4c) belong to the class of radial harmonic oscillators
with a particular angular momentum.

III) A(z) = z2/2:

In this case, only the conditions (5.6) have one set of non-trivial solutions

α = 0, b0 = 0 with â3 = b̂2 = 0. (6.5)
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Thus, the system admits another set of intermediate Hamiltonians of Class (1, 1) and belongs

to Class (2, 2). However, when the conditions (6.5) are satisfied, then E(x) = −Ê(x) = 1

and W (x) = Ŵ (x) = −b1 so that all the potentials are just an identical constant. Hence,
this case is nothing more than a trivial system.

IV) A(z) = 2(z2 − 1):

In this case, the conditions (5.6) only have a trivial solution but the conditions (5.5) have
two sets of non-trivial solutions

α = ±γ, b0 = ∓b1 ± 2 with â3 = −2b̂2 = −4γ/(δ ∓ β)( 6= 0). (6.6)

Thus, the system admits another set of intermediate Hamiltonians of Class (0, 1) correspond-
ing to each of the solutions and belongs to Class (1, 2). In addition, the system with the
specific values of parameters b1 = 2 and b0 = 0 admits the two different solutions simultane-

ously and thus can have additional two different sets of intermediate Hamiltonians of Class
(0, 1) corresponding to the two solutions. In the latter case, the system belongs to Class
(1, 3). On the other hand, the conditions (5.8) also have two sets of non-trivial solutions

α = ±γ, b0 = ∓b1 ∓ 2 with â3 = 2b̂2 = −4γ/(δ ∓ β)( 6= 0). (6.7)

They are compatible with (6.6) if and only if b1 = 0 and b0 ± 2 with the inequivalent
transformations, namely, α = ±γ for the former and α = ∓γ for the latter. In these
particular two cases, the system belongs to Class (1 + 1, 1 + 1).

IV-1) Class (1, 2)

Parameters :

b0 = ∓(b1 − 2), â3 = −2b̂2 = − 4γ

δ ∓ β
, â2 =

2(β ± 5δ)

β ∓ δ
, b̂1 = −b1 +

4δ

δ ∓ β
. (6.8)

Functions :

z(x) = cosh 2x, W (x) = Ŵ (x) = −b1 cosh 2x+ b0
2 sinh 2x

,

E(x) =
2 cosh 2x

sinh 2x
, Ê(x) =

2 cosh 2x

sinh 2x
− 4 sinh 2x

cosh 2x∓ 1
.

(6.9)

Potentials :

V −(x) =
∓(b1 − 2)(b1 − 6) cosh 2x+ b 21 − 8b1 + 18

4 sinh2 2x
− R̄, (6.10a)

V i1(x) =
∓(b1 − 2)2 cosh 2x+ b 21 − 4b1 + 2

4 sinh2 2x
− R̄, (6.10b)

V j1(x) =
∓(b 21 − 4) cosh 2x+ b 21 + 2

4 sinh2 2x
− R̄, (6.10c)

V j2(x) =
∓(b 21 − 4) cosh 2x+ b 21 + 2

4 sinh2 2x
± 8

cosh 2x∓ 1
− R̄, (6.10d)

V +(x) =
∓(b1 − 2)(b1 + 6) cosh 2x+ b 21 + 4b1 + 18

4 sinh2 2x
− R̄, (6.10e)
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where R̄ = R − b 21 /8 − 4/3 is a constant. The formulas (3.1) and (3.2) are again not valid

with Ê(x) and Ŵ (x) given in (6.9) and thus the system admits only H j2 but not H i2 as the
second set of intermediate Hamiltonians. All the potentials (6.10) but the newly appeared
intermediate one V j2(x) in (6.10d) belong to the class of Pöschl–Teller potential with only
one free parameter. The deformation term in (6.10d) is reminiscent of the generalized
Pöschl–Teller potentials constructed in Ref. [4]. It is worth noting that the deformed
potential (6.10d) is connected with the other shape-invariant potentials by the intertwining
relations (2.20) and thus is almost isospectral to them and is in particular solvable.

IV-2) Class (1, 3)

Parameters :

b1 = 2, â3 = −2b̂2 = − 4γ

δ − β
, â2 =

2(β + 5δ)

β − δ
, b̂1 =

2(δ + β)

δ − β
,

b0 = 0, ˆ̂a3 = −2
ˆ̂
b2 = − 4γ

δ + β
, ˆ̂a2 =

2(β − 5δ)

β + δ
,

ˆ̂
b1 =

2(δ − β)

δ + β
.

(6.11)

Functions :

z(x) = cosh 2x, E(x) =
2 cosh 2x

sinh 2x
, W (x) = Ŵ (x) =

ˆ̂
W (x) = −cosh 2x

sinh 2x
,

Ê(x) =
2 cosh 2x

sinh 2x
− 4 sinh 2x

cosh 2x− 1
,

ˆ̂
E(x) =

2 cosh 2x

sinh 2x
− 4 sinh 2x

cosh 2x+ 1
.

