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The recently derived distributions for the scattering-matrix elements in quantum chaotic systems
are not accessible in the majority of experiments, whereas the cross sections are. We analytically
compute distributions for the off-diagonal cross sections in the Heidelberg approach, which is ap-
plicable to a wide range of quantum chaotic systems. We thus eventually fully solve a problem
which already arose more than half a century ago in compound-nucleus scattering. We compare our
results with data from microwave and compound-nucleus experiments, particularly addressing the
transition from isolated resonances towards the Ericson regime of strongly overlapping ones.

Introduction. — Scattering experiments are indis-
pensable to understand the microscopic world. Mainly
developed in nuclear physics [1–10], scattering theory
now finds various applications in condensed matter
physics [11–14], in classical wave systems [15–17], in wire-
less communication [18] and other fields [19–21]. An in-
coming wave in a scattering channel b, say, is modified
in the scattering zone, e.g., by a nucleus as the target,
and leaves it through a scattering channel a. The ele-
ments Sab(E) of the associated scattering matrix S are
complex numbers. They provide all information on the
changes in amplitude and phase, typically with energy
E. The S matrix is unitary due to flux conservation and
its dimension coincides with the number M of channels.
In a few cases both the modulus and the phase of the
S-matrix elements can be measured directly, e.g., in ex-
periments with microwave cavities, microwave networks
or reverberating elastic objects [22–25]. In the major-
ity of scattering experiments, particularly in quantum
physics, the phase is not accessible. In mesoscopic quan-
tum dots [26] the electron transport, that is, the conduc-
tance is measured instead, of which the fluctuations are
well understood [13, 14, 27, 28]. In a scattering exper-
iment involving quantum particles, i.e., atoms [29–32],
molecules [33, 34] or nuclei [35], only the incoming and
outgoing particle current can be measured. Their ratio
yields the cross sections. For a 6= b they are given by

σab(E) = |Sab(E)|2 = (ReSab(E))
2

+(ImSab(E))
2
. (1)

This formula might have to be supplemented with mul-
tiplicative factors of purely kinematic origin.

If the dynamics in the scattering zone is sufficiently
complex or, in a rather general sense, chaotic, scattering
can usually be thought of as a random process [36]. There
are in principle two stochastic approaches to chaotic scat-
tering [8, 13]. In the Mexico approach [37, 38], the S
matrix as a whole is viewed as a random matrix, whereas
in the Heidelberg approach randomness is assumed for
the Hamiltonian H describing the internal dynamics in

the interaction region. While the former has an unrivaled
conceptual elegance, the latter is better suited for grasp-
ing important features of the internal dynamics since the
scattering process as such is fully modeled on the micro-
scopic level.

We have three goals: First, we calculate within the
Heidelberg approach the exact distribution of the off-
diagonal cross sections σab with a 6= b, corresponding to
inelastic scattering or rearrangement collisions, thereby
providing the complete solution of a long-standing prob-
lem. It applies from the regime of isolated resonances
with average resonance width Γ smaller than the aver-
age resonance spacing D, i.e., Γ/D � 1, all the way up
to the Ericson regime [39] of strongly overlapping reso-
nances, Γ/D � 1. Second, we test our results by com-
paring with cross-section data obtained in microwave and
compound-nucleus experiments, focussing on the transi-
tion to the Ericson regime. Third, we provide a simple
and robust method to extract non-random contributions
to the cross-section distribution.

Scattering matrix. — The Heidelberg approach [40, 41]
is based on [5]

Sab(E) = δab − i2πW †aG(E)Wb , (2)

G−1(E) = E1N −H + iπ

M∑
c=1

WcW
†
c , (3)

where G(E) is the matrix resolvent. The widths of the
resonances generated by the poles of G(E) in the complex
energy plane exhibit non-trivial fluctuations [42]. They
are controlled by the interplay between the Hamilton ma-
trix H describing the scattering zone and the coupling
vectors Wc which account for the interaction between
the channels c and the states of H.

