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Abstract

The ErbB receptor family member ErbB3 has been implicated in breast cancer growth, but it has yet to be

determined whether its disruption is therapeutically valuable. In a mouse model of mammary carcinoma driven

by the polyomavirus middle T (PyVmT) oncogene, the ErbB2 tyrosine kinase inhibitor lapatinib reduced the

activation of ErbB3 and Akt as well as tumor cell growth. In this phosphatidylinositol-3 kinase (PI3K)-dependent

tumor model, ErbB2 is part of a complex containing PyVmT, p85 (PI3K), and ErbB3, that is disrupted by

treatment with lapatinib. Thus, full engagement of PI3K/Akt by ErbB2 in this oncogene-induced mouse tumor

model may involve its ability to dimerize with and phosphorylate ErbB3, which itself directly binds PI3K. In this

article, we report that ErbB3 is critical for PI3K/Akt-driven tumor formation triggered by the PyVmT oncogene.

Tissue-specific, Cre-mediated deletion of ErbB3 reduced Akt phosphorylation, primary tumor growth, and

pulmonary metastasis. Furthermore, EZN-3920, a chemically stabilized antisense oligonucleotide that targets

the ErbB3 mRNA in vivo, produced similar effects while causing no toxicity in the mouse model. Our findings

offer further preclinical evidence that ErbB3 ablation may be therapeutically effective in tumors where ErbB3

engages PI3K/Akt signaling. Cancer Res; 71(11); 3941–51. �2011 AACR.

Introduction

Gene mutations often dysregulate signaling pathways that

control cell growth and survival, resulting in cancer formation.

Several common oncogenic mutations converge to activate

the phosphatidylinositol 3-kinase (PI3K) pathway, the most

frequently altered network in human cancer (1). Activating

mutations in PIK3CA, the gene encoding the p110a catalytic

subunit of PI3K, have been reported in up to 40% of all breast

cancers (2–6). Another mechanism of pathway disregulation is

loss of the tumor suppressor gene phosphatase and tensin

homolog deleted on chromosome 10 (PTEN), which negatively

regulates PI3K output (7). A common mechanism of increased

PI3K activity results from unrestrained receptor tyrosine

kinase (RTK) activation. For example, amplification of the

gene encoding ErbB2/HER2, found in approximately 25% of

breast cancers, results in overexpression of the ErbB2–RTK,

PI3K hyperactivity, and poor patient outcome (8, 9). PI3K

induces phosphorylation and activation of Akt, a serine (Ser)/

threonine (Thr) kinase that lies at the apex of a signaling

cascade promoting tumor cell survival and proliferation (10).

Transgenic overexpression of the polyomavirus middle T

(PyVmT) antigen in the mammary epithelium under the

control of the MMTV promoter results in the formation of

rapidly growing and highly metastatic mammary tumors (11,

12). MMTV–PyVmT mammary tumors exhibit many

similarities to human breast cancer, including stochastic

progression from benign hyperplasias to invasive, poorly

differentiated carcinomas (13). PyVmT utilizes signaling

pathways used by activated RTKs in human breast cancers

(14), making it a useful model for understanding the signal-

ing networks that contribute to multistage breast tumor

progression. Although PyVmT lacks kinase activity, mem-

brane-anchored PyVmT is phosphorylated on several tyro-

sine residues that recruit and bind PP2A, intracellular

tyrosine kinases of the Src family (e.g., Src, Fyn, Yes), Shc,

phospholipase C (PLC)-g1, and the p85 regulatory subunit of

PI3K (15). Activation of the PI3K/Akt pathway through

p85 and the mitogen-activated protein kinase (MAPK) path-

way through Shc results in increased cell survival and

proliferation (16, 17). Similar to ErbB2-induced mammary

tumors, PyVmT-mediated transformation requires PI3K/

Akt, because a mutation abolishing the p85 interaction motif

of PyVmT at Tyr315 impairs Akt activation and subsequent

mammary tumor formation in transgenic mice (18). There-

fore, the MMTV–PyVmT model lends itself to promote

understanding of tumor cell dependence on PI3K.
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PyVmT-driven mammary tumors overexpress ErbB2 (18–

