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Abstract

Scattering is a ubiquitous phenomenon which is observed in a variety of physical systems which span a wide range of

length scales. The scattering matrix is the key quantity which provides a complete description of the scattering process.

The universal features of scattering in chaotic systems is most generally modeled by the Heidelberg approach which

introduces stochasticity to the scattering matrix at the level of the Hamiltonian describing the scattering center. The

statistics of the scattering matrix is obtained by averaging over the ensemble of random Hamiltonians of appropriate

symmetry. We derive exact results for the distributions of the real and imaginary parts of the off-diagonal scattering

matrix elements applicable to orthogonally-invariant and unitarily-invariant Hamiltonians, thereby solving a long

standing problem.
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1. Introduction

Scattering is a truly fundamental issue in physics [1, 2]. A major part of our information about quantum systems

stems from scattering experiments. Rutherford’s gold-foil experiment [3] is a classic example which led us towards

the understanding of the atomic structure. Even in modern times, powerful particle accelerators rely on scattering

experiments to probe deeper and deeper into the structure of matter. Moreover, scattering plays a crucial role in clas-

sical wave systems as well and one can often relate the relevant observables to the scattering parameters. Along with

the atomic nuclei [4–8], atoms [9–12] and molecules [13–15], some of the other important examples where scattering

phenomena have been of considerable interest are mesoscopic ballistic devices [16–27], microwave cavities [28–43],

irregular graphs [44, 45], quantum graphs [46–48], elastomechanical billiards [49–51], wireless communication [52–

54] etc.

The scattering process can be completely described in terms of the scattering matrix (S matrix). It relates the

asymptotic initial and final Hilbert spaces spanned by a quantum system undergoing the scattering process. In simple

words, it relates the incoming and outgoing waves. In a quantum mechanical context these are the wave functions,

i.e. the probability amplitudes. However, in classical systems, the waves are the displacement vectors in elastome-

chanical systems or the electromagnetic field in microwave cavities. The flux conservation requirement constrains the

S matrix to be unitary, i.e., S S † = S †S = 1. As a consequence of the complicated dependence on the parameters

of the incoming waves and the scattering center, scattering is quite often of chaotic nature. Accordingly one needs

a statistical description of the scattering phenomenon and hence of the S matrix, i.e., to describe the S matrix and

related observables in terms of correlations functions and distributions. Two standard approaches in this direction

are the semiclassical approach [55–58] and the stochastic approach [59–62]. The former relies on representing the
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S -matrix elements in terms of a sum over the classical periodic orbits, starting with the genuine microscopic Hamil-

tonian representing the system. The latter, in contrast, relies on introducing stochasticity to the scattering matrix or to

the Hamiltonian describing the scattering center. Both of these have their advantages and drawbacks. For instance,

the semiclassical approach suffers the restriction caused by an exponential proliferation of classical periodic unstable

trajectories. It is further constrained by the formal condition ~→ 0 which demands that the number of open channels

be large and therefore does not cover all interesting cases. The stochastic approach, on the other hand, gets restricted

by the very nature of the stochastic modeling. Moreover, in this case, one can expect only to explore the universal as-

pects, leaving aside the system specific properties. The comparison between these two approaches has been discussed

in detail in [63].

As indicated above, within the stochastic approach, one can pursue one of the following two routes. In the first

one, the S matrix itself is regarded a stochastic quantity and is described by the Poisson kernel. Its derivation is based

on imposing minimal information content along with the necessary conditions like unitarity, analyticity etc. This

route was pioneered by Mello and coworkers and is often referred to as the Mexico approach [61, 62]. The second

path relies on introducing the stochasticity at the level of the Hamiltonian describing the scattering center. For this,

one employs the random matrix universality conjecture and models the system Hamiltonian by one of the appropriate

random matrix ensembles [64–66]. This path was laid by Weidenmüller and coworkers [59] and is referred to as the

Heidelberg approach. Even though these two stochastic approaches appear very different in their formulation, they

describe precisely the same quantity, the S matrix. Naturally, one would expect that these two routes are equivalent.

Indeed it was shown by Brouwer that the Poisson kernel can be derived using the Heidelberg approach by modeling

the scattering-center Hamiltonian by a Lorentzian (or Cauchy) ensemble of random matrices [67]. Since the universal

properties depend only on the invariance properties of the underlying Hamiltonian [64–66], his result established

the equivalence between the two approaches. Furthermore, very recently Fyodorov et al. have demonstrated this

equivalence for a broad class of unitary-invariant ensembles of random matrices [68].

In their pioneering work Verbaarschot et al. [69] calculated the two-point energy correlation functions by imple-

menting the supersymmetry technique [70–73] within the Heidelberg approach. Their result established the universal-

ity of the S -matrix fluctuation properties in chaotic scattering. Further progress in characterizing the S -matrix fluctu-

ations was made in [74, 75] where the authors derived up to the fourth-moment. In Refs. [76, 77] a related problem of

statistics of transmitted power in complex disordered and ray-chaotic structures was solved. The Landauer-Büttiker

formalism [17–19] gives the quantum conductance of mesoscopic systems (quantum dots and quantum wires) in terms

of the scattering matrix elements. In these systems the Heidelberg approach has been used to calculate the average

and variance of conductance in Refs. [20–24]. These results served as important steps in our understanding of the

nature of scattering in chaotic systems. However, a more stringent investigation of the universality at the level of indi-

vidual S -matrix elements requires information beyond that of a first few moments [35–43]. A complete description is

provided only by the full distributions which is equivalent to having the knowledge of all the moments. In the limit of

a large number of open channels and a vanishing average S matrix, or equivalently, in the Ericson regime of strongly

overlapping resonances [8, 59], the real and the imaginary parts of the S -matrix elements exhibit Gaussian behavior.

However, outside this regime the unitarity of the S matrix results in significant deviations from the Gaussian distribu-

tion [8, 74, 75, 78, 79]. The available moments up to the fourth are insufficient to determine the exact behavior of these

distributions in a general case. A significant progress in characterizing the behavior of diagonal S -matrix elements

in the general case was made in [80] where the authors succeeded in deriving the full distributions. The off-diagonal

elements, however, could not be tackled by the well established methods and the problem of finding their distributions

remained unsolved till very recently [81]. Here, we derive an exact solution to this problem and present results which

are valid in all regimes. We gave a brief presentation of the results in Ref. [81]. In the present work we provide a

full-fledged derivation with all the details, as well as some more new results concerning the statistics of off-diagonal

S -matrix elements. Our approach is based on a novel route to the nonlinear sigma model which involves obtaining

the characteristic functions associated with the distributions. This is different from the usual approach where one

formulates an appropriate generating function for the S -matrix correlations. By contrast, the characteristic function is

the moment generating function.

The paper is arranged as follows. In Section 2 we set up the model for the scattering process using the Hamiltonian

formulation and implement the Heidelberg approach to introduce stochasticity. In Section 3 we define the quantities

to be calculated, viz., the probability distributions for off-diagonal matrix elements and the associated characteristic

functions. Section 4 deals with the exact results for unitarily-invariant Hamiltonians, which apply to systems with
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broken time-reversal invariance. Section 5 gives the exact results for orthogonally-invariant Hamiltonians, which ap-

ply to “spinless” time-reversal invariant systems. We conclude in Section 6 with a brief discussion. In the appendices,

we collect some of the derivations.

2. Scattering Matrix

In the generic setting of the scattering problem the scattering event is assumed to take place inside only a certain

part of the available space. Outside this “interaction region” the fragments exhibit a free motion which is characterized,

along with the energy E, by a set of quantum numbers. The states corresponding to these quantum numbers represent

the states in which the fragments exist asymptotically before or after the scattering event and are referred to as channels

of reaction.

We associate with the compact interaction region a discrete set of orthogonal states |n〉; n = 1, 2, ...,N, which

represent the bound states of the Hamiltonian H describing the “closed” chaotic system. Moreover, we assume that

at given energy E there are exactly M open channels, described by a continuous set of functions |c, E〉; c = 1, ..., M

satisfying the orthogonality condition 〈a, E1|b, E2〉 = δab δ(E1 − E2). The full Hamiltonian H for the system can

therefore be written as

H = H0 +V. (1)

HereH0 describes the part of the Hamiltonian which is present without any interaction between the internal states of

the system Hamiltonian H and states of the open channels, viz.,

H0 =
∑

l,m

|l〉Hlm〈m| +
M∑

c=1

∫ ∞

ǫc

dE|c, E〉E〈c, E|, (2)

andV represents the interaction part,

V =
∑

l,c

∫ ∞

ǫc

dE
(|l〉 (Wc)l 〈c, E| + herm. conj.

)
. (3)

Here ǫc represents the threshold energy in a given channel c, and thus integrals in the above two equations run over the

energy region where the channel c is open. Wc (c = 1, ..., M) are the N-dimensional coupling vectors which encode the

information about the interaction. In Eq. (2) any direct interaction between channels has been neglected for simplicity,

thereby rendering the second term diagonal in c. Furthermore, the dependence of the coupling vectors on energy has

also been ignored as we are interested in a situation where the mean level spacing between the resonances is very

small compared to the mean level spacing between the channel thresholds.

Under some reasonable assumptions the S -matrix elements can be obtained in terms of the Hamiltonian H and the

coupling vectors Wc as [82, 83]

S ab(E) = δab − i2πW†aG(E)Wb, (4)

where the inverse of the resolvent G(E) is given by

G−1(E) = E1N − H + iπ

M∑

c=1

WcW†c . (5)

The above S -matrix ansatz provides the most general description of any scattering process in which an interaction

zone and scattering channels can be identified. For the characterization of the S matrix one has to specify properties

of the coupling vectors Wc. A convenient choice corresponds to the case when the average S matrix is diagonal, viz.,

S ab = S aaδab [63, 69]. In this case the coupling vectors Wc can be chosen to obey the following orthogonality relation

[69]:

W†c Wd =
γc

π
δcd. (6)

This choice corresponds to the absence of any direct coupling between the channels [63, 69]. An alternative choice

which also fulfills the condition of S being diagonal is of considering the elements of Wc as zero-mean independent
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Gaussians with variances proportional to γc. It turns out that these two choices are equivalent as long as M ≪
N [84, 85], which is exactly the case we are interested in. We consider the former choice in our calculations , i.e., Eq.

(6). We would like to remark here that for the case of a non-diagonal average S matrix, a unitary transformation U

can always be found such that US U† is diagonal on average and has the same fluctuation properties as the S matrix

without direct reactions [69, 86]. Thus it suffices to consider a case which omits direct reactions.

We now evoke the random matrix universality conjecture, according to which the universal and generic properties

of chaotic systems can be extracted by modeling the underlying Hamiltonian (or its analogue) by an ensemble of

random matrices of appropriate symmetry class. We consider here the Gaussian ensemble of random matrices to

model the interaction-region Hamiltonian H. This particular choice of distribution is only for calculation convenience

since it is known that for the universal properties, as long as one takes into account the proper invariance properties

of the Hamiltonian to be modeled, the choice of distribution is immaterial. See for example [87] where the authors

calculate the two-point correlation function by considering an arbitrary U(N) invariant Hamiltonian.