Scattering can involve different time scales. In nuclear
physics, there are direct, non-random reactions on very
short time scales due to channel-channel coupling. On
longer time scales a compound nucleus is formed by the
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target and the incoming particles. Its equilibration en-
sures a sufficient amount of stochasticity, justifying the
replacement of H by a random matrix. We assume ab-
sence of direct coupling between the channels, implying
that the coupling vectors Wc may be chosen orthogo-
nal, W †cWd = γcδcd/π [41, 43] where γc is referred to
as partial width. Depending on whether the system is
time-reversal invariant or noninvariant, H either belongs
to the Gaussian Orthogonal Ensemble (GOE) or to the
Gaussian Unitary Ensemble (GUE) [8, 44] designated
by the Dyson indices β = 1 and β = 2, respectively.
The entries of the matrices H are Gaussian distributed,

P(H)d[H] ∼ exp
(
−βN4v2 trH2

)
d[H] with variance param-

eter v2. The flat measure d[H] is the product of differen-
tials of all independent elements in the N ×N matrix H.
All physical quantities are measured on the local scale
of the mean level spacing. This implies universality, i.e.,
a very large class of probability densities gives the same
result in the limit N →∞; see Refs. [8, 44].

Cross-section distribution. — Although the cross-
section distribution was of high interest already in the
early days of compound-nucleus and, more generally, of
chaotic scattering, it continued to resist an analytical so-
lution [45]. In a seminal work using the supersymmetry
method, Verbaarschot, Weidenmüller and Zirnbauer [40]
derived the exact two–point energy correlation function
of the S-matrix elements. Davis and Boosé calculated
three- and four-point correlation functions [46, 47] and
Fyodorov, Savin and Sommers the distribution of the di-
agonal S-matrix elements [48]. Rozhkov, Fyodorov, and
Weaver [49, 50] computed a related quantity, namely the
statistics of transmitted power. Putting forward a new
variant of the supersymmetry method, we recently cal-
culated the distributions of the real and the imaginary
parts of the off–diagonal S matrix [51, 52]. In a related
study, Fyodorov and Nock obtained the distributions of
off–diagonal elements of the Wigner K matrix [53]. Nev-
ertheless, the cross-section distribution remained out of
reach, because the cross section (1) depends on the real
and imaginary parts of the S-matrix element which are
not independent. Thus, to compute it for a 6= b,

p(σab) =

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 δ(σab − x21 − x22)P (x1, x2) ,

(4)
the knowledge of the joint probability density function

P (x1, x2) =

∫
d[H]P(H)δ(x1 − ReSab)δ(x2 − ImSab)

(5)
is inevitable. At first sight, one might expect that this
task leads to doubling the size of the supersymmetric
non–linear sigma model as compared to Refs. [48, 51, 52],
rendering further evaluation forbiddingly complicated.
However, we recently discovered that a simple, yet far-
reaching modification and generalization of our super-

symmetry technique in Refs. [51, 52] yields P (x1, x2)
without enlarging this size.
Joint probability density. — It turns out to be advanta-

geous to employ the Fourier transform, i.e., the bivariate
characteristic function

R(k1, k2) =

∫
d[H]P(H)e−ik1 ReSab−ik2 ImSab (6)

in two dimensions, such that

P (x1, x2) =
1

4π2

∫ ∞
−∞

dk1

∫ ∞
−∞

dk2 e
ik1x1+ik2x2R(k1, k2) .

(7)
Anticpating the data analysis to follow we emphasize that
the characteristic function is obtained by sampling from
the experimental data as easily as the joint probability
density itself. With Eq. (7) in Eq. (4) and the complex
variables k = k1 + ik2 and x = x1 + ix2, we find

p(σab) =
1

4π2

∫
d2x

∫
d2k δ(σab − |x|2)eiRe (k∗x)R(k) .

(8)
The x integrals can be done with polar coordinates,

p(σab) =
1

4π

∫
d2kR(k) J0

(√
σab|k|

)
, (9)

expressing the cross-section distribution as a certain
Bessel transform of the characteristic function. The cru-
cial step to make the calculation of the latter feasible is
to use Eq. (3) in Eq. (6) in the form

R(k) =

∫
d[H]P(H) exp

(
−iπWTAW

)
(10)

with the 2N component vector WT = [WT
a ,W

T
b ] for a 6=

b, and the 2N × 2N Hermitian matrix

A =

[
0 −ik∗G

ikG† 0

]
(11)

in terms of the resolvent in Eq. (3). In Refs. [51, 52] we
proceeded similarly, but for marginal distributions and
thus univariate characteristic functions that depend ei-
ther on k1 or on k2. Absorbing them as complex vari-
able k into the definition of A preserves its Hermiticity.
Hence, we may adjust all further steps in Refs. [51, 52]
by moving the calculation into the complex k plane. We
introduce bosonic integrals for a Fourier transform of the
characteristic function (10) inW space to invert the resol-
vent G in A. A thereby occurring determinant is written
as a fermionic integral. This allows us to do the ensemble
average over the random matrices H exactly. We obtain
a supermatrix model that we bring onto the local scale
by a saddlepoint approximation for N →∞. This yields
a supersymmetric nonlinear sigma model extending the
one in Refs. [51, 52]. Details are given in Sect. I of the
supplemental material [54].
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For β = 2 with unitarily invariant H the final result
for the characteristic function is