20), but a contributing role of ErbB2 tomiddleT-induced tumor

progression is unclear. Therefore, in this study, we examined

whether expression and activity of ErbB2 and its heterodimeric

partner ErbB3 are required for PyVmT-drivenmammary trans-

formation. Similar to PyVmT, ErbB3/HER3 lacks intrinsic

kinase activity (8, 21). However, heterodimerization of ErbB2

andErbB3 increases proliferation, survival, and transformation

of breast cells more potently than any other ErbB receptor

dimer (22, 23). Although ErbB2 does not directly engage PI3K,

tyrosine-phosphorylated ErbB3 strongly engages PI3K through

six p85 interaction motifs (24, 25), thus explaining the potent

activation of PI3K/Akt by ErbB2/ErbB3 dimers.

In this study, we eliminated the expression and/or phos-

phorylation of ErbB3 in MMTV–PyVmTmammary glands and

tumor cells using genetic and pharmacologic approaches. We

found that conditional, temporally regulated loss of ErbB3

expression in vivo decreased PI3K/Akt signaling and the rate

of tumor formation and metastasis in MMTV–PyVmT trans-

genic mice. Furthermore, use of a locked nucleic acid (LNA)

ErbB3 antisense in vivo downregulated ErbB3 and p-Akt levels,

prevented MMTV–PyVmT tumor formation in mice, inhibited

established PyVmT tumor transplants, and inhibited growth

of HER2-overexpressing human breast cancer cell lines in

vitro. These results suggest that ErbB3 is an important com-

ponent of PyVmT-mediated tumor formation and that stabi-

lized high-affinity antisense ErbB3 oligonucleotides are a

strategy worthy of clinical development against human

tumors, such as HER2-overexpressing cancers, where ErbB3

engages PI3K/Akt.

Materials and Methods

Cells and culture conditions

HC11, BT-474, SKBR3, and MDA-MB-453 cells were pur-

chased from the American Type Culture Collection (ATCC)

and propagated according to ATCC specifications. Primary

tumor cells from virgin female MMTV–Neu (26) and MMTV–

PyVmT (11) mice were isolated as described previously (27,

28). Additional details, including ligands and inhibitors, are

provided in Supplementary Materials and Methods.

Western analysis and immunoprecipitation

Western analysis and immunoprecipitation were done as

described in Supplementary Materials and Methods.

Animal studies

All mice were housed in facilities that were approved by the

Association for Assessment and Accreditation of Laboratory

Animal Care under Institutional Animal Care and Use Com-

mittee guidelines in a pathogen-free environment. ErbB3As/As

mice (referred to as ErbB3fl/fl) have been described (29) and

backcrossed more than 10 generations into the FVB genetic

background. MMTV-Cre mice (30), TetOp-Cre (31), MMTV–

rtTA (32), and MMTV–PyVmT (11) mice have been described

previously. Mammary glands, tumors, and lungs from age-

matched virgin female mice were used for analysis as

described in Supplementary Materials and Methods.

Histologic analysis

Whole mammary glands were fixed on glass slides with

neutral buffered formalin (Fisher Scientific) and stained with

Mayer's hematoxylin (Fisher Scientific) as described previously

(28). Additional details are provided in Supplementary Materi-

als and Methods. Images were obtained using Olympus DP2

software on an Olympus light microscope. Minimal processing

of images was done in Microsoft PowerPoint.

LNA oligonucleotides

These are described in Supplementary Materials and Meth-

ods.

Three-dimensional colony growth and TUNEL assays

Three-dimensional colony growth and terminal deoxynu-

cleotidyl transferase–mediated dUTP nick end labeling

(TUNEL) assays were done as described in Supplementary

Materials and Methods.