(6.12)

Potentials :

V −(x) =
3

2 sinh2 2x
− R̄, (6.13a)

V i1(x) = − 1

2 sinh2 2x
− R̄, V j1(x) =

3

2 sinh2 2x
− R̄, (6.13b)

V j2(x) =
3

2 sinh2 2x
+

8

cosh 2x− 1
− R̄, (6.13c)

V j3(x) =
3

2 sinh2 2x
− 8

cosh 2x+ 1
− R̄, (6.13d)

V +(x) =
15

2 sinh2 2x
− R̄, (6.13e)

where R̄ = R− 11/6 is a constant. There are essentially no free parameters in this case.

IV-3) Class (1 + 1, 1 + 1)

Parameters :

b1 = 0, â3 = −2b̂2 = − 4γ

δ ∓ β
, â2 =

2(β ± 5δ)

β ∓ δ
, b̂1 =

4δ

δ ∓ β
,

b0 = ±2, ˆ̂a3 = 2
ˆ̂
b2 = − 4γ

δ ± β
, ˆ̂a2 =

2(β ∓ 5δ)

β ± δ
,

ˆ̂
b1 =

4δ

δ ± β
.

(6.14)

Functions :

z(x) = cosh 2x, E(x) =
2 cosh 2x

sinh 2x
, W (x) = Ŵ (x) =

ˆ̂
W (x) = ∓ 1

sinh 2x
,

Ê(x) =
2 cosh 2x

sinh 2x
− 4 sinh 2x

cosh 2x∓ 1
,

ˆ̂
E(x) =

2 cosh 2x

sinh 2x
− 4 sinh 2x

cosh 2x± 1
.

(6.15)
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Potentials :

V −(x) =
∓6 cosh 2x+ 9

2 sinh2 2x
− R̄, (6.16a)

V i1(x) = −∓2 cosh 2x+ 1

2 sinh2 2x
− R̄, V j1(x) =

±2 cosh 2x+ 1

2 sinh2 2x
− R̄, (6.16b)

V i2(x) =
∓2 cosh 2x+ 1

2 sinh2 2x
∓ 8

cosh 2x± 1
− R̄, (6.16c)

V j2(x) =
±2 cosh 2x+ 1

2 sinh2 2x
± 8

cosh 2x∓ 1
− R̄, (6.16d)

V +(x) =
±6 cosh 2x+ 9

2 sinh2 2x
− R̄, (6.16e)

where R̄ = R − 4/3 is a constant. As in the previous case, there are essentially no free
parameters in this case.

B. Classification of Class (0, n) with n > 1

II’) A(z) = 2z3:

In this case, the conditions (5.11) have one set of non-trivial solutions α = b0 = 0 but with

â3 = b̂2 = 0 which should be excluded. In fact, the system corresponding to the latter
solutions is identical with the one in the case II, which belongs to Class (1, 2), already
found in the previous section, Eqs. (6.4).

IV’) A(z) = 2z2(z + 1):

In this case, the conditions (5.11) have two sets of non-trivial solutions, the one is

α = −γ, b1 = b0 − 2 with â3 = −2b̂2 = 2γ/(β + δ)( 6= 0), (6.17)

but the other is

α = b0 = 0 with â3 = b̂2 = 0, (6.18)

and thus should be discarded. Indeed, the choice of the latter solution simply leads to the
system of Class (1, 2), and together with the former solution (6.17), to the system of Class
(1, 3) which are identical with the systems (6.10) and (6.13) respectively in the case IV
already found in the previous section. Hence, only the solution (6.17) leads to a new system
which belongs to Class (0, 2).

On the other hand, the conditions (5.12) also have two sets of non-trivial solutions, the
one is identical with (6.18) to be discarded while the other is

α = −γ, b1 = b0 with â3 = 2b̂2 = 2γ/(β + δ)( 6= 0). (6.19)

Hence, the Class (0, 1) system (4.19) admits an intermediate Hamiltonian of Class
(1, 0) and thus belongs to Class (1; 1). However, the GL(2,C) transformation α = −γ
of the latter solution is equivalent to the one in (6.17). Hence, the system does not
admit a realization of Class (1; 2). We note that the choice of the two solutions (6.18)
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and (6.19) leads to the system of Class (1+1, 1+1) which is identical with the system (6.16).

IV’-1) Class (0, 2)

Parameters :

b1 = b0 − 2, â3 = −2b̂2 =
2γ

β + δ
, â2 =

2(δ − 2β)

δ + β
, b̂1 = −b0 −

2δ

β + δ
. (6.20)

Functions :

z(x) =
1

sinh2 x
, W (x) = Ŵ (x) =

b0 sinh
2 x cosh2 x− 2 sinh2 x− 1

2 sinh x cosh x
,

E(x) = −3 + 2 sinh2 x

sinh x cosh x
, Ê(x) =

1− 2 sinh2 x

sinh x cosh x
.