R(k) = 1−
∫ ∞
1

dλ1

∫ 1

−1
dλ2

|k|2

4(λ1 − λ2)2
FU(λ1, λ2)

×
(
t1at

1
b + t2at

2
b

)
J0

(
|k|
√
t1at

1
b

)
, (12)

with the channel factor

FU(λ1, λ2) =

M∏
c=1

g+c + λ2

g+c + λ1
, (13)

where tjc =
√
|λ2j − 1|/(g+c + λj), and gc

± = (v2 ±
γ2c )/(γc

√
4v2 − E2). The parameter g+c is related to

the transmission coefficient or the sticking probability
Tc = 1 − |Scc|2 as g+c = 2/Tc − 1. The remarkable fact
that the characteristic function (12) depends only on |k|
implies that the distribution of real and imaginary parts
of Sab are identical [51, 52] for β = 2. For β = 1 with
orthogonally invariant H we arrive at

R(k) = 1 +
1

8π

∫ 1

−1
dλ0

∫ ∞
1

dλ1

∫ ∞
1

dλ2

∫ 2π

0

dψ

× J (λ0, λ1, λ2)FO (λ0, λ1, λ2) (κ1 + κ2 + κ3 + κ4) .
(14)

The Jacobian in the above expression is given by

J =
(1− λ20)|λ1 − λ2|

2(λ21 − 1)1/2(λ22 − 1)1/2(λ1 − λ0)2(λ2 − λ0)2
,

(15)
and the channel factor reads

FO(λ0, λ1, λ2) =

M∏
c=1

g+c + λ0

(g+c + λ1)1/2(g+c + λ2)1/2
. (16)

The κ’s in Eq. (14) depend on g±c and the complex k in
a nontrivial way; see Sect. II of the supplemental mate-
rial [54].

Comparison with microwave data. — The mathemat-
ical equivalence of spectra of two–dimensional quantum
billiards and flat microwave resonators is used to exper-
imentally explore a variety of quantum chaotic phenom-
ena in closed [22, 23, 55, 56] and open systems [57–63].
Here, we use the data measured for a microwave billiard
in the shape of a classically chaotic tilted–stadium bil-
liard; see Refs. [62–64] for experimental details. The S-
matrix elements Sab were measured in steps of 100 kHz
in a range from 1 to 25 GHz. Their fluctuation prop-
erties were evaluated in frequency windows of 1 GHz to
guarantee a negligible secular variation of the coupling
vectors Wc. In Ref. [51] we analyzed the marginal distri-
butions of real and imaginary parts of Sab and the cor-
responding univariate characteristic functions separately.
We now compare our new analytical results for the joint

probability density P (x1, x2), for the bivariate character-
istic function R(k1, k2) and for the cross section distribu-
tion p(σab) with these data. Figure 1 shows the bivariate
characteristic function in the frequency range 10-11 GHz.
Plotted are the analytical and experimental results to-
gether. The same comparison is shown in Fig. 2 for the
frequency range 24-25 GHz; see also Fig.1 of the supple-
mental material [54]. The agreement is very good in

FIG. 1: Bivariate characteristic function R(k1, k2) in the fre-
quency range 10-11 GHz. Analytical result (blue) and mi-
crowave data (orange).

both cases. For the lower frequencies, the peak is broad
and heavy–tailed, corresponding to a non-Gaussian joint
probability density. For the higher ones, the peak is nar-
row and Gaussian–like, yielding the joint probability den-
sity with a nearly Gaussian shape for the frequency range
24-25 GHz, displayed in Fig. 3. To explain these results,
we point out that the system undergoes with increasing
frequency a transition from isolated resonances to largely
overlapping ones, i.e., to the onset region of the Ericson
regime [64]. For the frequency ranges 10-11 GHz and
24-25 GHz, we have Γ/D = 0.23 and Γ/d = 1.21, respec-
tively. In the Ericson regime, scattering matrices and
cross sections are random functions and the peaks in the
spectra cannot be associated with particular resonances,
implying that the distribution of the S-matrix elements
is Gaussian [3, 41]. According to Eq. (4), the distribu-
tion of normalized cross sections is then exponential with
p(0) = 1. To test this, we also compare in Fig. 4 our re-
sults for the distribution of cross sections normalized to

FIG. 2: As Fig. 1, but in the frequency range 24-25 GHz.
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their mean with the data. As seen, our exact results com-
pare well to all regimes including the transition region.
The nearly exponential form with p(0) > 1 in the fre-
quency range 24-25 GHz clearly indicates that we are in
the onset of the Ericson regime.