Results

ErbB RTKs are required for MMTV–PyVmT tumor cell

growth

Expression of ErbB2 and ErbB3 was increased in tumor

cells derived from MMTV–PyVmT transgenic tumors com-

pared with HC11 nontransformed mouse mammary epithe-

lial cells and cells derived from MMTV–Neu mice that

overexpress Neu, the rat homolog of ErbB2 (ref. 33;

Fig. 1A). Treatment with 1 mmol/L lapatinib, a dual epider-

mal growth factor receptor (EGFR)/ErbB2 tyrosine kinase

inhibitor (TKI; ref. 34), reduced basal and heregulin-induced

phosphorylation of ErbB2, ErbB3, and Akt (Fig. 1B). The

inhibition of ErbB3 phosphorylation was confirmed using

site-specific Y1289 and Y1197 p-ErbB3 antibodies, which

recognize 2 known p85/PI3K interaction motifs in the ErbB3

C-terminus (Fig. 1C). Lapatinib caused dose-dependent inhi-

bition of MMTV–PyVmT colony growth in 3-dimensional

(3D) Matrigel cultures, suggesting that PyVmT-driven tumor

cells require signaling by ErbB receptors for growth (Fig. 1D).

However, the EGFR TKI gefitinib (1 mmol/L) had no activity

against MMTV–PyVmT tumor cell growth (data not shown),

suggesting ErbB2, but not EGFR, plays a tumor-promoting

role in these cells. Treatment with lapatinib of FVB mice

bearing established MMTV–PyVmT tumor transplants sig-

nificantly delayed tumor growth compared with control

mice, thus confirming the role of ErbB2 in vivo (Fig. 1E).

Ki67 immunoreactivity, a marker of cell proliferation, was

markedly reduced in lapatinib-treated samples (Supplemen-

tary Fig. S1).

Because ErbB2 does not bind p85 directly, the inhibition

of p-Akt in lapatinib-treated cells (Fig. 1B) suggested the

presence of an ErbB2-dependent p-ErbB3/p85 complex

which, in turn, activated PI3K/Akt. Indeed, ErbB3 and p85

immunoprecipitate from tumor cell lysates recovered p85

and ErbB3, respectively, supporting the association of both

molecules under basal conditions (Fig. 1F, lanes 1 and 3).

Treatment with lapatinib markedly reduced the association

of p85 with ErbB3 (Fig. 1F, lanes 2 and 4). Middle T and
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ErbB2 were constitutively associated with ErbB3 (Fig. 1G).

This basal association between ErbB3 and PyVmT was

reduced on inhibition of the ErbB2 kinase with lapatinib.

In converse experiments using immunoblot analysis of mT

antibody pull-downs, ErbB3 was recovered from PyVmT

immune complexes in untreated cells, but not from lapati-

nib-treated cells (Fig. 1H), and the total level of p85 in

association with PyVmT was reduced, suggesting ErbB2

kinase activity is required for maintenance of this signaling

complex.
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Figure 1. Inhibition of ErbB2 impairs growth of MMTV–PyVmT tumors. A, whole-cell extracts prepared from HC11 mouse mammary cells or MMTV–Neu

(Neu) and MMTV–PyVmT (mT) primary tumor cells were analyzed by immunoblotting for the proteins indicated at the right of each panel. B and C,

whole-cell extracts from MMTV–PyVmT primary tumor cells cultured in serum-free media for 6 hours � lapatinib (1 mmol/L) and an additional 5 minutes

� heregulin (HRG; 2 ng/mL; in B) were used for Western blot analysis or for immunoprecipitation (IP) followed by Western blot analysis to detect the

proteins indicated at the right of each panel. D, MMTV–PyVmT cells were embedded in growth factor–reduced Matrigel with increasing concentrations

of lapatinib. Medium and lapatinib were replenished every 2 days. Digital images were analyzed with Olympus DP2 software to measure colony area

in pixels. At least 50 colonies per well � 3 wells per condition were measured and used to calculate the average colony size per well. Values represent

the average total colony area per well � SD. E, MMTV–PyVmT primary tumors cells (1 � 106) were injected into the inguinal mammary fat pad of 5-week-old

wild-type FVB female mice. Tumor-bearing mice (tumor volume �200 mm3) were treated � lapatinib (100 mg/kg/d � 28 days). Tumor volume was measured

weekly as indicated in Materials and Methods section. Each data point represents the mean tumor volume in mm3
� SD (n ¼ 10; P ¼ 0.0021, Mann–Whitney

U test). F–H, whole-cell extracts from MMTV–PyVmT primary tumor cells cultured in serum-free media with lapatinib (1 mmol/L) for 24 hours were used

for IP with antibodies against the following: ErbB3 and p85 (F), ErbB3 (G), and PyVmT (H). Immune complexes were separated by SDS–PAGE and

next subjected to immunoblot (IB) analysis using the indicated antibodies as described in Materials and Methods section.