(6.21)

Potentials :

V −(x) =
b 20
8
cosh4 x− (b0 + 16)b0

8
cosh2 x− 3

8 cosh2 x
+

3

8 sinh2 x
+

11

6
+ b0 − R, (6.22a)

V j1(x) =
b 20
8
cosh4 x− b 20

8
cosh2 x− 3

8 cosh2 x
+

35

8 sinh2 x
+

11

6
−R, (6.22b)

V j2(x) =
b 20
8
cosh4 x− b 20

8
cosh2 x− 35

8 cosh2 x
+

3

8 sinh2 x
+

11

6
−R, (6.22c)

V +(x) =
b 20
8
cosh4 x− (b0 − 8)b0

8
cosh2 x− 15

8 cosh2 x
+

15

8 sinh2 x
+

11

6
− b0

2
−R. (6.22d)

IV’-2) Class (1; 1)

Parameters :

b1 = b0, â3 = 2b̂2 =
2γ

β + δ
, â2 =

2(δ − 2β)

δ + β
, b̂1 = −b0 −

2β

β + δ
. (6.23)

Functions :

z(x) =
1

sinh2 x
, W (x) = Ŵ (x) =

b0 sinh
2 x cosh2 x− 1

2 sinh x cosh x
,

E(x) = −3 + 2 sinh2 x

sinh x cosh x
, Ê(x) =

1− 2 sinh2 x

sinh x cosh x
.

(6.24)

Potentials :

V −(x) =
b 20
8
cosh4 x− (b0 + 12)b0

8
cosh2 x− 15

8 cosh2 x
+

3

8 sinh2 x
+

4

3
+
b0
2
− R, (6.25a)

V j1(x) =
b 20
8
cosh4 x− (b0 − 4)b0

8
cosh2 x+

1

8 cosh2 x
+

35

8 sinh2 x
+

4

3
− b0

2
−R, (6.25b)

V i1(x) =
b 20
8
cosh4 x− (b0 + 4)b0

8
cosh2 x− 35

8 cosh2 x
− 1

8 sinh2 x
+

4

3
−R, (6.25c)

V +(x) =
b 20
8
cosh4 x− (b0 − 12)b0

8
cosh2 x− 3

8 cosh2 x
+

15

8 sinh2 x
+

4

3
− b0 − R. (6.25d)
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V) A(z) = 2z3 − g2z/2 − g3/2:

In this case, the conditions (5.11) have three sets of non-trivial solutions

α = eiγ, b0 = −eib1 + 4e 2i − g2
4

with â3 = −2b̂2 =
℘′′(ωi)γ

β − eiδ
( 6= 0), (6.26)

where each ei = ℘(ωi) (i = 1, 2, 3) is the value of the Weierstrass elliptic function at the half
of the fundamental period 2ωi which satisfies the third-degree algebraic equation

4e 3i − g2ei − g3 = 0. (6.27)

Thus, the system admits another set of intermediate Hamiltonians of Class (0, 1) correspond-
ing to each of the solutions and in those cases the system belongs to Class (0, 2). In addition,
the system with the specific values of parameters b1 = 4(ei+ ej) and b0 = −(ei+ ej)

2−3eiej
(i 6= j) admits the two different solutions simultaneously and thus can have additional two
different sets of intermediate Hamiltonians of Class (0, 1) corresponding to the two solu-
tions. In the latter case, the system belongs to Class (0, 3). We note, however, that the
three different solutions are incompatible simultaneously and hence any Class (0, n) with
n > 3 cannot be realized. On the other hand, the conditions (5.12) also have three sets of
non-trivial solutions

α = eiγ, b0 = −eib1 − 2e 2i +
g2
4

with â3 = 2b̂2 =
℘′′(ωi)γ

β − eiδ
( 6= 0). (6.28)

Hence, the Class (0, 1) system (4.21) also admits an intermediate Hamiltonian of Class
(1, 0) and thus belongs to Class (1; 1). In addition, a choice of one solution α = eiγ in (6.26)
and another α = ejγ (j 6= i) in (6.28) is compatible with b1 = 2ei and b0 = e 2i − eiej − e 2j .
In the latter case, the system possesses two additional intermediate Hamiltonians the one
belongs to Class (0, 1) and the other to Class (1, 0), and thus it is a member of Class (1, 2).
However, a choice of three solutions, e.g., two α = eiγ, ejγ in (6.26) and one α = ekγ in
(6.28) with i 6= j 6= k 6= i, conflict with the assumption of non-degeneracy g 3

2 6= 27g 2
3 (for

the latter example, ei = −2ej must hold). Therefore, the hybrid classes such as Class (1, 3)
and Class (2; 2) cannot be realized anymore.