Depending on whether the system is time-reversal invariant or noninvariant, H is chosen to belong to the Gaussian

Orthogonal Ensemble (GOE) or the Gaussian Unitary Ensemble (GUE) [64–66]. These two ensembles are designated

by the Dyson index β and have the following probability distribution associated with them:

P(H) ∝ exp

(
− βN

4v2
trH2

)
. (7)

The GOE and GUE are described respectively by β = 1 and β = 2. N in the above equation represents the dimen-

sionality of H which is essentially the number of bound states, and v2 is a free parameter which can be chosen to fix

the energy scale. For β = 1, H is a real-symmetric matrix and has N(N + 1)/2 independent parameters. On the other

hand for β = 2, H is Hermitian and involves N2 independent parameters. For N → ∞ we obtain from Eq. (7), for both

values of β, the density of eigenvalues as the Wigner semicircle [65],

ρ(E) =
1

2πv2

√
4v2 − E2. (8)

The level density is Nρ(E), and consequently the mean level spacing is ∆m = 1/(Nρ(E)), which for large N behaves

as 1/N in the bulk of the spectrum.

3. Distributions and Characteristic Functions

We are interested in the statistics of the off-diagonal elements of the S matrix. The off-diagonal S -matrix elements

relate the amplitudes in different channels. Thus their statistical information is as important, if not more, as that of

the diagonal S -matrix elements which relate the amplitudes within the same channel. The S -matrix elements being

complex quantities, we need to investigate the behavior of their real and imaginary parts or equivalently that of

their moduli and phases. We consider here the distributions of the real and imaginary parts and deal with them

simultaneously. We introduce the notation ℘s(S ab), with s = 1, 2 to refer to the real and imaginary parts of S ab

respectively. For the off-diagonal case, by setting a , b we obtain from Eq. (4),

℘s(S ab) = π
(
(−i)sW†aGWb + isW

†
b
G†Wa

)
, s = 1, 2. (9)

To find the corresponding distributions, Ps(xs), we need to perform the following ensemble average:

Ps(xs) =

∫
d[H]P(H)δ (xs − ℘s(S ab)) . (10)

Here the volume element d[H] represents the flat measure involving the product of the differentials of all independent

variables occurring within H. As mentioned in the introduction, we analyze the corresponding characteristic function,

viz.

Rs(k) =

∫
d[H]P(H) exp(−ik℘s(S ab)). (11)
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The characteristic function also serves as the moment generating function, i.e., all the moments of the real and imagi-

nary parts of the S -matrix elements can be obtained by expanding Rs(k) in powers of k. The expression for Ps(xs) can

be retrieved from the Fourier transform of Rs(k) as

Ps(xs) =
1

2π

∫ ∞

−∞
dkRs(k) exp(ikxs). (12)

Thus our strategy is to calculate the characteristic function first and then obtain the distribution from it by taking the

Fourier transform.

We introduce a 2N-component vector W involving the coupling vectors Wa,Wb, and a 2N×2N-dimensional matrix

As composed of the resolvent G as

W =

[
Wa

Wb

]

2N

, As =

[
0 (−i)sG

isG† 0

]

2N×2N

. (13)

The characteristic function Rs(k) can be expressed in terms of these quantities as

Rs(k) =

∫
d[H]P(H) exp(−ikπW†AsW). (14)

To evaluate Rs(k) we need to integrate over the ensemble of H-matrices defined by Eq. (7). In general this is a

nontrivial task, more so when the quantity to be averaged does not respect the invariance properties of H, which is

the case here. Further complications are caused here because of the extremely convoluted dependence of H in the

exponent in Eq. (14) – it appears in the denominator of the resolvent G contained in the matrix As. To overcome this

problem we seek some trick which will invert the G in Eq. (14), thereby rendering the exponent linear in H. As we

will see below, the supersymmetry formalism provides exactly such a solution [70–73].

We introduce a 2N-dimensional complex vector zT = [zT
a , z

T
b

] = [za1, ..., zaN , zb1, ..., zbN] consisting of commuting

(Bosonic) variables. Similarly we introduce a 2N-dimensional vector ζT = [ζT
a , ζ

T
b

] = [ζa1, ..., ζaN , ζb1, ..., ζbN] con-

sisting of anticommuting (Fermionic or Grassmann) variables. We note that the indices a, b in these vectors are just

dummy indices and do not have any direct dependence on the values of the indices signifying the S -matrix element.

We now consider the following multivariate Gaussian integral results for commuting and anticommuting variables:
∫

d[z] exp
[
i(z†a z + b†z + z†c)

]
= det−1

( a
2πi

)
exp(−ib†a−1c), (15)

∫
d[ζ] exp

[
i(ζ†a ζ + µ†ζ + ζ†ν)

]
= det

( a
2πi

)
exp(−iµ†a−1ν). (16)

In Eqs. (15) and (16), a is an arbitrary normal matrix with complex entries. b, c in Eq. (15) are vectors consisting of

commuting entries, while µ, ν in Eq. (16) are vectors having anticommuting entries. The volume elements d[z] and

d[ζ] in the above equation are given by d[z] =
∏N

j=1 dz∗
a j

dza j dz∗
b j

dzb j and d[ζ] =
∏N

j=1 dζ∗
a j

dζa j dζ∗
b j

dζb j. The above

two Gaussian-integral identities enable us to recast the characteristic function, Eq. (14), in the following form:

Rs(k) =

∫
d[z] exp

[
i

2
(z†W +W†z)

] ∫
d[ζ]

∫
d[H]P(H) exp

[
i

4πk
(z†A−1

s z + ζ†A−1
s ζ)

]
. (17)

Eq. (17) can also be expressed in terms of an integral over a 4N-dimensional supervectorΨT = [zT , ζT ] as:

Rs(k) =

∫
d[Ψ] exp

[
i

2
(W†Ψ + Ψ†W)

] ∫
d[H]P(H) exp

(
i

4πk
Ψ†A−1

s Ψ

)
. (18)

Here A−1
s = 12 ⊗ A−1

s and W† = [W†, 0] are 4N-dimensional square-matrix and vector respectively. An ensemble

average over an exponential of a bilinear form involving supervectors and a matrix, as in the equation above, is

common in supersymmetry calculations. However, there is a difference here: A−1
s is not in block-diagonal form. If we

carry out the ensemble average using this form of A−1
s it will result in problems incorporating the correct symmetry

properties in the supermatrix which has to be introduced later. To resolve this problem we employ the trick of carrying

out certain transformations in z and ζ, while leaving z† and ζ† as they are. This is allowed since z (resp. ζ) and z†(ζ†),
being complex quantities, admit independent transformations.

To proceed further from this point, we have to take into account the appropriate symmetry of H, i.e., whether it

belongs to the GOE or GUE.
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4. Unitarily Invariant Hamiltonians (β = 2)

We consider in this section the case when H is modeled by the GUE, and thus is applicable to systems with

completely broken time-reversal symmetry. In this case the Hamiltonian H is complex-Hermitian [64–66]. The route

to the final results will consist of three steps: (i) mapping the above result to a matrix integral in superspace, (ii)

applying the large N-limit and obtaining the nonlinear σ-model, and finally (iii) reducing the result to integrals over

the radial coordinates.

4.1. Mapping to a matrix integral in superspace

As mentioned in the previous section we want to bring A−1
s in Eq. (18) into a block-diagonal form. To accomplish

this we consider the following transformations in the vectors:

z→ Ξ+z, z† → z†, ζ → Ξ−ζ, ζ† → ζ†, (19)

where

Ξ± =

[
0 ±(−i)s

1N

−is
1N 0

]
. (20)

The different transformations for z and ζ ensure proper symmetry and convergence properties of the supermatrix σ

when we map the problem to a matrix integral in superspace. The Jacobian factor arising from the above transforma-

tions is (−1)N . We therefore obtain

Rs(k) = (−1)N

∫
d[Ψ] exp

[
i

2
(U†sΨ + Ψ

†W)
] ∫

d[H]P(H) exp
(

i

4πk
Ψ†A−1Ψ

)
, (21)

where U†s = [−isW
†
b
, (−i)sW

†
a , 0, 0] and results from W† of Eq. (18) because of the rotation of the supervectorΨ. The

new 4N-dimensional matrix A−1 = diag[−(G−1)†,G−1,−(G−1)†,−G−1] in the above equation is block diagonal as

desired.

We now examine the H-dependent part in the exponent in Eq. (21). It possesses the bilinear form, z
†
aHza− z

†
b
Hzb+

ζ
†
a Hζa + ζ

†
b
Hζb, which can also be written as tr HD, where

D = zaz†a − zbz
†
b
− ζaζ

†
a − ζbζ

†
b
. (22)

The Hermiticity of the matrix D is evident. The GUE averaging in Eq. (21) therefore amounts to performing the

following integral: ∫
d[H]P(H) exp

(
i

4πk
tr HD

)
= exp

(
− 1

4r
tr D2

)
, (23)

where the variable r incorporates parameters of the problem as

r =
8π2k2N

v2
. (24)

The expression on the right hand side of Eq. (23) can also be written in terms of the supertrace (str) [72, 73] involving

a 4-dimensional supermatrix B having elements

Bmn =

N∑

j=1

(Ψm) j(Ψ
†
n) j, (25)

where m, n = 1, ..., 4 and Ψ1 ≡ za,Ψ2 ≡ zb,Ψ3 ≡ ζa and Ψ4 ≡ ζb. The Boson-Boson and Fermion-Fermion blocks of

the supermatrix B are Hermitian, while the other two blocks are adjoints of each other, and therefore B is Hermitian

itself. We have

exp

(
− 1

4r
tr D2

)
= exp

[
− 1

4r
str (K1/2BK1/2)2

]
(26)
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with K = diag(1,−1, 1, 1). Eq. (26) demonstrates the duality between the ordinary space and the superspace [73]. The

characteristic function can now be written as

Rs(k) = (−1)N

∫
d[Ψ] exp

[
− 1

4r
str (K1/2BK1/2)2

]
exp

[
i

4πk
Ψ†A−1

0 Ψ +
i

2
(U†sΨ + Ψ

†W)
]
. (27)

We have introduced hereA−1
0 which is the H-independent part ofA−1, viz.

A
−1
0 = −K1/2

E14N − L ⊗ iπ

M∑

c=1

WcW†c

 K1/2, (28)

with K = K ⊗ 1N and L = diag (1,−1, 1,−1). We now use the Hubbard-Stratonovich identity [69, 71–73],

exp

[
− 1

4r
str (K1/2BK1/2)2

]
=

∫
d[σ] exp

(
−r strσ2 + i strσK1/2BK1/2

)
, (29)

and map the problem to a matrix integral in superspace by introducing a 4-dimensional supermatrix σ having same

symmetry as B. Also, observing that

i strσK1/2BK1/2 = iΨ†K1/2(σ ⊗ 1N)K1/2Ψ (30)

we arrive at

Rs(k) = (−1)N

∫
d[σ] exp(−r strσ2)

∫
d[Ψ] exp

[
iΨ†K1/2

ΣK1/2Ψ +
i

2
(U†sΨ + Ψ

†W)
]
, (31)

where

Σ = σE ⊗ 1N +
i

4k
L ⊗

M∑

c=1

WcW†c , (32)

with σE being the shifted σ matrix,

σE = σ −
E

4πk
14. (33)

As shown in Appendix A, the integral over the supervectorΨ can be done using Eqs. (15) and (16), and yields

Rs(k) =

∫
d[σ] exp(−r strσ2) exp

(
− i

4
U†sL−1/2

Σ
−1L−1/2W

)
sdet −1

Σ, (34)

where L = L ⊗ 1N and sdet represents the superdeterminant [72, 73]. The supersymmetric representation given in

Eq. (34) constitutes one of the key results of our paper. We have accomplished the difficult task of ensemble averaging

and mapped the problem to a matrix integral in superspace. The parameter N which occurred earlier implicitly also, as

the dimension of matrix H and supervectors, is now completely an explicit parameter in the integrand. To begin with

we had N2 independent integration variables (for β = 2). We now have overall 16 independent integration variables.