Targeting ErbB3 Inhibits PyVmT Mammary Tumors

www.aacrjournals.org Cancer Res; 71(11) June 1, 2011 3943

Research. 
on July 30, 2021. © 2011 American Association for Cancercancerres.aacrjournals.org Downloaded from 

Published OnlineFirst April 11, 2011; DOI: 10.1158/0008-5472.CAN-10-3775 



Mammary-specific deletion of ErbB3 delays

PyVmT-induced mammary tumors

To determine the role of ErbB3 on cancer formation in

MMTV–PyVmT mice, we eliminated ErbB3 in the mammary

epithelium using MMTV-Cre (MCre) transgenic mice (30)

and mice harboring floxed ErbB3 alleles (29). In these mice

(referred to hereafter as PyVmT � ErbB3fl/fl.MCre mice), Cre

induces genomic recombination at the floxed ErbB3 locus.

ErbB3fl/fl mice were backcrossed with FVB mice for more

than 10 generations, placing the mice on identical genetic

backgrounds as MMTV–Cre and MMTV–PyVmT mice.

Mammary glands from PyVmT � ErbB3fl/fl.MCre mice har-

vested at 8 weeks of age showed markedly decreased for-

mation of multifocal mammary neoplasms (Fig. 2A). At later

time points, all targeted and control mice formed mammary

tumors. However, loss of ErbB3 delayed average tumor

latency [T50 ¼ 57.5 vs. 42.5 days in ErbB3-deficient vs.

heterozygous and wild-type controls; P < 0.0001, log-rank

test; Fig. 2B]. Histologic lung sections taken at 100-mm
intervals revealed micrometastases in 100% of PyVmT �

ErbB3þ/þ.MCre, 69% of PyVmT � ErbB3fl/þ.MCre, and 62%

of PyVmT � ErbB3fl/fl.MCre mice. However, the average

number of metastases per lung was statistically diminished

in PyVmT � ErbB3fl/fl.MCre mice as compared with ErbB3

heterozygotes (Fig. 2C). At the time of euthanasia (11 weeks

of age), the combined wet weight of all 10 tumor-bearing

mammary glands in each mouse was measured (Fig. 2D),

revealing a significant decrease in the average total tumor

weight in PyVmT � ErbB3fl/fl.MCre mice (3.73 � 0.99 g)

as compared with PyVmT � ErbB3fl/þ.MCre mice (5.93 �

1.88 g; n ¼ 6, P ¼ 0.015, Student unpaired t test).

Tumor-bearing mammary glands harvested from mice at

11 weeks of age revealed cystic hyperplasias and low-grade

ductal carcinomas in situ (DCIS) in PyVmT � ErbB3fl/fl.MCre

samples, whereas heterozygous samples harbored malignant,

poorly differentiated solid sheets of tumor cells (Fig. 2E).

TUNEL analysis revealed an increase in apoptotic nuclei in

ErbB3-deficient hyperplasias. Immunoblot analysis of whole

PyVmT � ErbB3fl/fl.MCre tumor lysates confirmed a marked

reduction in ErbB3 content compared with lysates from

tumors lacking Cre or floxed ErbB3 alleles (Fig. 2F). S473 p-

Akt was reduced in lysates from ErbB3-deficient tumors

(Fig. 2F). Immunoprecipitation of p85 coprecipitated PyVmT

in tumors from PyVmT � ErbB3fl/þ.MCre mice, but not from

ErbB3-deficient tumors (Fig. 2G), suggesting that ErbB3 con-

tributes to the association of p85 with middle T and the

activation of PI3K in tumors in vivo.