V-1) Class (0, 2)

Parameters :

b0 = −eib1 + 4e 2i − g2
4
, b̂1 = −b1 +

4e 2i β − (12e 3i + g3)δ

2ei(β − eiδ)
,

â3 = −2b̂2 =
℘′′(ωi)γ

β − eiδ
, â2 = 3

4e 2i β
2 + g3βδ − (4e 3i + g3)eiδ

2

2ei(β − eiδ)2
.

(6.29)

Functions :

z(x) = ℘(x), W (x) = Ŵ (x) =
℘(x)2 − b1℘(x)− b0

℘′(x)
,

E(x) =
℘′′(x)

℘′(x)
, Ê(x) =

℘′′(x)

℘′(x)
− 2℘′(x)

℘(x)− ei
.

(6.30)
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Potentials :

V −(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 −
10

3
℘′′(x)

]

− 8

9
℘(x) +

91

18
℘(2x) +

3b1
2

−R, (6.31a)

V j1(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 +
2

3
℘′′(x)

]

+
40

9
℘(x)− 5

18
℘(2x)− b1

2
− R, (6.31b)

V j2(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 +
2

3
℘′′(x)

]

+
4

9
℘(x)− 5

18
℘(2x)

+
2℘′′(ωi)

℘(x)− ei
+ 4ei −

b1
2
− R, (6.31c)

V +(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 +
8

3
℘′′(x)

]

+
10

9
℘(x) +

55

18
℘(2x)− 3b1

2
− R, (6.31d)

where b̄0 = b0 − g2/12 = −eib1 + 2℘′′(ωi)/3. The first term of each the potential can be
expressed solely in terms of ℘(x). With the latter value of b̄0, we have

b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 + C℘′′(x)
]

=
[3b1(℘(x)− ei) + 2℘′′(ωi)]

2

72
∏3

l=1(℘(x)− el)
+
C

12

3
∑

l=1

3b1(℘(x)− ei) + 2℘′′(ωi)

℘(x)− el
, (6.32)

where and hereafter i 6= j 6= k 6= i (i, j, k = 1, 2, 3).

V-2) Class (0, 3)

Parameters : âi and b̂i are the same as (6.29).

b1 = −4ek, b0 = −e 2k − 3eiej ,
ˆ̂
b1 = −b1 +

4e 2j β − (12e 3j + g3)δ

2ej(β − ejδ)
,

ˆ̂a3 = −2
ˆ̂
b2 =

℘′′(ωj)γ

β − ejδ
, ˆ̂a2 = 3

4e 2j β
2 + g3βδ − (4e 3j + g3)ejδ

2

2ej(β − ejδ)2
.

(6.33)

Functions :

z(x) = ℘(x), W (x) = Ŵ (x) =
ˆ̂
W (x) =

℘(x)2 + 4ek℘(x) + e 2k − 3eiej
℘′(x)

,

E(x) =
℘′′(x)

℘′(x)
, Ê(x) =

℘′′(x)

℘′(x)
− 2℘′(x)

℘(x)− ei
,

ˆ̂
E(x) =

℘′′(x)

℘′(x)
− 2℘′(x)

℘(x)− ej
.

(6.34)

Potentials :

V −(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 −
10

3
℘′′(x)

]

− 8

9
℘(x) +

91

18
℘(2x) +

3b1
2

−R, (6.35a)

V j1(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 +
2

3
℘′′(x)

]

+
40

9
℘(x)− 5

18
℘(2x)− b1

2
−R, (6.35b)
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V j2(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 +
2

3
℘′′(x)

]

+
4

9
℘(x)− 5

18
℘(2x)

+
2℘′′(ωi)

℘(x)− ei
+ 4ei −

b1
2
− R, (6.35c)

V j3(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 +
2

3
℘′′(x)

]

+
4

9
℘(x)− 5

18
℘(2x)

+
2℘′′(ωj)

℘(x)− ej
+ 4ej −

b1
2
−R, (6.35d)

V +(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 +
8

3
℘′′(x)

]

+
10

9
℘(x) +

55

18
℘(2x)− 3b1

2
− R. (6.35e)

With the values of b1 and b0 in (6.33), the first term of each the potential can be expressed
solely in terms of ℘(x) as

b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 + C℘′′(x)
]

=
2[3ek℘(x) + e 2k + 2eiej ]

2

9
∏3

l=1(℘(x)− el)
− C

3

3
∑

l=1

3ek℘(x) + e 2k + 2eiej
℘(x)− el

. (6.36)

V-3) Class (1; 1)

Parameters :

b0 = −eib1 − 2e 2i +
g2
4
, b̂1 = −b1 +

4e 2i β + (4e 3i + g3)δ

2ei(β − eiδ)
,

â3 = 2b̂2 =
℘′′(ωi)γ

β − eiδ
, â2 = 3

4e 2i β
2 + g3βδ − (4e 3i + g3)eiδ

2

2ei(β − eiδ)2
.