Thus we have achieved a considerable reduction in the number of degrees of freedom of our problem. This is one of

the powerful aspects of the supersymmetry method.

We now need to analyze the different terms appearing within the integrand in Eq. (34). As shown in Appendix B,

we find that

ln sdet −1
Σ = − str lnΣ = −N str lnσE −

M∑

c=1

str ln
(
14 +

iγc

4πk
σ−1

E L

)
, (35)

and

Σ
−1 = σ−1

E ⊗ 1N − σ−1
E ⊗

M∑

c=1

π

γc

WcW†c +
M∑

c=1

ρ(c) ⊗ π

γc

WcW†c , (36)
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where

ρ(c) =

(
σE +

iγc

4πk
L

)−1

. (37)

Moreover, the orthogonality relation, Eq. (6), for the vectors Wc enables us to find that (see Appendix C),

U†sL−1/2
Σ
−1L−1/2W =

1

π

[
γa(−i)s+1ρ

(a)
21
+ γb is+1ρ

(b)
12

]
. (38)

Thus we see that in this case the exponential factor containing the coupling vectors in Eq. (34) depends only on two

matrix elements ρ
(c)
12

and ρ
(c)
21

out of the sixteen matrix elements of ρ(c) given in Eq. (37).

4.2. Large-N limit and nonlinear σ model

Our interest is in the limiting case of many resonances N ≫ 1 coupled with few open channels M ≪ N. Thus we

analyze the characteristic function in a large-N limit. From the above results we conclude that Rs(k) has the form

Rs(k) =

∫
d[σ] exp(−NL − δL), (39)

where the free energyL and the perturbation δL around it are given respectively by

L = r strσ2 + str lnσE (40)

and

δL =
M∑

c=1

str ln
(
14 +

iγc

4πk
σ−1

E L

)
+

i

4π

[
γa(−i)s+1ρ

(a)
21
+ γb is+1ρ

(b)
12

]
. (41)

We observe that the term NL in the free energy is of order N with respect to the term δL. The dominating part, NL,

is invariant under the conjugation by T which belongs to the Lie superspace U(1, 1/2). The sub-dominant part δL
breaks this symmetry to U(1/1) × U(1/1). We now fix M and apply the saddle point approximation to consider the

N → ∞ limit. The saddle point equation is obtained by the first variation of the exponent as

σ−1
E = −2rσ, (42)

which has the diagonal solution

σD =
E

8πk
14 +

i∆

8πk
L, (43)

where ∆ = (4v2 − E2)1/2. We note that ∆/(2πv2) is the Wigner semicircle given in Eq. (8). The full solution to Eq.

(42), which contributes to the integral in Eq. (39) in the N → ∞ limit, is a continuous manifold of the saddle point

solutions described by

σG =
E

8πk
14 −

∆

8πk
Q, (44)

with Q = −iT −1LT . Q belongs to the coset superspace U(1,1/2)/[U(1/1)×U(1/1)] and satisfies the conditions Q2 =

−14, str Q = 0.

We consider the solution as σ = σG + δσ where δσ represents the fluctuations around σG. The parts σG and δσ

may be referred to as the Goldstone and massive modes respectively [88]. Substitution of this solution in Eq. (39) and

expansion of the terms up to second order in δσ leads to a separation of the Goldstone modes σG and the massive

modes δσ. The integrals over the massive modes are Gaussian ones, and therefore can readily be done and yield unity.

We are therefore left with the expression of Rs(k) depending on the Goldstone modes σG only:

Rs(k) =

∫
dµ(σG) exp

[
− i

4π

(
γa(−i)s+1ρ

(a)
21
+ γb is+1ρ

(b)
12

)] M∏

c=1

sdet−1
(
14 +

iγc

4πk
σ−1

E L

)
. (45)
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The σE as well as the ρ(c) in the above equation should now be interpreted as Eqs. (33) and (37) with σ in all the

ingredients replaced by σG. Eq. (45) is the nonlinear-sigma model for our problem and constitutes another key

result. We would like to emphasize that to arrive at this equation we followed a novel route which is based on the

characteristic function. This is different from the earlier approaches where one starts with a generating function with

source variables. It is also worth mentioning that the superdeterminant part in this equation is the same as those

obtained in the earlier works [83]. The exponential part, however, is new in our result and carries the information

specific to the present problem.

We now use the parametrization of Q given in [83]. It involves the pseudo eigenvalues λ1 ∈ (1,∞), λ2 ∈ (−1, 1),

angles φ1, φ2 ∈ (0, 2π) and four Grassmann variables α, α∗, β, β∗. To make the paper self-contained we present this

parametrization in Appendix D. As suggested there we write Q = U−1DU, and sinceU and L commute, the product

over the superdeterminant only depends onD. Then it is straightforward to calculate it as

FU(λ1, λ2) :=

M∏

c=1

sdet−1
(
14 +

iγc

4πk
σ−1

E L

)
=

M∏

c=1

g+c + λ2

g+c + λ1

, (46)

which depends only on the pseudo eigenvalues but no other integration variables. Here we defined

g±c =
γ2

c ± v2

γc∆
, (47)

where g+c is related to the transmission coefficient or the sticking probability Tc = 1 − |S cc|2 as g+c = 2/Tc − 1 [69,

83]. The transmission coefficient corresponding to a given channel signifies the portion of the flux which is not

reflected back immediately, but penetrates the interaction region and participates in the formation of the long-living

resonances [63]. We will need g−c later on in the β = 1 case. FU can be referred to as the channel factor since the

number of channels M appears explicitly in this term only.

To evaluate the exponential contribution in Eq. (45) we have to explicitly calculate ρ(c) defined in Eq. (37) with σ

replaced by σG. This has been done in Appendix E. On using the parametrization of Appendix D in this result we

obtain,

exp
[
− i

4π

(
γa(−i)s+1ρ

(a)
21
+ γb is+1ρ

(b)
12

)]
= exp

[
isk

2

(
eiφ1 t1

b

(
1 − α

∗α

2

) (
1 +

β∗β

2

)
− e−iφ2 t2

bα
∗β

)]

× exp

[
− (−i)sk

2

(
e−iφ1 t1

a

(
1 − α

∗α

2

) (
1 +

β∗β

2

)
+ eiφ2 t2

aαβ
∗
)]
. (48)

We have introduced here

t
j
c =

√
|λ2

j
− 1|

g+c + λ j

; j = 1, 2. (49)

Thus we have the explicit expressions for all the terms in Eq. (45) in terms of four commuting and four anticommuting

variables parametrizing the supermatrix Q. As we can see, in contrast to the channel factor, the exponential part

depends on all integration variables.

4.3. Reduction to integrals over the radial coordinates

In this final step we perform the integral over the Grassmann variables and the angles to obtain the results in

terms of radial coordinates only. Performing the Grassmann integrals amounts to expanding the exponential in the

Grassmann variables and picking out the coefficient of αα∗ββ∗. All terms with other combinations of Grassmann

variables vanish. The nonvanishing term turns out to be

− 1

4π2

[
k2

4
t2
at2

b −
k

8

(
iseiφ1 t1

b − (−i)se−iφ1 t1
a

)
− k2

16

(
iseiφ1 t1

b − (−i)se−iφ1 t1
a

)2
]

exp

[
k

2

(
iseiφ1 t1

b − (−i)se−iφ1 t1
a

)]

= − 1

16π2

(
k2t2

at2
b − k

∂

∂k
− k2 ∂

2

∂k2

)
exp

[
k

2

(
iseiφ1 t1

b − (−i)se−iφ1 t1
a

)]
. (50)
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The factor 1/(4π2) comes from the convention followed in the definition of Grassmann integration. In the second line

of the above equation we have recast the expression in front of the exponential as a differential operator acting on the

exponential term. We note that there is no φ2 dependence in the integrand, the integral over it therefore just gives a

factor of 2π. The integral over φ1 can be performed using the following result [89]:

∫ 2π

0

dφ1 exp
(
C1eiφ1 −C2e−iφ1

)
= 2πJ0

(
2
√

C1C2

)
. (51)

Here J0(u) represents the zeroth order Bessel function of the first kind. Application of the differential operator on this

result then gives the desired expression as a 2-fold integral involving Bessel functions J0, J1, J2, which can be further

simplified using their recurrence relations.

It is quite natural to expect a Rothstein or Efetov-Wegner contribution in this result [71, 72, 90–92]. It is a

consequence of the particular choice of the parametrization of the supermatrix and comes from the term of zeroth

order in the Grassmann variables, which is the product of a divergent result from the integration over the Bosonic

variables and zero from the Grassmann integrations. It is known that there is no contribution from the second order

Grassmannian term in accordance with the results due to Efetov and Zirnbauer [71, 93]. In our case the Efetov-Wegner

contribution is ‘1’ in Eq. (52) below. It is essential to produce the correct value Rs(0) = 1 due to the normalization

conditions for P(H) and Ps(xs); see Eqs. (11), (12). We obtain for both real (s = 1) and imaginary (s = 2) parts

identical expressions for the characteristic function,

Rs(k) = 1 −
∫ ∞

1

dλ1

∫ 1

−1

dλ2
k2

4(λ1 − λ2)2
FU(λ1, λ2)

(
t1
at1

b + t2
at2

b

)
J0

(
k

√
t1
at1

b

)
. (52)

The distribution can be obtained using Eq. (52) in Eq. (12) and the following Fourier transform results:

1

2π

∫ ∞

−∞
dk eikx = δ(x), (53)

1

2π

∫ ∞

−∞
dk eikxJ0(ωk) =

1

π
√
ω2 − x2

Θ
(
ω2 − x2

)
, (54)

Here Θ(u) is the Heaviside-theta function, assuming the value 0 for u < 0 and 1 for u > 0. We obtain

Ps(xs) =
∂2

∂x2
s

f (xs), (55)

where

f (x) = xΘ(x) +

∫ ∞

1

dλ1

∫ 1

−1

dλ2
1

4π(λ1 − λ2)2
FU(λ1, λ2)

(
t1
at1

b + t2
at2

b

)(
t1
at1

b − x2)−1/2
Θ(t1

at1
b − x2). (56)

The delta-function singularity at xs = 0 in the expression for Ps(xs) gets canceled by another delta-function singularity

hidden in the λ integrals. These singularities, however, do not create any problem if the evaluation of Ps(xs) is carried

out using Eq. (55).

The expression for the µth moment can be easily obtained from Eq. (52) by using the series expansion of the

Bessel function J0 and examining the coefficients of kµ. We have for µ = 2n,

x2n
s = δn,0 +

Γ(2n + 1)

22nΓ2(n)

∫ ∞

1

dλ1

∫ 1

−1

dλ2
1

(λ1 − λ2)2
FU(λ1, λ2)

(
t1
at1

b + t2
at2

b

) ∣∣∣t1
at1

b

∣∣∣n−1
, (57)

and for µ = 2n + 1,

x2n+1 = 0, (58)

where n = 0, 1, 2, ... .