ErbB3 antisense EZN-3920 prevents mammary tumor

formation

EZN-3920 is an LNA antisense with target specificity to

human and mouse ErbB3 (35). LNA-based oligonucleotides

have 14- to 16-mer sequences and exhibit high mRNA affinity,

stability in plasma and against nucleases, and tissue residence

time of several days (36–39). Treatment of MMTV–PyVmT

cells with EZN-3920 but not its mismatch control EZN-4455

for 3 days reduced ErbB3 protein levels but did not affect

ErbB2, ErbB4, or EGFR expression (Fig. 3A, top). Of note,

EZN-4455 is not a fully scrambled molecule but a 3-bp

mismatch (50-tag ctt gtc cca tct c-30 vs. 50-tag cct gtc act

tct c-30 in EZN-3920). Consistent with ErbB3 knockdown, the

basal association of p85 and ErbB3 was eliminated in cells

treated with EZN-3920 (Fig. 3A, bottom). MMTV–PyVmT

female mice were treated twice weekly with EZN-3920 for

5 weeks (i.e., 10 doses), beginning at 3 weeks of age. Tissues

were collected 24 hours after the final dose. Histologic sec-

tions frommice treated with the mismatch EZN-4455 revealed

total replacement of the mammary glands with tumor cells

(Fig. 3B). In contrast, mammary tumor formation was inhib-

ited in mice treated with EZN-3920 such that architecture of

the gland was preserved (Fig. 3C), including single layered

epithelial ductal structures (Fig. 3D). Mammary hyperplasias

were still evident in the proximal one third of glands of mice

treated with EZN-3920 (Supplementary Fig. S2). Immunohis-

tochemical levels of S473 p-Akt were reduced more than

60% in tumors from mice treated with EZN-3920 than in

those treated with EZN-4455 (Fig. 3E and F). These data are

consistent with the notion that ErbB3 contributes to PyVmT-

induced PI3K/Akt and tumor progression.

Genetic and pharmacologic ablation of ErbB3 inhibits

growth of established MMTV–PyVmT tumors

To examine the consequences of acute loss of ErbB3 on

progression of established PyVmT-driven tumors, we used a

tetracycline/doxycycline-inducible model of mammary-speci-

fic Cre recombinase expression to impair ErbB3 expression in

MMTV–PyVmT mice. The double transgenic model referred

to as MTB-TCre combines MMTV–rtTA (32) and TetOp-Cre

transgenic mice (30). Treatment of PyVmT � ErbB3fl/fl.MTB-

TCre primary tumor cells with tetracycline reduced ErbB3 and

S473 p-Akt levels (Fig. 4A). PyVmT � ErbB3fl/fl.MTB-TCre

primary tumor cells were orthotopically transplanted in

wild-type FVB mice. Mice remained naïve to doxycycline until

tumor volume reached �50 mm3, at which time they received

doxycycline for 1 week. Mice were then either withdrawn from

doxycycline or maintained on doxycycline for the following 7

weeks. After 8 weeks of continuous doxycycline treatment, the

average volume of PyVmT � ErbB3fl/fl.MTB-TCre tumors was

808 � 63 mm3 compared with 1,650 � 487 mm3 in doxycy-

cline-naïve mice (Fig. 4B). A modest but statistically signifi-

cant reduction in final tumor volume was seen in mice treated

for the full duration of 8 weeks with doxycycline as compared

with those treated for only 1 week followed by 7 weeks without

doxycycline. These data are not only consistent with the

irreversible nature of recombination at the targeted ErbB3

allele but also suggest the presence of cells escaping Cre-

mediated recombination after only a week of doxycycline

treatment. Western analysis of whole tumor lysates confirmed

doxycycline-inducible, Cre-mediated loss of ErbB3 in vivo,

correlating with an overall reduction in the content of S473

p-Akt (Fig. 4C). Immunohistochemistry (IHC) also showed a

marked reduction in ErbB3 protein levels in doxycycline-

treated compared with doxycycline-naïve tumors (Fig. 4D).