(6.37)

Functions :

z(x) = ℘(x), W (x) = Ŵ (x) =
℘(x)2 − b1℘(x)− b0

℘′(x)
,

E(x) =
℘′′(x)

℘′(x)
, Ê(x) =

℘′′(x)

℘′(x)
− 2℘′(x)

℘(x)− ei
,

(6.38)

Potentials :

V −(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 −
10

3
℘′′(x)

]

− 8

9
℘(x) +

91

18
℘(2x) +

3b1
2

−R, (6.39a)

V i1(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 −
4

3
℘′′(x)

]

− 2

9
℘(x) +

7

18
℘(2x)

+
2℘′′(ωi)

℘(x)− ei
+ 4ei +

b1
2
−R, (6.39b)

V j1(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 +
2

3
℘′′(x)

]

+
40

9
℘(x)− 5

18
℘(2x)− b1

2
− R, (6.39c)

V +(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 +
8

3
℘′′(x)

]

+
10

9
℘(x) +

55

18
℘(2x)− 3b1

2
− R, (6.39d)
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where b̄0 = b0 − g2/12 = −eib1 − ℘′′(ωi)/3. The first term of each the potential can be
expressed solely in terms of ℘(x). With the latter value of b̄0, we have

b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 + C℘′′(x)
]

=
[3b1(℘(x)− ei)− ℘′′(ωi)]

2

72
∏3

l=1(℘(x)− el)
+
C

12

3
∑

l=1

3b1(℘(x)− ei)− ℘′′(ωi)

℘(x)− el
. (6.40)

V-4) Class (1; 2)

Parameters : âi and b̂i are the same as (6.29).

b1 = 2ei, b0 = e 2i + ejek,
ˆ̂
b1 = −b1 +

4e 2j β + (4e 3j + g3)δ

2ej(β − ejδ)
,

ˆ̂a3 = 2
ˆ̂
b2 =

℘′′(ωj)γ

β − ejδ
, ˆ̂a2 = 3

4e 2j β
2 + g3βδ − (4e 3j + g3)ejδ

2

2ej(β − ejδ)2
.

(6.41)

Functions :

z(x) = ℘(x), W (x) = Ŵ (x) =
ˆ̂
W (x) =

℘(x)2 − 2ei℘(x)− e 2i − ejek
℘′(x)

,

E(x) =
℘′′(x)

℘′(x)
, Ê(x) =

℘′′(x)

℘′(x)
− 2℘′(x)

℘(x)− ei
,

ˆ̂
E(x) =

℘′′(x)

℘′(x)
− 2℘′(x)

℘(x)− ej
,

(6.42)

Potentials :

V −(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 −
10

3
℘′′(x)

]

− 8

9
℘(x) +

91

18
℘(2x) +

3b1
2

−R, (6.43a)

V i1(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 −
4

3
℘′′(x)

]

− 2

9
℘(x) +

7

18
℘(2x)

+
2℘′′(ωj)

℘(x)− ej
+ 4ej +

b1
2
− R, (6.43b)

V j1(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 +
2

3
℘′′(x)

]

+
40

9
℘(x)− 5

18
℘(2x)− b1

2
−R, (6.43c)

V j2(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 +
2

3
℘′′(x)

]

+
4

9
℘(x)− 5

18
℘(2x)

+
2℘′′(ωi)

℘(x)− ei
+ 4ei −

b1
2
− R, (6.43d)

V +(x) =
b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 +
8

3
℘′′(x)

]

+
10

9
℘(x) +

55

18
℘(2x)− 3b1

2
− R. (6.43e)

With the values of b1 and b0 in (6.41), the first term of each the potential can be expressed
solely in terms of ℘(x) as

b1℘(x) + b̄0
2℘′(x)2

[

b1℘(x) + b̄0 + C℘′′(x)
]

=
[3ei℘(x) + e 2i + 2ejek]

2

18
∏3

l=1(℘(x)− el)
+
C

6

3
∑

l=1

3ei℘(x) + e 2i + 2ejek
℘(x)− el

. (6.44)
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VII. PARASUPERSYMMETRY AND GENERALIZED SUPERALGEBRAS

In the case of N = 2, it was shown [1] that any type A 2-fold SUSY system which
has an intermediate Hamiltonian admits a realization of second-order paraSUSY [9] and
a generalized 2-fold superalgebra [10]. Thus, it is natural to ask whether an analogous
realization is possible in the present N = 3 case. In what follows, we show that it is indeed
the case. More precisely, a type A 3-fold SUSY system of Class (1, 1) admits a realization of
third-order paraSUSY [11, 12] and a generalized 3-fold superalgebra found in Ref. [13] while
one of Class (0, 1) does only a restricted version of the latter algebra. We shall first discuss
the former realization and then the latter.