We found above that the distributions of real and imaginary parts are equal in this case. It is therefore clear that

the phase ϕ will have a uniform distribution, i.e.,

Pϕ(ϕ) =
1

2π
, (59)
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and that the joint density of real and imaginary parts Px1,x2
(x1, x2) will be a function of r =

√
x2

1
+ x2

2
only. The last

observation can be used to calculate the distribution of modulus also. As shown in the Appendix F we obtain for

0 < r ≤ 1,

Pr(r) =
1

r

∂

∂r

(
r
∂

∂r

)
fr(r), (60)

where

fr(r) =
1

2

(g+a + λ1)2(g+
b
+ λ1)2

(g+a + g+
b
)λ2

1
+ 2(g+a g+

b
+ 1)λ1 + g+a + g+

b

∫ 1

−1

dλ2
1

(λ1 − λ2)2
FU(λ1, λ2)

[
t1
at1

b + t2
at2

b

]
, (61)

with λ1 assuming the value,

λ1 =

(g+a + g+
b
)r2 +

√
r2[r2(g+a − g+

b
)2 + 4g+a g+

b
− 4] + 4

2(1 − r2)
. (62)

Note that Pr(r) is normalized as ∫ 1

0

dr rPr(r) = 1. (63)

As we can see in this case the characteristic function and the distributions have dependence on the parameters of the

problem via g+c (or equivalently the transmission coefficients) only. This is similar to the earlier results for S -matrix

element correlation functions, and distributions of diagonal elements [69, 80]. We also note that the cross sections are

given by the squared-moduli of the S -matrix elements. Consequently we have access to their distributions also. This

is of particular relevance for the experiments where only cross sections are accessible.
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Figure 1: Results for β = 2: (a) Characteristic functions Rs(k), (b) Distributions Ps(xs), and (c) Modulus P̃r(r) = rPr(r). Values of the parameters

considered are M = 2, E = 0, v = 1, γ1 = 1, γ2 = 1, a = 1, b = 2.

All the above analytical results can be easily implemented in Mathematica [94]. The corresponding Mathematica

codes can be found as the supplemental material available with Ref. [95]. To test these analytical results we also

performed numerical simulations. These simulations were performed with an ensemble of 50000 random matrices

H of dimensions 250 × 250 from the GUE. For each random matrix we obtain the matrix element S ab. For the

distributions we plot the histogram of such S -matrix elements (real part, imaginary part or the modulus) obtained

from the ensemble of H-matrices. For the characteristic functions, instead of obtaining them from the distributions

via an inverse Fourier transform, guided by Eq. (11), we use Rs(k) = (1/n)
∑

n exp(−ik℘s(S ab)), where n represents the

number of matrices considered in the ensemble. In Figs. 1 and 2 we show the plots for (a) the characteristic function,

(b) the distributions for the real and imaginary parts and (c) the distribution of the modulus of the scattering matrix

element S ab. The parameters used for the plots are indicated in the captions. The choice of parameters for Fig. 1 is

such that the transmission coefficient is unity for all the channels (perfect coupling). In this case the S matrix belongs

to the Haar measure on the unitary group U(M). In other words it is a member of Dyson’s circular unitary ensemble

11
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Figure 2: Results for β = 2: (a) Characteristic functions Rs(k), (b) Distributions Ps(xs), and (c) Modulus P̃r(r) = rPr(r). Values of the parameters

considered are M = 5, E = 1.2, v = 1, γ1 = 0.08, γ2 = 0.11, γ3 = 0.27, γ4 = 0.59, γ5 = 0.72, a = 2, b = 3.

(CUE). In Fig. 2 we choose values of parameters which corresponds to an ensemble far from the CUE. As we can see

the analytical predictions and the numerical simulation results are in excellent agreement in all cases.

It is known that in the case of strongly overlapping resonances (the Ericson regime) the distributions of real and

imaginary parts can be well approximated by a Gaussian distribution [8],

Ps(xs) ≈
(
2πV2

)−1/2
exp

(
− x2

s

2V2

)
, (64)

where the variance of the distributionV2, which is same as the second moment x2
s (the mean being zero), is determined

using Eq. (57). In the same limit the the moduli become Rayleigh distributed, viz.

P̃r(r) = rPr(r) ≈ r

V2
exp

(
− r2

2V2

)
. (65)

The corresponding characteristic function is given under this approximation by

Rs(k) = exp

(
− k2

2V2

)
. (66)

We test these approximations in Fig. 3. Figs. 3 (a), (b), (c) show the characteristic function, distribution of the real

(or imaginary) part and distribution of the modulus for M = 30 channels which possess identical values for the

transmission coefficient, Tc = 0.15 (g+c = 12.333). Similarly Figs. 3 (e), (f), (g) show these quantities for M = 60

channels, each having the transmission coefficient Tc = 0.9 (g+c = 1.222). The solid lines are exact results while the

dashed lines represent the approximations as in the above equations. In figures (b), (e) and (c), (f), for clarity, the plots

have been shown respectively for xs ∈ [−0.5, 0.5] and r ∈ [0, 0.5], instead of [-1,1] and [0,1]. Note that although we

focus on the element S 12, all off-diagonal elements will exhibit the same statistics because of identical choice of Tc

for all channels. Using the Weisskopf estimate [96, 97],

Γ

∆m

=
1

2π

M∑

c=1

Tc, (67)

we find that the ratio of the average resonance width (Γ) and average resonance spacing (∆m) is Γ/∆m ≈ 0.716

for the former choice and Γ/∆m ≈ 8.594 for the latter. The first case corresponds to that of weakly overlapping

resonances, while the second one is closer to the Ericson regime of strongly overlapping resonances. As expected,

we can see significant deviations from the approximate results in Figs. 3 (a), (b), (c), while in Figs. 3 (d), (e), (f) the

approximations work quite well.

It is worth mentioning that Eq. (60) also provides the exact result for the Landauer conductance of a chaotic

quantum dot with two non-ideal leads, each supporting a single mode. To see this we recall that the dimensionless

12



-120 -80 -40 0 40 80 120

k

0
0

.2
0

.4
0

.6
0

.8
1

R
s(

k
)

 Exact Rs

Gaussian

-0.5 -0.25 0 0.25 0.5
xs

0
2

4
6

8
1

0

P
s(

x
s)

 Exact Ps

Gaussian

0 0.1 0.2 0.3 0.4 0.5
r

0
4

8
1

2
1

6
P~

r(
r)

 Exact P
~

r

Gaussian

-60 -40 -20 0 20 40 60

k

0
0

.2
0

.4
0

.6
0

.8
1

R
s(

k
)

 Exact Rs

Gaussian

-0.5 -0.25 0 0.25 0.5
xs

0
1

2
3

4
5

P
s(

x
s)

 Exact Ps

Gaussian

0 0.1 0.2 0.3 0.4 0.5
r

0
2

4
6

8
P~

r(
r)

 Exact P
~

r

Gaussian

(a) (b)

(d) (e) (f)

(c)

Figure 3: Test of the approximate results in Eqs. (64)-(66) for the element S 12 in the β = 2 case. Figs. (a), (b), (c) show the characteristic function,

distribution of real (or imaginary) part, distribution of modulus for Γ/∆m ≈ 0.716 corresponding to weakly overlapping resonances. Figs. (d), (e),

(f) depict the same quantities for Γ/∆m ≈ 8.594 which is closer to the Ericson regime of strongly overlapping resonances. The solid lines are the

exact results while the dashed lines are the approximate ones. The Gaussian approximations work quite well in the regime of strongly overlapping
resonances.

Landauer conductance for a chaotic quantum dot supporting M1, M2, (M1 +M2 = M), modes in the two leads is given

by [17–19],

G =
M1∑

m=1

M∑

n=M1+1

|S mn|2. (68)

Thus for M1 = M2 = 1 we have G = |S 12|2, and consequently the distribution of the conductance is the same as the

distribution of the modulus-squared of the S -matrix element S 12 and can be easily obtained from Eq. (60).

5. Orthogonally Invariant Hamiltonians (β = 1)

We now consider the scenario when H in Eq. (5) belongs to the GOE, i.e., when it is applicable to systems which

are time-reversal as well as rotationally invariant. Similar to the unitary case, we again follow three steps to obtain the

final results.

5.1. Mapping to a matrix integral in superspace

In the present case H is real symmetric, therefore we have to modify the derivation done for the GUE where H

is complex-Hermitian. The reason behind this is that if D in Eq. (23) is left Hermitian and H is taken to be real

symmetric, only the real part of D will be affected by the Fourier transform. To obtain D appropriate to the new H we

return back to Eq. (18) and carry out the following transformations in z and ζ:

z→ Ξ+z, z† → z†, ζ → 2Ξ−ζ, ζ† → ζ†, (69)

13



where Ξ± is as defined in Eq. (20). The Jacobian factor as a result of these transformations is (−1)N2−2N . Afterwards

we decompose the z into its real (x) and imaginary (y) parts to construct a vector double the original size. x and

y should not be confused with the real (x1) and imaginary (x2) parts of the scattering matrix element. This change

from complex to real vectors yields a Jacobian factor of 22N which cancels the same factor generated above. We also

symmetrize the vector ζ using ζ∗a , ζ
∗
b

along with ζa, ζb, thus doubling its size as well. Hence we rewrite everything,

instead of 4 and 4N dimensional objects, in terms of 8 and 8N dimensional objects. Moreover, we consider the

coupling vectors Wc to be real in this case. We have

Rs(k) = (−1)N

∫
d[Ψ] exp

(
iΨ†Vs

) ∫
d[H]P(H) exp

(
i

4πk
Ψ†A−1Ψ

)
, (70)

As clear from the above discussion, we now have

Ψ =



xa

ya

xb

yb

ζa

ζ∗a
ζb

ζ∗
b



, Ψ† =
[
xT

a yT
a xT

b
yT

b
ζ
†
a −ζT

a ζ
†
b
−ζT

b

]
; Vs =

1

2



Wa − isWb

−i(Wa + isWb)

(−i)sWa +Wb

i((−i)sWa −Wb)

0

0

0

0



, (71)

andA−1 = diag(−(G−1)†,G−1,−(G−1)†,−G−1) ⊗ 12. With these modifications Eq. (23) holds with

D = xaxT
a + yayT

a − xbxT
b − ybyT

b − ζaζ
†
a + ζ

∗
aζ

T
a − ζbζ

†
b
+ ζ∗bζ

T
b . (72)

and

r =
4π2k2N

v2
. (73)

We note that D is now real symmetric. Eqs. (25) and (26) are also applicable, but now with K = diag(1, 1,−1,−1, 1, 1, 1, 1)

and m, n = 1, ..., 8. Moreover, we have Ψ1 ≡ xa,Ψ2 ≡ ya,Ψ3 ≡ xb,Ψ4 ≡ yb,Ψ5 ≡ ζa, Ψ6 ≡ ζ∗a , Ψ7 ≡ ζb, and Ψ8 ≡ ζ∗b .