In addition to the conditional deletion of ErbB3 in the

genetic model, we used a pharmacologic approach to ablate

ErbB3 in established tumors. Syngeneic nontransgenic FVB
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Figure 2. Absence of ErbB3 impairs the formation of MMTV–PyVmT multifocal tumors. A, whole-mount hematoxylin-stained inguinal mammary glands

of 8-week-old virgin female mice. B, tumor-free curve was generated by documenting the time at which tumors were originally palpated. The average tumor

latency (T50) was calculated using the Kaplan–Meier test (n¼ 20 for each genotype; P < 0.0001, log-rank test). C, lung metastases were identified in histologic

sections and enumerated. The midlines indicate the average number of lung metastases for each genotype � SD. D, 10 mammary glands per mouse were

harvested and weighed together. The values show the average total mammary/tumor wet weight � SE (n ¼ 6; P ¼ 0.015). E, Hematoxylin and eosin

(H&E)–stained tumor sections (left) and TUNEL-stained tumor sections (right) from 11-week-old virgin female mice. F, whole-tumor lysates were prepared as

described inMaterials andMethods section and used forWestern blot analysis with the antibodies indicated at the right of the panels. Genotype of each tumor

(with respect to the targeted Erbb3 and MMTV-Cre alleles) is indicated at the top. n.s., nonspecific. G, whole-tumor extracts harvested from 3 mice per

genotype were precipitated with a p85 antibody. Immune complexes were separated by SDS–PAGE followed by Western analysis for p85 and PyVmT as

indicated in Materials and Methods section.
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mice bearing established MMTV–PyVmT tumors (�200 mm3)

were treated twice weekly with EZN-3920 or EZN-4455 for

4 weeks (i.e., 8 doses). Treatment with the ErbB3 antisense

EZN-3920 decreased tumor volume by more than 60% com-

pared with EZN-4455–treated tumors (Fig. 5A; P ¼ 0.002,

Student t test). IHC confirmed a marked reduction of

detectable ErbB3 expression in tumors treated with EZN-

3920 (Fig. 5B). Histologic examination of tumors harvested

24 hours after the last of 8 doses revealed extensive acellular

debris and extracellular matrix with a scarcity of cancer cells

in the ErbB3-deficient tumors (Fig. 5C). In contrast, control

tumors exhibited solid sheets of poorly differentiated tumor

cells with central regions of necrosis. S473 p-Akt was abundant

in EZN-4455–treated tumors but substantially decreased in

the actively growing areas of EZN-3920–treated tumors

(Fig. 5D). At this late time point (4 weeks of therapy), we

did not detect differences in the rate of tumor cellular pro-

liferation as measured by Ki67 between both treatment groups

(Fig. 5E).

ErbB3 ablation with EZN-3920 increases response to

lapatinib in ErbB2 gene–amplified human breast

cancer cells

Finally, we examined the impact of ErbB3 ablation in human

breast cancer cell lines harboring ErbB2 gene amplification.
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Figure 3. EZN-3920 inhibits tumor

formation and p-Akt in mammary

glands of MMTV–PyVmT mice. A,

primary MMTV–PyVmT tumor

cells were treated in culture with

2.5 mmol/L EZN-3920 or EZN-

4455 for 72 hours. Whole-cell

extracts were used directly for

Western blot analysis to detect

expression of ErbB3, ErbB2, and

EGFR or used for p85

immunoprecipitation (IP) followed

byWestern blot analysis for ErbB3

and p85. B–F, treatment with EZN-

4455 or EZN-3920 (25 mg/kg,

twice weekly) began when mice

were 3 weeks old and continued

for 5 weeks (total of 10 doses).

Tissues were harvested 24 hours

after the final dose was

administered. B and C, low-power

magnification of inguinal

mammary glands of mice treated

with EZN-4455 (B) or EZN-3920

(C) illustrates profound inhibition

of tumor progression in mice

treated with EZN-3920. CLN,

central lymph node; Ad, adipose

tissue; duct, normal ductal

epithelium; vess, blood vessel;

hyperpl, hyperplastic nodule.

D, high-power magnification of

mammary epithelium from mouse

treated with EZN-3920. Note

single layer of epithelium

surrounding a lumen. E, IHC

detection of S473 p-Akt. F,

quantitation of the rate of p-Akt

positivity in mammary epithelium

of mice treated with EZN-4455

and EZN-3920. Values represent

the average number � SD of

p-Aktþ epithelial cells per total

number of epithelial cells in five

400� fields per sample � 5

samples per condition

(P ¼ 0.00001; Student unpaired

t test).
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(5mmol/L) decreased ErbB3 protein expression as well as basal

association of p-ErbB3 with p85 (Fig. 6A). Next, BT-474, SKBR3,

and MDA-MB-453 cells were treated with EZN-3920 before

being embedded in 3D Matrigel cultures. After 14 days of 3D

culture, cells treatedwith EZN-4455 formed abundant colonies

in Matrigel (Fig. 6B). However, cells treated with EZN-3920 to

inhibit ErbB3 expression produced colonies that were fewer

and smaller.