A. Parasupersymmetry of Order 3 in Class (1, 1)

Higher-order paraSUSY was introduced in Refs. [11, 12] as a generalization of second-
order one [9]. In the case of third-order, it is characterized by the following algebraic
relations:

(Q±
P)

3 6= 0, (Q±
P)

4 = 0,
[

Q±
P ,HP

]

= 0, (7.1a)

(Q±
P)

3Q∓
P + (Q±

P)
2Q∓

PQ
±
P +Q±

PQ
∓
P(Q

±
P)

2 +Q∓
P(Q

±
P)

3 = 6(Q±
P)

2HP. (7.1b)

By the introduction of parafermionic coordinates ψ±
P of order 3 satisfying [13]

(ψ±
P )

4 = 0,
{

ψ−
P , ψ

+
P

}

+
{

(ψ−
P )

3, (ψ+
P )

3
}

= 2I,
{

(ψ−
P )

2, (ψ+
P )

2
}

= I, (7.2)

a quantum mechanical realization of paraSUSY of order 3 is achieved by defining the triple
(HP,Q

±
P) as

HP =H0(ψ
−
P )

3(ψ+
P )

3 +H1(ψ
+
Pψ

−
P − (ψ+

P )
2(ψ−

P )
2)

+H2((ψ
+
P )

2(ψ−
P )

2 − (ψ+
P )

3(ψ−
P )

3) +H3(ψ
+
P )

3(ψ−
P )

3, (7.3a)

Q−
P =Q−

1 (ψ
−
P )

3(ψ+
P )

2 +Q−
2 (ψ

+
P (ψ

−
P )

2 − (ψ+
P )

2(ψ−
P )

3) +Q−
3 (ψ

+
P )

2(ψ−
P )

3, (7.3b)

Q+
P =Q+

1 (ψ
−
P )

2(ψ+
P )

3 +Q+
2 (ψ

−
P (ψ

+
P )

2 − (ψ−
P )

2(ψ+
P )

3) +Q+
3 (ψ

+
P )

3(ψ−
P )

2, (7.3c)

where

Hk = −1

2

d2

dx2
+ Vk(x), Q±

k = ± d

dx
+Wk(x). (7.4)

The linear space in which the system (HP,Q
±
P) shall be considered is F × V3 where F is a

linear space of complex functions such as L2(R) and V3 =
∑3

k=0 V
(k)
3 is the parafermionic

Fock space of order 3 composed of the k-parafermionic subspaces V
(k)
3 (k = 0, . . . , 3). Then,

the latter system satisfies the third-order paraSUSY algebra (7.1) if and only if [12, 13, 25]

2H0 = Q−
1 Q

+
1 − 2R1, 2H1 = Q+

1 Q
−
1 − 2R1 = Q−

2 Q
+
2 − 2R2, (7.5a)

2H2 = Q+
2 Q

−
2 − 2R2 = Q−

3 Q
+
3 − 2R3, 2H3 = Q+

3 Q
−
3 − 2R3, (7.5b)

where Rk (k = 1, 2, 3) are constants satisfying

R1 +R2 +R3 = 0. (7.6)
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Comparing now the paraSUSY conditions (7.5) with the Class (1, 1) conditions (3.1)–(3.3),
we immediately notice that any type A 3-fold SUSY system which belongs to Class (1, 1)
admits a realization of paraSUSY of order 3 by the following identifications:

Q±
k = P∓

3 4−k, Rk = −C3 4−k, H0 = H−, H1 = H i1, H2 = H j1, H3 = H+. (7.7)

By the formulas (3.7) and the second relation in the above, the constraint (7.6) is expressed
in terms of the type AN -fold SUSY parameters as R = 0, which is identical to the constraint
in the N = 2 case (cf., Ref. [1], Section 4).

The realization of third-order paraSUSY via the formulas (7.5) admits another nonlinear
relation, Ref. [13], Eq. (4.33). For the present system, it reads by the formulas (3.7) and the
second relation in (7.7)

(Q−
P )

3(Q+
P)

3 +

{

Q+
P(Q

−
P)

3(Q+
P )

2

(Q−
P)

2(Q+
P)

3Q−
P

}

+

{

Q−
P(Q

+
P)

3(Q−
P)

2

(Q+
P)

2(Q−
P)

3Q+
P

}

+ (Q+
P)

3(Q−
P)

3

= 8

(

(

HP +R +
a2
3

)2

− b 21

)(

HP +R− 2a2
3

)

. (7.8)

We note that this algebraic relation holds irrespective of the paraSUSY constraint (7.6).
Thus, in this sense the latter algebra (7.8) is more general than the paraSUSY algebra
(7.1b).