FIG. 3: Joint probability density P (x1, x2), analytical (sur-
face) and microwave data (histogram) in the frequency range
24-25 GHz.

FIG. 4: Distribution of normalized cross sections. Experi-
mental data as histograms from microwave (left) and nuclear
experiments (right), respectively. Analytical results as solid
red lines.

Comparison with compound-nucleus data. — We also
use data from historical measurements of the compound-
nuclear reaction 37Cl(p,α)34S [65–67]. In Ref. [66], ex-
citation functions were measured in steps of 8 keV in
the proton-energy range 11-11.952 MeV for 12 scatter-
ing angles between 31◦ to 175◦. Importantly, these data
are fully in the Ericson regime with Γ/D ≈ 27 − 36.
In Fig. 5 we show a selection of three such excitation
functions for 31◦, 110◦ and 175◦. At smaller angles, one
observes a background, i.e., a nonzero minimum value of
the excitation function. It is due to direct reactions, in
which, e.g., an incoming particle kicks out an α parti-
cle without formation of a compound nucleus. As such
processes are stronger in forward than in backward di-

rection, the background disappears at larger angles. In
addition, they are barely affected by the chaotic dynam-
ics in the scattering zone and thus cannot be random.
Hence, their energy dependence is marginal and we may
safely substract the background to obtain the fluctuat-
ing compound-nuclear contribution. In Fig. 4 we com-
pare the distribution of normalized cross-sections, i.e.,
p(σ/〈σ〉) obtained from the 175◦ measurement with the
analytical prediction. For this, we use M = 5 (effective)
open channels and all transmission coefficients Tc = 0.99
in accordance with Ref. [66], leading to an exponential.
We find a very good match.

To complete our studies we, furthermore, apply our
analytical results to nuclear data in the region of weakly
overlapping resonances. In Ref. [68], the reaction
37Cl(p,α)34S was measured in the proton-energy range
1.1-3.1 MeV at a scattering angle of 90◦. These data,
shown in Fig. 6, exhibit an unusually sharp increase at an
energy of approximately 2.6 MeV which is due to experi-
mental imperfections. We thus restrict the data analysis
to the energy range 1.1-2.6 MeV. The background stem-
ming from the direct reactions is a smoothly increasing
function of energy, hence subtracting it is more involved
than in the previously considered case; see Fig. 5. This
reflects a general problem in analyzing compound-nuclear
data. Unfortunately, we cannot exploit recent progress
that has been made employing the K matrix [69, 70],
since it relies on the knowledge of the S-matrix ele-
ments. Instead, we put forward a seemingly new em-
pirical method which is based on the observation that
the peak exhibited by the cross-section distribution of
compound-nuclear reactions at σ = 0 is shifted to a
nonzero value by direct contributions. Thus, we fit the
excitation function below 2.6 MeV with a second-order
polynomial, which we then subtract from the data. This
leads to the experimental cross-section distribution dis-
played in Fig. 4 which is peaked at zero. Our analytical
result is very well capable of describing this clearly non-
exponential distribution for M = 10 effective channels
and Tc = 0.7.

Conclusions. — We solved a long-standing problem
by exactly calculating the distribution of the off-diagonal
cross sections within the Heidelberg approach. This fa-
cilitates, for the first time, an analysis of distributions
for the large number of systems, in which only the cross
sections can be measured. We performed a detailed com-
parison with microwave and nuclear data, focusing on
the transition from the regime of isolated resonances to-
wards the Ericson regime. Our analytical results describe
the data very well in all regimes. We are not aware of
any comparable study for distributions and characteristic
functions. In the course of our data comparison, we came
up with a seemingly new and robust method to substract
the direct part in cross-section data which only relies on
experimental information.

We are grateful to A. Nock for his help in the ini-



5

FIG. 5: Excitation functions for the reaction 37Cl(p,α)34S in
the Ericson regime for scattering angles 31◦, 110◦ and 175◦

from top to bottom. Digitized from Ref. [66].

FIG. 6: Excitation functions for the reaction 37Cl(p,α)34S in
below the Ericson regime for scattering angle 90◦. Digitized
from Ref. [68].
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