Because ErbB2 is the main stimulus of ErbB3 tyrosine

phosphorylation in ErbB2-overexpressing cells, we studied

the combined effect of inhibiting ErbB2 and ErbB3. Although

EZN-3920 could not induce apoptotic cell death when used

alone, the combination of EZN-3920 with lapatinib induced

more apoptosis than with lapatinib alone or lapatinib plus the

anti-HER2 antibody trastuzumab (Fig. 6C). To further confirm

target inhibition by EZN-3920, we examined levels of total

ErbB3 and p-ErbB3. BT-474, SKBR3, and MDA-MB-453

cells treated with lapatinib responded initially with a decrease

in Y-1997 p-ErbB3 (at 1 and 4 hours), consistent with inhibition

of ErbB2 kinase activity (Fig. 6D). However, within 24 hours,

p-ErbB3 and total ErbB3 recovered partially. However, in cells

treatedwith lapatinib and EZN-3920, the recovery of ErbB3 and

p-ErbB3wasmarkedly reduced (Fig. 6D), potentially explaining

the additive effect on cell growth.

Discussion

The ErbB3 (HER3) receptor lacks tyrosine kinase activity

but can potently activate the PI3K/Akt signaling pathway via

its 6 docking sites for the p85 subunit of PI3K (21, 24, 25).

Several oncogenic RTKs, such as ErbB2, MET, FGFR2, and

EGFR, phosphorylate ErbB3 to engage PI3K (reviewed in refs.

8, 40), and this activation has been shown to be critical for

oncogene-induced transformation and/or drug resistance. For

example, loss of ErbB3 by different genetic manipulations

impairs viability of ErbB2-dependent human breast cancer

cells, suggesting that the ErbB2 oncogene depends on ErbB3

to maintain growth and survival (22, 41). Lung cancer cells

with acquired resistance to the EGFR TKI gefitinib overex-

press MET, which results in ErbB3 phosphorylation and PI3K/

Akt activation. In these cells, knockdown of ErbB3 with short

hairpin RNAs inhibits PI3K/Akt and restores sensitivity to the

EGFR inhibitor (42). These data suggest that inhibition of

ErbB3 in combination with oncogene-targeted therapies may

be an effective approach to prevent acquired resistance or

improve tumor response.

As a therapeutic target, ErbB3 presents with the challenge

of having an inactive tyrosine kinase, thus precluding the

utility of ATP-mimetic TKIs. Circumventing this challenge are
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antibody-mediated strategies aimed at blocking ligand bind-

ing to ErbB3 (e.g., MM-121; ref. 43) or blocking the dimeriza-

tion of ErbB3 with ErbB2 in ErbB2-overexpressing cells (e.g.,

pertuzumab; ref. 44). Although each of these strategies have

met with some success in preclinical (43, 45) and clinical

studies (46, 47), they are theoretically limited by their inability

to block phosphorylation of ErbB3 by amplified heterologous

tyrosine kinases (40). For example, in non–small-cell lung

cancers (NSCLC), ErbB3 can be phosphorylated by the ampli-

fied MET receptor, leading to resistance to EGFR TKIs (42).