In the subsector with the parafermion number 0 and 3, the nonlinear algebra (7.8) reduces
to

{

(Q−
P)

3, (Q+
P)

3
}

= 8

(

(

HP +R +
a2
3

)2

− b 21

)(

HP +R− 2a2
3

)∣

∣

∣

∣

F×(V
(0)
3 +V

(3)
3 )

. (7.9)

This, together with the relations

[

(Q±
P)

3,HP

]

=
{

(Q±
P)

3, (Q±
P)

3
}

= 0, (7.10)

which follow directly from the third-order paraSUSY relations in (7.1a) forms a 3-fold su-
peralgebra. We can now easily check that the latter algebra exactly coincides with type A
3-fold superalgebra (2.15) in Class (1, 1) by the conditions (4.1). Hence, an arbitrary type
A 3-fold SUSY system which belongs to Class (1, 1) admits a realization of paraSUSY of
order 3 and the generalized type A 3-fold superalgebra (7.8).

B. Generalized 3-fold Superalgebra in Class (0, 1) and Class (1, 0)

Contrary to the case of Class (1, 1), any system belonging to Class (0, 1) and (1, 0)
admits neither paraSUSY of order 3 nor quasi-paraSUSY of order (3, q) [13]. The reason
is the lack of a ‘shape-invariant’ condition at the place where an intermediate Hamiltonian
is absent. However, as we shall show shortly, a restricted version of the generalized type A
3-fold superalgebra (7.8) still holds in each of Class (0, 1) and Class (1, 0) with the same
parafermionic setting as (7.3) and (7.7). Indeed, substituting the relations (7.7) into the
formulas (4.21)–(4.26) in Ref. [13] and using the intertwining relations (2.20) and the formula
(3.18) for Class (0, 1), and (2.21) and (3.23) for Class (1, 0), respectively, we see that in
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the case of Class (0, 1) the following algebraic relation holds in the subsector with the
parafermion number 0, 2, and 3

(Q−
P )

3(Q+
P)

3 +

{

Q−
P(Q

+
P)

3(Q−
P )

2

(Q+
P)

2(Q−
P)

3Q+
P

}

+ (Q+
P)

3(Q−
P)

3

= 8S
(0,1)
2 (HP +R)

(

HP +R +
a2
3

+ b1

)∣

∣

∣

∣

F×(V
(0)
3 +V

(2)
3 +V

(3)
3 )

. (7.11)

and that in the case of Class (1, 0) the algebra which holds in the subsector with the
parafermion number 0, 1, and 3 reads

(Q−
P )

3(Q+
P)

3 +

{

Q+
P(Q

−
P)

3(Q+
P )

2

(Q−
P)

2(Q+
P)

3Q−
P

}

+ (Q+
P)

3(Q−
P)

3

= 8S
(1,0)
2 (HP +R)

(

HP +R +
a2
3

− b1

)∣

∣

∣

∣

F×(V
(0)
3 +V

(1)
3 +V

(3)
3 )

. (7.12)

In the whole parafermionic vector space F × V3, however, no algebraic relations like (7.8)
hold for Class (0, 1) and Class (1, 0). In fact, for Class (0, 1) each of the second term in the
l.h.s. of (7.8) is calculated in the subsector with the parafermion number 1 as

Q+
P(Q

−
P)

3(Q+
P)

2 = 2P−
33P

+
33P

+
32(H

j1 − C31)P
−
32

∣

∣

F×V
(1)
3
,

(Q−
P)

2(Q+
P)

3Q−
P = 2P+

32(H
j1 − C31)P

−
32P

−
33P

+
33

∣

∣

F×V
(1)
3
,

(7.13)

and cannot be expressed as a polynomial of H j1. Similarly, for Class (1, 0) each of the third
term in the l.h.s. of (7.8) is calculated in the subsector with the parafermion number 2 as

Q−
P(Q

+
P)

3(Q−
P)

2 = 2P+
31P

−
31P

−
32(H

i1 − C33)P
+
32

∣

∣

F×V
(2)
3
,

(Q+
P)

2(Q−
P)

3Q+
P = 2P−

32(H
i1 − C33)P

+
32P

+
31P

−
31

∣

∣

F×V
(2)
3
,

(7.14)

and again cannot be expressed as a polynomial of H i1.
We note that both the nonlinear algebras (7.11) and (7.12) are compatible with the type

A 3-fold superalgebra (2.15). In fact, it is easy to check that both (7.11) and (7.12) reduce
to the anti-commutator of the type A 3-fold superalgebra (2.15b) in the more restricted
subsector with the parafermion number 0 and 3 by noting the condition (4.2) for the former
Class (0, 1) and by (4.3) for the latter Class (1, 0).