Thus, analogous to Eq. (27), we obtain

Rs(k) = (−1)N

∫
d[Ψ] exp

[
− 1

4r
str (K1/2BK1/2)2

]
exp

[
i

4πk
Ψ†A−1

0 Ψ + iΨ†Vs

]
, (74)

where A−1
0 is given by Eq. (28) with L = diag (1, 1,−1,−1, 1, 1,−1,−1), 14 → 18, and K as defined above. With

the above considerations we accomplish the GOE averaging. Similar to the unitary case we now use the Hubbard-

Stratonovich identity, Eq. (29), with an 8 × 8 dimensional supermatrix σ [69]. The integral over the supervectorΨ in

this case is a lot more involved than that for β = 2. The main steps are outlined in Appendix A. We arrive at

Rs(k) =

∫
d[σ] exp

(
−r strσ2

)
exp

(
− i

4
VT

s L−1/2
Σ
−1L−1/2Vs

)
sdet−1/2

Σ. (75)

The quantities in the integrand can be read out from Eqs. (35)-(37) taking into consideration the modifications men-

tioned above.

The orthogonality relation, Eq. (6), of the vectors Wc enables us to find that (similar to the β = 2 calculation

in Appendix C)

VT
s L−1/2

Σ
−1L−1/2Vs =

γa

4π

[
ρ

(a)
11
− iρ

(a)
12
+ (−i)s+1ρ

(a)
13
+ (−i)sρ

(a)
14
− iρ

(a)
21
− ρ(a)

22
− (−i)sρ

(a)
23
+ (−i)s+1ρ

(a)
24

+(−i)s+1ρ
(a)
31
− (−i)sρ

(a)
32
− (−1)sρ

(a)
33
− i(−1)sρ

(a)
34
+ (−i)sρ

(a)
41
+ (−i)s+1ρ

(a)
42
− i(−1)sρ

(a)
43
+ (−1)sρ

(a)
44

]

+
γb

4π

[
(−1)sρ

(b)
11
+ i(−1)sρ

(b)
12
+ is+1ρ

(b)
13
+ isρ

(b)
14
+ i(−1)sρ

(b)
21
− (−1)sρ

(b)
22
− isρ

(b)
23
+ is+1ρ

(b)
24

+is+1ρ
(b)
31
− isρ

(b)
32
− ρ(b)

33
+ iρ

(b)
34
+ isρ

(b)
41
+ is+1ρ

(b)
42
+ iρ

(b)
43
+ ρ

(b)
44

]
. (76)
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The complexity of the calculation in the β = 1 case over that in β = 2 can be realized from the above expression.

Earlier we had just 2 elements of ρ(c) in the corresponding term (cf. Eq. (38)), now we have 32 (16+16) elements

coming from the Boson-Boson blocks of ρ(a) and ρ(b).

5.2. Large-N limit and nonlinear σ model

Similar to the β = 2 case, for the N → ∞ limit, we implement the saddle-point approximation as described by

Eqs. (42)-(44), the difference being that we now deal with 8-dimensional supermatrices. The integration over the

massive modes again are Gaussian ones and give just a factor of unity. The matrix Q in this case belongs to the coset

superspace UOSP(2,2/4)/[UOSP(2,2)×UOSP(2/2)].

Next we express the result in terms of the parametrization given in the Appendix D. This involves three pseudo

eigenvalues λ0 ∈ (−1, 1), λ1, λ2 ∈ (1,∞), two O(2) angles φ1, φ2 ∈ (0, 2π), three SU(2) variables m, r, s ∈ (−∞,∞),

and eight Grassmann variables. It turns out that the Boson-Boson block of ρ is symmetric, i.e., ρi j = ρ ji, i, j = 1...4.

This reduces the number of independent elements of ρ(c) entering the exponent, Eq. (76), to 20.

The evaluation of the product over the superdeterminant part does not pose much difficulty and turns out to be

dependent only on the pseudo eigenvalues. Using similar arguments as in the unitary case, we obtain

FO(λ0, λ1, λ2) :=

M∏

c=1

sdet−1/2
(
18 +

iγc

4πk
σ−1

E L

)
=

M∏

c=1

g+c + λ0

(g+c + λ1)1/2(g+c + λ2)1/2
, (77)

where g+c is as defined in Eq. (47). The evaluation of the exponential term, however, requires elaborate calculations as

described below.

5.3. Reduction to integrals over the radial and angular coordinates

The integration over the Grassmann variables is extremely challenging in this case. The complexity can be under-

stood from the fact that in this case we have 8 Grassmann variables, which can give rise to a total of 127 terms which

have even number of Grassmannian variables in them, i.e., terms with two, four, six or eight Grassmann variables,

in contrast to just 7 possible terms in the β = 2 case. Apart from these we have one term with no Grassmannian

(zeroth order term). To perform the integral we have to look for all the combinations which give rise to terms with

all 8 Grassmannian variables when multiplied together. The above described 128 terms lead to a total of 379 possible

combinations. It turns out that in our actual calculation we have 100 terms with even number of Grassmann variables

in them. These terms lead to 226 combinations which consist of all eight Grassmann variables. It is evident that these

calculations are extremely lengthy and cumbersome to be performed manually. We therefore used Mathematica [94]

to accomplish this task. The Grassmann algebra was performed using the grassmann [98] and grassmannOps [99]

packages for Mathematica.

After integrating out these Grassmann variables, we are left with an integral over the 8 commuting variables. The

resultant expression being extremely lengthy we refrain from presenting it here. Remarkably enough, this expres-

sion when carefully simplified, does not contain the SU(2) variables m, r, s at all; they appear only in the Jacobian

(see Appendix D). Thus the integral over them can be trivially performed, leading to just a factor of π2, i.e.,

∫ ∞

−∞
dm

∫ ∞

−∞
dr

∫ ∞

−∞
ds

1

(1 + m2 + r2 + s2)2
= π2. (78)

We are therefore left with two O(2) variables φ1, φ2 and three pseudo-eigenvalues λ0, λ1, λ2. In general, for β = 1

supersymmetry calculations one is able to obtain the final result in terms of a three-fold integral involving the pseudo

eigenvalues. However, in this case the integrand has a very complicated dependence on the O(2) variables which has

the form

F(λ0, λ1, λ2, φ1, φ2) exp
[
A1ei(φ1−φ2) + A2e−i(φ1−φ2) + B1ei2φ1 + B2e−i2φ1 + C1ei2φ2 +C2e−i2φ2

]
, (79)

where F is a complicated multi-term expression involving the λ’s and the φ’s. In particular the φi occur in the form

ei(n1φ1+n2φ2), where n1, n2 are integers. Because of these specific φ-dependences we can rewrite F as a differential
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operator acting on the φ1, φ2 integral having integrand as the exponential factor in the above equation. By going to

center and difference variables ϕ = (φ1 + φ2)/2 and ψ = φ1 − φ2 we are then able to perform one more integral (over

ϕ ), leaving the remaining ψ-integral as

2π

∫ 2π

0

dψ I0

(
2
√

(A1 + B1ei2ψ +C2e−i2ψ)(A2 + B2e−i2ψ +C1ei2ψ)
)
, (80)

where I0(u) represents the modified Bessel function of the first kind and is related to the Bessel function J0(u) as

I0(iu) = J0(u). Unfortunately, there does not seem to be any closed form result for this integral. Thus the final

expression of Rs(k) is given as a four-fold integral.

We obtain Rs(k) as,

Rs(k) = 1 +
1

8π

∫ 1

−1

dλ0

∫ ∞

1

dλ1

∫ ∞

1

dλ2

∫ 2π

0

dψ J(λ0, λ1, λ2)FO (λ0, λ1, λ2)
(
κ1k + κ2k2 + κ3k3 + κ4k4

)
. (81)

The ‘1’ in the above equation is again a consequence of the Efetov-Wegner correction. The Jacobian factor is given

by

J(λ0, λ1, λ2) =
(1 − λ2

0
)|λ1 − λ2|

2(λ2
1
− 1)1/2(λ2

2
− 1)1/2(λ1 − λ0)2(λ2 − λ0)2

, (82)

while the channel factor FO is defined as in Eq. (77). The fourth degree polynomial in k with coefficients κ’s in (81)

is a consequence of the application of the above described differential operator to the Bessel function appearing in

Eq. (80). To define these κ’s we need the following:

p
j
c =

√
|λ2

j
− 1|

8(g+c + λ j)
, j = 0, 1, 2, (83)

p±c = p1
c ± p2

c , (84)

q+c =
(−i)s−1

8

(
E

∆
+ ig−c

) (
1

g+c + λ1

+
1

g+c + λ2

− 2

g+c + λ0

)
, (85)

q−c =
(−i)s−1

8

(
E

∆
+ ig−c

) (
1

g+c + λ1

− 1

g+c + λ2

)
. (86)

Recall that s = 1, 2 correspond respectively to the real and imaginary parts of S ab. We also consider the complex

conjugate of q±c , r±c = (q±c )∗, and the quantities l = X/Y,m = Y/X, ω = 2
√

XY, where

X = 2p+a + q−a e−i2ψ + r−a ei2ψ, Y = 2p+b − q−b ei2ψ − r−b e−i2ψ. (87)

It can be verified that ω2 is real for all the values of parameters involved and assumes the values from 0 to 1. The κ’s

are given as

κ1 = κ11J1(kω), κ2 = κ21J0(kω) + κ22 J2(kω),

κ3 = κ31 J1(kω) + κ32 J3(kω), κ4 = κ41J0(kω) + κ42J2(kω) + κ43 J4(kω), (88)

The coefficients with the Bessel functions above are as follows

κ11 = −(9/8){p+a m1/2}+, (89)

κ21 = −(1/4)(128p0
ap0

b + 14p+a p+b + 32p−a p−b ) + {3ei2ψ(p−a q+b − p−b r+a )}− + {e−4iψq−a r−b }+, (90)

κ22 = −(1/4){(p+a p+a − 4q−a r−a )m}+, (91)
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κ31 =
{
2
[
(p+a p+a + q−a r−a )m1/2 + 2(8p0

ap0
b + p+a p+b + p−a p−b )l1/2

]
(ei2ψq−b + e−i2ψr−b )

}
−

+
{
2
[
(p+a p−b + 4p−a p+b )m1/2 + p+b p−b l1/2

]
(e−i2ψq+a + ei2ψr+a )

}
− +

{[
16p0

a(2p0
a p+b − 3p0

b p+a )

−6p+a (q+a q+b + r+a r+b ) + 2p+b (4q+a r+a − q−a r−a ) − 4p−a (p+a p−b − 2p−a p+b ) + 3p+a (q−a q−b + r−a r−b − p+a p+b )

+(e−i4ψ/2)q−a (4p+a r−b − 3p+b q−a ) + (ei4ψ/2)r−a (4p+a q−b − 3p+b r−a )
]
m1/2}

+

+
{[

(e−i4ψ/2)q−a (2e−i2ψq−a r−b − 8ei2ψr+a r+b ) + (ei4ψ/2)r−a (2ei2ψq−b r−a − 8e−i2ψq+a q+b )
]
m1/2}

−, (92)

κ32 =
{
p+a

[
(p+a p+a + 2q−a r−a ) + (3/2)(e−i4ψq−a q−a + ei4ψr−a r−a )

]
m3/2}

+ +
{
(2p+a p+a + q−a r−a )(e−i2ψq−a + ei2ψr−a )m3/2}

−, (93)

κ41 = 32
[
2p0

a p0
a(p−b − ei2ψq+b )(p−b − e−i2ψr+b ) + 2p0

b p0
b(p−a + e−i2ψq+a )(p−a + ei2ψr+a )

+ p0
a p0

b

(
(p+a + e−i2ψq−a )(p+b − e−i2ψr−b ) + (p+a + ei2ψr−a )(p+b − ei2ψq−b )

)]