Furthermore, ErbB3 was a substrate for FGFR2 in FGFR2-

amplified gastric cancer cells (48). In these scenarios, binding

to the ectodomain of ErbB3 may do little to inhibit the

interaction of ErbB3 with MET or FGFR2. Our results show

that LNA oligonucleotides targeting ErbB3 mRNA downregu-

late ErbB3 in tumors and inhibit their growth in vivo, thus

representing a targeting strategy that warrants further inves-

tigation, particularly in ErbB2-overexpressing cancers. In

these tumors, modulation in situ of surrogate pharmacody-

namic biomarkers of PI3K activity (e.g., p-Akt, p-PRAS40)

simultaneously with ErbB3 levels can be used to assess

therapy-induced targeted inhibition of ErbB3. The studies

shown herein validate the potential of targeted ErbB3

ablation in vivo using LNA oligonucleotides. Although pre-

vious studies showed accumulation of LNA oligonucleotides

in liver and kidney (L. Greenberger, personal communication),

we have shown the utility of LNA-based antisense oligonu-

cleotides to downregulate target gene expression in normally

developing mammary tissue and in tumors that develop

within the native mammary gland environment.
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injected into the inguinal
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reached a volume of 200 mm3 or

more, mice were randomized to

receive 25 mg/kg EZN-3920 or

EZN-4455 twice weekly via tail-

vein injection. Tumor volumes

were monitored twice weekly and

were calculated as indicated in

Materials and Methods section.

Each data point represents the

mean tumor volume � SD (n ¼ 7;

P ¼ 0.006, Student t test).

†, identification of dead mouse in

cage; @, mouse removed from
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volume. B–E, tumors were
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The carboxy-terminal tail of ErbB3 has 6 YXXM motifs

that when phosphorylated engage the N-SH2 domain of

p85, thus activating the p110 catalytic subunit of PI3K (8).

PyVmT interacts with p85 through a single YXXM (13).

Mutation of this single motif impairs the ability of PyVmT

to activate PI3K signaling, thus decreasing the oncogenicity

of PyVmT (18). Given that both ErbB3 and PyVmT use p85,

it is possible that these 2 proteins would compete for

limiting levels of p85. Data presented herein suggest that

p-ErbB3 does not compete with PyVmT for p85, because

ErbB3, p85, and PyVmT were found in a common complex

(Fig. 2). This interaction appeared to be dependent on
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ErbB2, as the TKI lapatinib inhibited assembly of PyVmT

with ErbB3 and p85, as well as the association of ErbB3

with p85 (Figs. 1F–H). Although the molecular determi-

nants of these associations require additional investiga-

tion, it is interesting to note that treatment of cells in

culture with lapatinib (Fig. 1H) or deletion of ErbB3 in

mouse tumors (Fig. 2F) reduced the association of PyVmT

with p85, suggesting that PyVmT might be a substrate of

ErbB2/ErbB3.

Mutations in PyVmT that abrogate its interaction with Shc

(Y250F mutation) and p85 (Y315/322F mutation) have con-

firmed that association with these signal transducers is

required for oncogene-induced mammary tumor formation

(18). However, mice expressing the Y250F and Y315/322F

mutants eventually formed focal mammary tumors with

markedly delayed latency. Loss of the PI3K binding sites in

PyVmT resulted in highly apoptotic and cystic ductal hyper-

plasias and delayed tumor latency (18), a phenotype strikingly

similar to MMTV–PyVmT mammary glands lacking ErbB3

(shown in Fig. 2A and D). Notably, the tumors that occurred in

Y250F and Y315/322F expressed markedly elevated levels of

ErbB2/ErbB3, suggesting that ErbB2/ErbB3 dimers comple-

ment Y250F by engaging Shc and Y315/Y322 by engaging PI3K.

Although ErbB2 and ErbB3 can both engage Shc directly upon

tyrosine phosphorylation (49), it remains unknown whether

ErbB2/ErbB3-induced Shc signaling in the Y250F mutant

occurred independently of PyVmT or as part of a complex

also containing Shc and PyVmT. Addressing these questions

will require additional investigation beyond the scope of the

results shown.

In summary, we show in this article that ErbB2/ErbB3

receptors are part of a PyVmT-containing signaling complex

that induces PI3K/Akt signaling leading to mammary cell

transformation and tumor progression. We also that down-

regulation of ErbB3 expression using genetic and pharmaco-

logic approaches prevented the formation and decreased

growth of established transgenic mammary tumors driven by

middle T. Similar results were observed in ErbB2-overexpres-

sing humanbreast cancer cells in culture. Taken together, these

findings support further investigation intodifferent approaches

to inhibit ErbB3 function in PI3K-dependent cancers.
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