VIII. DISCUSSION AND SUMMARY

In this article, we have fully investigated the necessary and sufficient conditions for a type
A 3-fold SUSY system to have one or more sets of intermediate Hamiltonians and then made
the complete classification of them by the property of the GL(2,C) transformations. When
only one set of intermediate Hamiltonians is concerned, there are three different patterns
in the existence and called Class (1, 1), Class (0, 1), and Class (1, 0), respectively. We have
found that all the models which belong to Class (1, 1) are not only solvable but also shape
invariant while the ones which belong to Class (0, 1) or Class (1, 0) are just quasi-solvable.
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Case Possible Classes

I (1, 1)

II (1, 1) ⊃ (1, 2)

II’ (0, 1)

III (1, 1)

IV (1, 1) ⊃ (1, 2) ⊃
{

(1, 3)

(1 + 1, 1 + 1)

IV’ (0, 1) ⊃
{

(0, 2)

(1; 1)

V (0, 1) ⊃
{

(0, 2) ⊃ (0, 3)

(1; 1) ⊃ (1; 2)

TABLE II: The possible classes of intermediate Hamiltonians for each case of type A 3-fold SUSY

models.

When more than one sets of intermediate Hamiltonians are concerned, there emerge various
patterns depending on the functional type of each model. In Table II, we summarize the
possible classes for each case of type A 3-fold SUSY models.

It is now evident from Table II that the structure of higher-order intertwining operators
is much richer than the degree that one can classify them solely by the notion of reducibility
introduced in Refs. [7, 8]. It is not only because the requirement of reality is restrictive
but also because there are various patterns in the existence of intermediate Hamiltonians.
Needless to say, the number of possible patterns drastically increase as the order N of
intertwining operators gets higher.

Although we have not assumed in this article the reality of Hamiltonians and thus have
analyzed general complex Hamiltonians by employing the GL(2,C) transformations, it is
straightforward to examine and classify real Hamiltonians by the use of the real GL(2,R)
transformations instead of GL(2,C). We only show in Table III an example of the real
classification scheme for that purpose. Note, however, that some of the possible classes for
Case IV and Case V in Table II which can exist in the complex case might be missing in
the real case since the solutions to the conditions (5.5), (5.6), (5.8), (5.11) or (5.12) are not
necessarily real.

The realization of the variant generalized 3-fold superalgebras in Section VII indicates
that the parafermionic formulation like (7.3) could provide a more adequate and advanta-
geous framework to formulate N -fold SUSY than the conventional fermionic formulation
like (2.14). In the conventional approach, the type A 3-fold superalgebra (2.15) cannot
characterize nor detect the existence of intermediate Hamiltonians at all. In contrast to it,
in the parafermionic approach on the one hand the type A 3-fold superalgebra is always
realized in the subsector with the fermion number 0 and 3, and on the other hand the vari-
ous patterns in the existence of intermediate Hamiltonians are characterized by considering
the other subsector with the fermion number 1 and/or 2. In addition, generalized N -fold
superalgebra like (7.8) could provide an alternative for defining paraSUSY of order N . In
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Case Class (1, 1) Class (0, 1), (1, 0)

I a/2

II 2z

II’ 2z3

III z2/2

IV ±2a(z2 − 1)

±2a(z2 + 1)

IV’ 2az2(z + 1)

V 2z(1 − z)(1 −mz)

z(z2 + 2(1− 2m)z + 1)/2

TABLE III: A real classification scheme of type A 3-fold SUSY models with one set of intermediate

Hamiltonians. In the above, a ∈ R is an arbitrary constant and 0 < m < 1.

the present N = 3 case, the conventional defining algebra (7.1b) only produces in essence
the additional constraint (7.6) whose physical relevance is unclear. Hence, there seems, at
least until now, no physical evidence to claim that which definition is appropriate.

In principle, one can continue to study the N > 3 cases, but as already mentioned the
number of different patterns in the existence of intermediate Hamiltonians drastically in-
creases as N increases. However, the number of different sets of intermediate Hamiltonians
would be limited to at most 4 regardless of the number of patterns due to the following
reasons. First, the transformation formula (2.10) which is valid for all N ≥ 3 could produce
algebraic equations of at most fourth-degree and thus at most four additional sets of interme-
diate Hamiltonians would be admissible. But type A N -fold SUSY systems for N ≥ 3 have
at most three independent free parameters bi (i = 0, 1, 2) and thus at most three different
solutions among the four would be compatible simultaneously. Hence, at most three addi-

tional sets would be available, which means that the maximum number of different sets is
four in total. By a similar argument we conclude that it would be at most 3 if one constraint
on the parameters bi are inevitable for the existence of one set of intermediate Hamiltonians,
as in the present N = 3 case (4.1)–(4.3), since in this case there are essentially at most two
independent free parameters and thus at most two algebraic solutions would be compatible
simultaneously. The latter fact is indeed the reason why in the N = 3 case there are at most
three different sets and thus are no classes such as Class (m,m+ n) with m+ n > 3, Class
(m+ l, m+ n) with m+ l + n > 3, Class (0, n) with n > 3, and Class (l;n) with l + n > 3.
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