+ 256p0
a p0

a p0
b p0

b + (p+a + e−i2ψq−a )2(p+b − e−i2ψr−b )2 + (p+a + ei2ψr−a )2(p+b − ei2ψq−b )2

+ 4
[
(p+a + e−i2ψq−a )(p+b − ei2ψq−b ) − 2(p−a + e−i2ψq+a )(p−b − ei2ψq+b )

]

×[(p+a + ei2ψr−a )(p+b − e−i2ψr−b ) − 2(p−a + ei2ψr+a )(p−b − e−i2ψr+b )
]
, (94)

κ42 = −32p0
a p0

b

[
(p+a + e−i2ψq−a )(p+a + ei2ψr−a )m + (p+b − ei2ψq−b )(p+b − e−i2ψr−b )l]

−2
[
(p+a + e−i2ψq−a )(p+b − ei2ψq−b ) − 2(p−a + e−i2ψq+a )(p−b − ei2ψq+b )

][
(p+a + ei2ψr−a )2m + (p+b − e−i2ψr−b )2l

]

−2
[
(p+a + ei2ψr−a )(p+b − e−i2ψr−b ) − 2(p−a + ei2ψr+a )(p−b − e−i2ψr+b )

][
(p+a + e−i2ψq−a )2m + (p+b − ei2ψq−b )2l

]
, (95)

κ43 = (p+a + e−i2ψq−a )2(p+a + ei2ψr−a )2m2 + (p+b − ei2ψq−b )2(p+b − e−i2ψr−b )2l2. (96)

In the above equations, an expressionE involving a, b, l,m, ψ enclosed in the bracket { }± represents {E(a, b, l,m, ψ)}± :=

E(a, b, l,m, ψ) ± E(b, a,m, l,−ψ). As we can see the distributions for the real and imaginary parts are not the same in

this case. They differ by the definition of q±c in Eqs. (85), (86). This explains the unequal deviations of the real and

imaginary parts from a Gaussian behavior which was observed in [78, 79] but could not be understood.

The expression for Rs(k), Eq. (81), exhibits several symmetries. The k → −k symmetry is easily visible. The

symmetry a ↔ b, as expected for the β = 1 case, is hidden because of the remaining ψ-integral. The ψ-integral

being periodic, the transformation ψ → −ψ ± π/2 does not alter the value of the integral. The transformed integrand

then exhibits a ↔ b symmetry with the original integrand. E → −E symmetry is revealed once one performs the

transformations a↔ b and E → −E together, as then one returns back to the original expression. Note that for g+c = 1

(obtained for v = 1, E = 0, γc = 1 for all c), corresponding to Dyson’s Circular Orthogonal Ensemble (COE), q±c and

hence r±c become zero, and also the ψ-dependence goes away from the integrand. The expression then simplifies a

lot and the ψ-integral just gives a value of 2π resulting in a final three-integral expression. Moreover, the result then

becomes identical for the real and imaginary parts.

A new feature emerging in the above expression, compared to the β = 2 case, is the explicit dependence on

quantities other than g+c (and thus the transmission coefficient Tc), namely E/∆ and g−c . Note that these quantities are

relevant only for the channels a and b if we are interested in the statistics of the matrix element S ab. The information

about the rest of the channels (c , a, b) enter only via the channel factor which just involves g+c . To demonstrate this

extra dependence let us consider g+c = g for all c. In this case, for fixed γ and E, we have two choices for v given

by v2 = γ2(2g2 − 1) ± γg
√

4γ2(g2 − 1) − E2, provided 4γ2(g2 − 1) − E2 > 0. For these two choices, the parameters

E/∆ and g−c have different values and lead to different characteristic functions, and hence different distributions for

the real and imaginary parts. If we fix the scale v2 and the energy E, we are still left with the γc ↔ v2/γc duality, i.e.,

the choices γc = γ or v2/γ lead to the same g+c , but g−c with an opposite sign. However, if this duality is implemented

simultaneously for the channels a, b then the results remain unchanged. This is a consequence of E ↔ −E, a↔ b and

ψ ↔ −ψ symmetries. If the γc ↔ v2/γc change is implemented in only one of the a, b channels, the results change.

This extra freedom may seem surprising at first, however a careful examination reveals that while g+c determines the

absolute value of S cc, the quantity tan−1((E/∆)/g−c ) determines the phase of S cc. Also, (E/∆)2 + (g−c )2 = (g+c )2 − 1.

Consequently, g+c and the complex quantity E/∆ + ig−c together contain no more information than that contained in
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S cc. Thus, unlike the β = 2 case, where the characteristic functions and distributions of the real and imaginary parts

of a given off-diagonal element S ab are completely determined by the absolute value of S cc (c = 1, ..., M), for β = 1

we additionally need the information about the phases for S aa and S bb.

The distributions can be written, upon taking the Fourier transform of Rs(k), as expressions containing up to

fourth-derivative with respect to xs. We have

Ps(xs) = δ(xs) +
∂ f1

∂xs

+
∂2 f2

∂x2
s

+
∂3 f3

∂x3
s

+
∂4 f4

∂x4
s

, (97)

where

f1 = 〈κ11xs/ω〉 ,
f2 = −

〈
κ21 + κ22

(
1 − 2x2

s/ω
2)〉 ,

f3 = −
〈[
κ31 + κ32

(
3 − 4x2

s/ω
2)]xs/ω

〉
,

f4 =
〈[
κ41 + κ42

(
1 − 2x2

s/ω
2) + κ43

(
1 − 8x2

s/ω
2 + 8x4

s/ω
4)]〉. (98)

Here the angular brackets represent the following:

〈h〉 = 1

16π2

∫ 1

−1

dλ0

∫ ∞

1

dλ1

∫ ∞

1

dλ2

∫ 2π

0

dψJ(λ0, λ1, λ2)FO(λ0, λ1, λ2) 2h
(
ω2 − x2

s

)−1/2
Θ

(
ω2 − x2

s

)
. (99)

The analytical result for the characteristic function, Eq. (81), can be implemented in Mathematica [94]. We found

that the Efetov variables θ j, j = 0, 1, 2 [71] are best suited for the numerical evaluation of Rs(k). They are related to

the λ’s as

λ0 = cos θ0, 0 < θ0 < π,

λ1,2 = cosh(θ1 ± θ2), 0 < θ1,2 < ∞. (100)

The Jacobian is accordingly modified to

J = 2 sin3 θ0 sinh θ1 sinh θ2

[cosh(θ1 + θ2) − cos θ0]2[cosh(θ1 − θ2) − cos θ0]2
. (101)

While the numerical evaluation of the characteristic function does not pose any serious difficulties for reasonable

values of k, it is extremely ill conditioned for the distribution. The calculation of the derivatives up to 4th order in the

expression for the distribution are not really feasible numerically, especially of the data generated from a complicated

4-fold integral. Even some noise present in the data gets amplified due to derivatives, which kills the sought after result

altogether. We therefore determine the distributions in this case with the help of Eq. (12), considering a cut-off for

k. This approach works well for a sufficiently flat distribution, whereas, if it is highly localized, it is advantageous to

consider the corresponding characteristic function instead. The numerical simulations were performed using random

matrices similar to the β = 2 case with the matrices now drawn from the GOE. In Fig. 4 we show the comparison

between the analytical predictions and simulation results. The distributions have been obtained by taking the Fourier

transform of the characteristic function numerically, as described above. We find perfect agreement in all cases.

Since no odd powers appears when the right hand side of Eq. (81) is series-expanded in powers of k, it is clear that

all the odd moments for both the real and imaginary parts of off-diagonal matrix elements are zero. The expression

for the second moment can be obtained by examining the coefficient of k2. We have

x2
s = 4

∫ 1

−1

dλ0

∫ ∞

1

dλ1

∫ ∞

1

dλ2 J(λ0, λ1, λ2)FO(λ0, λ1, λ2)
(
4p0

a p0
b + p+a p+b + p−a p−b

)

= 8

∫ 1

−1

dλ0

∫ ∞

1

dλ1

∫ ∞

1

dλ2 J(λ0, λ1, λ2)FO(λ0, λ1, λ2)
(
2p0

a p0
b + p1

a p1
b + p2

a p2
b

)
, (102)
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Figure 4: Results for β = 1: Characteristic function for (a) real part, (b) imaginary part; Distribution for (c) real part, (d) imaginary part. Values

of the parameters considered are M = 6, E = 0.75, v = 1, γ1 = 0.2, γ2 = 1.3, γ3 = 0.17, γ4 = 0.5, γ5 = 0.9, γ6 = 1.1, a = 3, b = 4. Solid lines

represent the analytical predictions while the symbols are from simulations.

which is in complete agreement with the earlier result [69]. We note that the above expression contains p
j
c only, and

therefore implies identical second moments for the real and imaginary parts. The fourth and higher even moments

depend on q±c and r±c also, and therefore are different for the real and imaginary parts. The fourth moment is obtained

by identifying the coefficient of k4 in Eq. (81) as

x4
s = 48

∫ 1

−1

dλ0

∫ ∞

1

dλ1

∫ ∞

1

dλ2 J(λ0, λ1, λ2)F (λ0, λ1, λ2)
[
(p+a p+b + p−a p−b )(q−a q−b + r−a r−b − 2q+a q+b − 2r+a r+b )

−(p+a p−b + p−a p+b )(q+a q−b + q−a q+b + r+a r−b + r−a r+b ) + 4p0
a p0

b(q−a q−b + r−a r−b )

+2(4p0
a p0

a + p+a p+a + p−a p−a + q+a r+a )(4p0
b p0

b + p+b p+b + p−b p−b + q+b r+b )
]
. (103)

The explicit expressions for the sixth and higher moments get extremely lengthy and therefore we refrain from pre-

senting them here. The Mathematica codes for computation of the characteristic functions and moments can be found

as the supplemental material available with Ref. [95].

In Fig. 5 we consider the comparison of the exact results with Gaussian approximations as given in Eqs. (64) and

(66), with the variancesV2 now determined by Eq. (102). In Figs. 5 (a) and (b) we show the characteristic functions

and distributions for M = 32 with Tc = 0.25 (g+c = 7, g−c = −6.928) for all channels. Similarly in Figs. 5 (c), (d) we

have these quantities for M = 50 with identical value of Tc = 0.9 (g+c = 1.222, g−c = −0.703). The Weisskopf estimate,

Eq. (67), gives Γ/∆m ≈ 1.273 for the former case and we can see deviations from the Gaussian results. In the latter

case we have Γ/∆m ≈ 7.162, with the Gaussian approximations working extremely well.

6. Conclusion

We presented a detailed derivation of the full distributions for the real and imaginary parts of the off-diagonal S -

matrix elements. These results are completely general and applicable to all regimes, ranging from isolated resonances
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Figure 5: Test of the approximate results in Eqs. (64) and (66) for the element S 12 in the β = 1 case. Figs. (a), (b) show the characteristic functions

and distributions for Γ/∆m ≈ 1.273. Figs. (c), (d) show the same quantities for Γ/∆m ≈ 7.162. The solid lines correspond to the exact results

for the real part, dashed lines correspond to exact results for the imaginary part, and dot-dashed lines represent the Gaussian approximations. The
Gaussian approximations work nicely in the regime closer to Ericson.

to strongly overlapping resonances. Our derivation is based on the Heidelberg approach, which is the most general

formulation of any scattering process in which an interaction region and scattering channels can be identified. To

accomplish this task we introduced a novel route to the sigma model based on the characteristic function and thereby

developed an important extension of the Supersymmetry method which led to the solution of a problem which could

not be tackled by the previous variants of the Supersymmetry method or any other technique. We believe that the

present formalism will also find applications in other problems.

We verified our analytical results by numerical simulations and found excellent agreements. In Ref. [81] we also

compared our β = 1 results with experimental data obtained from microwave experiments and thereby confirmed,

for the first time, universality in the case of the off-diagonal matrix elements. The generality of our results makes it

possible to carry out additional investigations for other experiments and test universality there. Adding to this point

we would also like to underline the relevance of our results beyond Schrödinger or Schrödinger–like wave dynamics.

While the dynamics of the waves in flat microwave cavities mathematically coincides with the time-independent

Schrödinger equation, it is quite different for genuine classical wave systems, such as three-dimensional microwave

cavities and vibrating elastic solids. Our results on the distribution facilitate more detailed tests than previously

feasible concerning the question whether the fluctuations in these “non–Schrödinger” systems are described by a

random matrix ansatz or not.

For the β = 2 case we found that the phases of the S -matrix elements are uniformly distributed and hence were

able to calculate an exact distribution for the moduli as well. The distribution of moduli is important from the point

of view of experiments where only cross-sections are available. For β = 1 the derivation of the distributions of the

phases and moduli remains an unsolved task.
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Appendix A. Integral over supervectors

We outline here the important steps implemented in carrying out the integral over the supervectors. We consider

the β = 2 case first. Let us introduce

Σ̃ = K1/2
ΣK1/2 =

[
Σ̃11 Σ̃12

Σ̃21 Σ̃22

]
. (A.1)

The Ψ-integral can therefore be written in terms of z and ζ vectors as
∫

d[z] exp

(
i

2
(z†W + U†s z) + iz†Σ̃11z

) ∫
d[ζ] exp

(
iz†Σ̃12ζ + iζ†Σ̃21z + iζ†Σ̃22ζ

)
. (A.2)

Here we introduced U
†
s = [−isW

†
b
, (−i)sW

†
a ], and U†s defined below Eq. (21) is [U†s , 0]. As we can see now, the integrals

which have to be performed are just Gaussian ones. With equations (15) and (16) the result is

det


Σ̃22

Σ̃11 − Σ̃12Σ̃
−1

22 Σ̃21

 exp

[
− i

4
U†s

(
Σ̃11 − Σ̃12Σ̃

−1

22 Σ̃21

)−1

W

]
. (A.3)

The determinant in the above equation is the inverse of the superdeterminant of K1/2ΣK1/2. Furthermore using the

multiplicative property, we have

sdet K1/2
ΣK1/2 = sdet K sdetΣ = (−1)NsdetΣ. (A.4)

The last step follows since sdet K = (−1)N . The factor of (−1)N generated above cancels the same factor in Eq. (31)

leading to Eq. (34). The matrix in the exponential in Eq. (A.3) can be identified as the upper left block of the inverse

of K1/2
ΣK1/2. Thus we get

U†s

(
Σ̃11 − Σ̃12Σ̃

−1

22 Σ̃21

)−1

W = U†s
( (

K1/2
ΣK1/2

)−1 )
11

W = U†s
(
K1/2
ΣK1/2

)−1
W. (A.5)

The second equality above follows since the vectors Us and W have zeros in their lower halves. For the same reason

we may replace K in the above equation by L which differ only in their lower halves. Taking everything into account

we arrive at Eq. (34).

We now consider β = 1. The supervector Ψ in this case has a more complicated structure and we cannot use

the results from the β = 2 calculation. Since the commuting part z of Ψ is now real and the anticommuting part ζ

comprises both the anticommuting variables and their complex conjugates we cannot use the identities for Gaussian

integrals, Eqs. (15), (16). However, for a real vector z we have a similar identity:

∫
d[z] exp

(
izT a z + izT b

)
=

√
det

(
πi

a

)
exp

(
− i

4
bT a−1b

)
, aT = a. (A.6)

The main difference to the Gaussian integral over the complex vector is the appearance of the square root over the

determinant. As indicated in the above equation, the matrix a has to be symmetric in this case. A similar identity

holds for a Grassmann vector also, viz.

∫
d[ζ] exp

(
iζT aζ

)
=

√
det

( a
iπ

)
, aT = −a. (A.7)

However, we note that a is skew-symmetric in this case. One could also derive a more general result adding a linear

term ζTµ in the exponent. This would give rise to an additional exponential factor besides the determinant. For our

purposes the above identity suffices.
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Similar to the β = 2 case above, we again define Σ̃. In order to use the identities (A.6) and (A.7), we have to look

at an expression involving ΨT = [zT , ζT ] rather than Ψ† = [z†, ζ†]. For this we observe that Ψ† and ΨT are related

via a projection matrix J as

Ψ† = ΨT J, (A.8)

where

J =

[
14N 0

0 J2

]
, J2 =



0 −1N 0 0

+1N 0 0 0

0 0 0 −1N

0 0 +1N 0


. (A.9)

Note that J2 is orthogonal and skew-symmetric, J−1
2 = JT

2 = −J2. Instead of Ψ†Σ̃Ψ we therefore look at

ΨT JΣ̃Ψ = zT
Σ̃11z + zT

Σ̃12ζ + ζ
T J2Σ̃21z + ζT J2Σ̃22ζ. (A.10)

It is not difficult to verify that Σ̃11 is symmetric,

Σ̃
T

11 = Σ̃11, (A.11)

while J2Σ̃22 is skew-symmetric,

(J2Σ̃22)T = −J2Σ̃22. (A.12)

We also observe that the off-diagonal blocks are connected via

J2Σ̃21 = −Σ̃
T

12. (A.13)

Thus the off-diagonal blocks of JΣ̃ are the negative transpose of each other.

In Eq. (A.10) the commuting and anticommuting variables are mixed, but in order to use the integral identities

(A.6) and (A.7) it would be more convenient if they were separated. We can achieve this by carrying out the transfor-

mation

ζ → ζ − Σ̃−1

22 Σ̃21z. (A.14)

Since ζT is not independent of ζ, this implies further that

ζT → ζT − zT
Σ̃

T

21(Σ̃
−1

22 )T = ζT − zT
Σ̃12Σ̃

−1

22 J−1
2 , (A.15)

where we used Eqs. (A.12) and (A.13). This transformation does not change the value of the integral. The bilinear

forms in (A.10) change accordingly,

ΨT JΣ̃Ψ→ zT (Σ̃11 − Σ̃12Σ̃
−1

22 Σ̃21)z + ζT J2Σ̃22ζ,

and therefore the Ψ-integral becomes
∫

d[z] exp
(
i zT Vs + izT (Σ̃11 − Σ̃12Σ̃

−1

22 Σ̃21)z
) ∫

d[ζ] exp
(
iζT J2Σ̃22ζ

)
. (A.16)

We have used here VT
s = [VT

s , 0]. Since J2Σ̃22 is skew-symmetric we can use Eq. (A.7) to evaluate the integral over

the anticommuting variables and get as result

∫
d[ζ] exp

(
iζT J2Σ̃22ζ

)
= det1/2


J2Σ̃22

iπ

 = det1/2

Σ̃22

iπ

 , (A.17)

where we used that det J2 = 1.

With the properties (A.11), (A.12) and (A.13) it is easy to check that Σ̃11 − Σ̃12Σ̃22Σ̃21 is symmetric and hence Eq.

(A.6) is applicable. Altogether the integration over the supervector yields

det1/2


Σ̃22

Σ̃11 − Σ̃12Σ̃
−1

22 Σ̃21

 exp

(
− i

4
VT

s

(
Σ̃11 − Σ̃12Σ̃

−1

22 Σ̃21

)−1

Vs

)
. (A.18)

This leads to Eq. (75) using arguments similar to that in the β = 2 case.
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Appendix B. Derivation of Eqs. (35) and (36)

We give in this appendix the proofs for Eqs. (35) and (36). The steps below apply to the β = 1 case also and thus

we use the notations 18/β instead of 14 etc. The superdeterminant part can be split into two parts,

str lnΣ = str ln

σE ⊗ 1N +
i

4k
L ⊗


M∑

c=1

WcW†c





= N str lnσE + str ln

18N/β +
i

4k
σ−1

E L ⊗


M∑

c=1

WcW†c



 . (B.1)

The second term of (B.1) can be cast into the form

str ln

18N/β +
i

4k
σ−1

E L ⊗


M∑

c=1

WcW†c



 =
M∑

c=1

str ln
(
18/β +

iγc

4πk
σ−1

E L

)
. (B.2)

Therefore one needs to expand the logarithm into a Taylor series, employ the orthogonality relation, Eq. (6), of the

coupling vectors and rewrite the series again into a logarithm. These results lead to Eq. (35).

We now outline the steps to invert Σ. The main idea in the following calculation is to write the inverse as a series

expansion and then employ the orthogonality relation, Eq. (6), as done above to arrive at the Eq. (B.2).

Σ
−1 =

σE ⊗ 1N +
i

4k
L ⊗

M∑

c=1

WcW†c


−1

=
(
σ−1

E ⊗ 1N

) 18N/β +

∞∑

n=1

(
− i

4k
Lσ−1

E

)n

⊗
M∑

c=1

(
γc

π

)n−1

WcW†c

 . (B.3)

To rewrite the series into an inverse again, we have to take care that the term for n = 0 is missing (note the additional

−18/β in the next line). Then we get

Σ
−1 =

(
σ−1

E ⊗ 1N

) 18N/β +

M∑

c=1

((
18/β +

iγc

4πk
Lσ−1

E

)−1

− 18/β

)
⊗ π

γc

WcW†c



= σ−1
E ⊗ 1N −

M∑

c=1

σ−1
E ⊗

π

γc

WcW†c +
M∑

c=1

(
σE +

iγc

4πk
L

)−1

⊗ π

γc

WcW†c , (B.4)

which eventually gives Eq. (36).

Appendix C. Derivation of Eq. (38)

We use Eq. (36) to calculate U†sL−1/2
Σ
−1L−1/2W. The first term in Eq. (36) yields U†sL−1/2(σ−1

E
⊗ 1N)L−1/2W.

Recalling the definitions for Us and W we obtain the following bilinear form:

U†sL−1/2(σ−1
E ⊗ 1N)L−1/2W =

[
−isW

†
b

(−i)sW
†
a

] [ (σ−1
E

)111N −i(σ−1
E

)121N

−i(σ−1
E

)211N −(σ−1
E

)221N

] [
Wa

Wb

]

= −is(σ−1
E )11W

†
b
Wa + is+1(σ−1

E )12W
†
b
Wb + (−i)s+1(σ−1

E )21W†a Wa − (−i)s(σ−1
E )22W†a Wb. (C.1)

Since we are interested in the off-diagonal elements of the scattering matrix, i.e. a , b, owing to the orthogonality

relation, Eq. (6), this implies that the first and the last term in Eq. (C.1) vanish, while the two other terms are given by

is+1γb

π
(σ−1

E )12 +
(−i)s+1γa

π
(σ−1

E )21. (C.2)
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The bilinear form of the second term of Eq. (36) can be calculated in a similar way and yields exactly the same result

as (C.2). Since these two terms appear with opposite signs in Eq. (36) they cancel out and we are left with only the

last term,

U†sL−1/2


M∑

c=1

(
σE −

iγc

4πk
L

)−1

⊗ π

γc

WcW†c

 L−1/2W. (C.3)

It has the same structure as the second term in Eq. (36) and therefore we get for the second exponential factor in Eq.

(34),

U†s
(
L1/2
ΣL1/2

)−1
W =

is+1γb

π
ρ

(b)
12
+

(−i)s+1γa

π
ρ

(a)
21
, (C.4)

with ρ(c) as defined in Eq. (37).

Appendix D. Parametrization of the supermatrices

The 4 × 4 and 8 × 8 supermatrices used in the calculations for the β = 1 and 2 cases can be parametrized as

Q = U−1DU, (D.1)

whereU is a unitary supermatrix andD is a quasidiagonal matrix. These matrices have the following block structure

in [1,2] (or pq) notation [69, 83]

U =
[
u1 0

0 u2

]
, D =

[
−iD1 D12

D21 iD1

]
. (D.2)

For the 4 × 4 supermatrix we have [83]

D1 =

[
λ1 0

0 λ2

]
, D12 =

[
(λ2

1
− 1)1/2eiφ1 0

0 i(1 − λ2
2)1/2e−iφ2

]
, D21 =

[
(λ2

1
− 1)1/2e−iφ1 0

0 i(1 − λ2
2)1/2eiφ2

]
, (D.3)

u1 =

[
1 − 1

2
α∗α −α∗
α 1 + 1

2
α∗α

]
, u2 =

[
1 + 1

2
β∗β −iβ∗

iβ 1 − 1
2
β∗β

]
. (D.4)

Here α, α∗, β, β∗ are Grassmann variables, λ1 ∈ (1,∞), λ2 ∈ (−1, 1), and φ1, φ2 ∈ (0, 2π). Also, u−1
1 = u†, u−1

2 = lu†
2
l

with l = diag(1,−1). The corresponding measure is given by

dQ =
dλ1dλ2

(λ1 − λ2)2

dφ1dφ2

(2π)2
dα∗dβ∗dαdβ. (D.5)

For the 8×8 supermatrix Q, we take the parametrization from [69]. D is parametrized in terms of the pseudo

eigenvalues λ j, j = 0, 1, 2, and SU(2) variables m, r, s. We have,

D1 = diag(λ1, λ2, λ0, λ0),

D12 =



(λ2
1 − 1)1/2

(λ2
2 − 1)1/2

i(1 − λ2
0
)1/2U

 , D21 =



(λ2
1 − 1)1/2

(λ2
2
− 1)1/2

i(1 − λ2
0
)1/2U†

 , (D.6)

with

U =
1

√
1 + m2 + r2 + s2

[
1 + im −r − is

r − is 1 − im

]
. (D.7)

Here λ0 ∈ (−1, 1), λ1,2 ∈ (1,∞) and m, r, s ∈ (−∞,∞). We note that UU† = U†U = 12. The λ’s used here are different

from those in [69] which we denote by λ̃. They are related as λ̃2
1,2 = λ

2
1,2 − 1, λ̃2

0 = 1 − λ2
0. The Jacobian measure has

been changed accordingly.
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The blocks ofU are given in terms of O(2) variables φ1, φ2 and 8 Grassmann variables as,

ui = Oivi, Oi =



cosφi sinφi 0 0

− sin φi cosφi 0 0

0 0 1 0

0 0 0 1


, i = 1, 2. (D.8)

The v’s are defined using

Yi =



0 0 −α∗
i

αi

0 0 −β∗
i

βi

αi βi 0 0

α∗
i

β∗
i

0 0


(D.9)

as

v±1
1 = 1 ± Y1 +

1
2
Y2

1 ± 1
2
Y3

1 +
3
8
Y4

1

v±1
2 = 1 ± iY2 − 1

2
Y2

2 ∓ 1
2
iY3

2 +
3
8
Y4

2 . (D.10)

The measure dµ(Q) is given by

dµ(Q) = dµ(λ0, λ1, λ2)dµ(SU(2))dµ(O(2))dµGr, (D.11)

with

dµ(λ0, λ1, λ2) =
1

2

(1 − λ2
0)|λ1 − λ2|

(λ2
1
− 1)1/2(λ2

2
− 1)1/2(λ1 − λ0)2(λ2 − λ0)2

dλ0dλ1dλ2,

dµ(SU(2)) =
1

(1 + m2 + r2 + s2)2
dmdrds, dµ(O(2)) = dφ1dφ2,

dµGr = dα1dα∗1dα2dα∗2dβ1dβ∗1dβ2dβ∗2. (D.12)

Appendix E. Calculation of ρ(c)

Using Eq. (37), we have

ρ(c) =

(
18/β +

iγc

4πk
σ−1

E L

)−1

σ−1
E = −

16π2k2

v2

(
18/β −

i4πkγc

v2
σGL

)−1

σG, (E.1)

where in the second step above we have used the saddle point condition, Eq. (42). Using Eq. (44) for σG and

Q = U−1DU we get

ρ(c) = −2πk

v2
U−1

(
18/β −

iγcE

2v2
L +

iγc∆

2v2
DL

)−1

U(E18/β − ∆Q), (E.2)

where we have used thatU and L commute. Thus we need to calculate R−1 where

R =
(
18/β −

iγcE

2v2
L +

iγc∆

2v2
DL

)
. (E.3)

We propose the ansatz

R−1 = d
(
18/β +

iγcE

2v2
L +

iγc∆

2v2
LD

)
, (E.4)

where d is a diagonal matrix to be determined. Using the resultsD2 = −18/β and L2 = 18/β, we obtain from

18/β = R−1R = d
(
18/β +

iγcE

2v2
L +

iγc∆

2v2
LD

) (
18/β −

iγcE

2v2
L +

iγc∆

2v2
DL

)
, (E.5)
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d−1 =

(
1 +

γ2
c

v2

)
18/β +

iγc∆

2v2
(DL + LD). (E.6)

WithD given in Eq. (D.2), the above equation eventually gives in [1,2] (or pq) notation,

d−1 =


(γc∆/v

2) diag(g+c + λ1, g
+
c + λ2, g

+
c + λ0, g

+
c + λ0, g

+
c + λ1, g

+
c + λ2, g

+
c + λ0, g

+
c + λ0) β = 1,

(γc∆/v
2) diag(g+c + λ1, g

+
c + λ2, g

+
c + λ1, g

+
c + λ2) β = 2.

(E.7)

Thus we finally have

ρ(c) = −2πk

v2
U−1d

(
18/β +

iγcE

2v2
L +

iγc∆

2v2
LD

)
U

(
E18/β − ∆Q

)
. (E.8)

We can now use the parametrizations given in Appendix D to obtain explicit expressions for ρ(c).

Appendix F. Proof of Eq. (60)

For β = 2 the distributions for real and imaginary parts are identical, thus as already mentioned in the main text

the joint distribution of real and imaginary parts is of the form Px,y(
√

x2 + y2). The distribution of the real part of S ab

can be obtained from this joint distribution by integrating out the imaginary part, i.e.,

Px(x) = 2

∫ √
1−x2

0

dy Px,y

(√
x2 + y2

)
=

1

π

∫ 1

x

dr r(r2 − x2)−1/2Pr(r). (F.1)

In the second step in the above equation we switched over to the polar coordinates and used Eq. (59).

Now let us consider f0(x) which is the integral term of Eq. (56),

f0(x) =

∫ ∞

1

dλ1

∫ 1

−1

dλ2
1

4π(λ1 − λ2)2
FU(λ1, λ2)

(
ω1 + ω2

)(
ω1 − x2)−1/2

Θ(ω1 − x2). (F.2)

Here we introduced ω j = t
j
at

j

b
, j = 1, 2; see Eq. (49). This gives on solving for λ1 in terms of ω1,

λ1 =
ω1(ga + gb) +

√
ω1[ω1(ga − gb)2 + 4gagb − 4] + 4

2(1 − ω1)
. (F.3)

Thus, in terms of the integration variables λ2 and ω1 we have

f0(x) =

∫ 1

−1

dλ2

∫ 1

x2

dω1(ω1 − x2)−1/2

(
∂λ1

∂ω1

)
FU(λ1, λ2)(ω1 + ω2)

4π(λ1 − λ2)2
. (F.4)

Partial integration with respect to ω1 gives

f0(x) = −
∫ 1

−1

dλ2

∫ 1

x2

dω1 2(ω1 − x2)1/2 ∂

∂ω1

[(
∂λ1

∂ω1

)
FU(λ1, λ2)(ω1 + ω2)

4π(λ1 − λ2)2

]
, (F.5)

the boundary terms being vanishing. Therefore we have,

∂ f0(x)

∂x
=

∫ 1

−1

dλ2

∫ 1

x2

dω1 x(ω1 − x2)−1/2 ∂

∂ω1

[(
∂λ1

∂ω1

)
FU(λ1, λ2)(ω1 + ω2)

2π(λ1 − λ2)2

]
. (F.6)

Another partial integration with respect to ω1 in this result yields

∂ f0(x)

∂x
= −

∫ 1

−1

dλ2

∫ 1

x2

dω1 x(ω1 − x2)1/2 ∂2

∂ω2
1

[(
∂λ1

∂ω1

)
FU(λ1, λ2)(ω1 + ω2)

π(λ1 − λ2)2

]
, (F.7)
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which then gives

∂2 f0(x)

∂x2
= −

∫ 1

−1

dλ2

∫ 1

x2

dω1

[
(ω1 − x2)1/2 − x2(ω1 − x2)−1/2

] ∂2

∂ω2
1

[(
∂λ1

∂ω1

)
FU(λ1, λ2)(ω1 + ω2)

π(λ1 − λ2)2

]
. (F.8)

Now observing that

(ω1 − x2)1/2 − x2(ω1 − x2)−1/2 = −ω1(ω1 − x2)−1/2 + 2(ω1 − x2)1/2 (F.9)

we get

∂2 f0(x)

∂x2
=

∫ 1

−1

dλ2

∫ 1

x2

dω1 ω1(ω1 − x2)−1/2 ∂2

∂ω2
1

[(
∂λ1

∂ω1

)
FU(λ1, λ2)(ω1 + ω2)

π(λ1 − λ2)2

]

−
∫ 1

−1

dλ2

∫ 1

x2

dω1 2(ω1 − x2)1/2 ∂2

∂ω2
1

[(
∂λ1

∂ω1

)
FU(λ1, λ2)(ω1 + ω2)

π(λ1 − λ2)2

]
. (F.10)

A final partial integration with respect to ω1 in the second term of the above equation gives

∂2 f0(x)

∂x2
=

∫ 1

−1

dλ2

∫ 1

x2

dω1 (ω1 − x2)−1/2

ω1
∂2

∂ω2
1

+
∂

∂ω1


[(
∂λ1

∂ω1

)
FU(λ1, λ2)(ω1 + ω2)

π(λ1 − λ2)2

]
. (F.11)

This result is similar in structure to Eq. (F.1) with ω1 being identified as r2. We therefore substitute ω1 = r2 and do

some rearrangement. This leads to (for x > 0),

∂2 f0(x)

∂x2
=

∫ 1

x

dr r(r2 − x2)−1/2 1

2r

∂

∂r

(
r
∂

∂r

) ∫ 1

−1

dλ2

[(
∂λ1

∂r

)
FU(λ1, λ2)(ω1 + ω2)

π(λ1 − λ2)2

]
. (F.12)

Using this result in Eq. (55) and comparing the resultant expression with Eq. (F.1) we obtain Eq. (60).
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