
diffGrad: An Optimization Method for

Convolutional Neural Networks
Shiv Ram Dubey, Member, IEEE, Soumendu Chakraborty, Swalpa Kumar Roy, Student Member, IEEE, Snehasis

Mukherjee, Member, IEEE, Satish Kumar Singh, Senior Member, IEEE, and Bidyut Baran Chaudhuri,

Life Fellow, IEEE

Abstract—Stochastic Gradient Decent (SGD) is one of the
core techniques behind the success of deep neural networks.
The gradient provides information on the direction in which a
function has the steepest rate of change. The main problem with
basic SGD is to change by equal sized steps for all parameters,
irrespective of gradient behavior. Hence, an efficient way of deep
network optimization is to make adaptive step sizes for each
parameter. Recently, several attempts have been made to improve
gradient descent methods such as AdaGrad, AdaDelta, RMSProp
and Adam. These methods rely on the square roots of exponential
moving averages of squared past gradients. Thus, these methods
do not take advantage of local change in gradients. In this paper,
a novel optimizer is proposed based on the difference between
the present and the immediate past gradient (i.e., diffGrad). In
the proposed diffGrad optimization technique, the step size is
adjusted for each parameter in such a way that it should have
a larger step size for faster gradient changing parameters and
a lower step size for lower gradient changing parameters. The
convergence analysis is done using the regret bound approach
of online learning framework. Rigorous analysis is made in this
paper over three synthetic complex non-convex functions. The
image categorization experiments are also conducted over the
CIFAR10 and CIFAR100 datasets to observe the performance of
diffGrad with respect to the state-of-the-art optimizers such as
SGDM, AdaGrad, AdaDelta, RMSProp, AMSGrad, and Adam.
The residual unit (ResNet) based Convolutional Neural Networks
(CNN) architecture is used in the experiments. The experiments
show that diffGrad outperforms other optimizers. Also, we show
that diffGrad performs uniformly well for training CNN using
different activation functions. The source code is made publicly
available at https://github.com/shivram1987/diffGrad.

Index Terms—Neural Networks; Optimization; Gradient De-
scent; Difference of Gradient; Adam, Residual Network, Image
Classification.

I. INTRODUCTION

During the last few years, deep learning based techniques

have gained more and more popularity in solving problems

in different domains, especially where a data driven approach

S.R. Dubey and S. Mukherjee are with the Computer Vision Group, Indian
Institute of Information Technology, Sri City, Chittoor, Andhra Pradesh-
517646, India (e-mail: shivram1987@gmail.com, srdubey@iiits.in, sneha-
sis.mukherjee@iiits.in).

S. Chakraborty is with the Indian Institute of Information Technology,
Lucknow, Uttar Pradesh, India (email: soum.uit@gmail.com).

S.K. Roy and B.B. Chaudhuri are with the Computer Vision and Pattern
Recognition Unit at Indian Statistical Institute, Kolkata-700108, India (email:
swalparoy@gmail.com, bidyutbaranchaudhuri@gmail.com). Prof. Chaudhuri
is also with the Techno India University, Sector V, Salt Lake City, Kolkata-
700091, India.

S.K. Singh is with the Computer Vision and Biometrics Laboratory at
Indian Institute of Information Technology, Allahabad-211015, India (email:
sk.singh@iiita.ac.in).

is required [1]. Due to the availability of GPU-based high-

end computational facilities and the huge amount of data,

deep learning based approaches generally outperform the tra-

ditional hand-designed approaches to solve research problems

in Computer Vision [2], [3], [4], [5], Image Processing [6],

[7], Signal Processing [8], [9], Robotics [10], Natural Lan-

guage Processing [11], [12], and many other diverse areas of

Artificial Intelligence. Other applications where deep learning

can be used include object tracking [13], [14], [15], face anti-

spoofing and micro-expression recognition [16], [17], hyper-

spectral image classification [18], etc.

The deep neural network has different variants to deal with

the different problems, such as Convolutional Neural Networks

(CNN) and Generative Adversarial Networks (GAN) for im-

ages, Recurrent Neural Network (RNN) and Long Short Term

Memory Network (LSTM) for temporal sequences of data,

3D-CNN for videos, etc. Research on CNN has observed a

rapid growth in recent years, especially on various image based

problems. Different CNN architectures have been proposed

for image related problems such as AlexNet [2], VggNet [4],

GoogLeNet [19], and ResNet [20] for image classification,

R-CNN [21], Fast R-CNN [22], Faster R-CNN [23], and

YOLO [24] for object detection, Mask R-CNN [25] and PANet

[26] for instance segmentation, RCCNet [27] for colon cancer

nuclei classification, etc.

In most neural networks, the basic approach that is usually

followed for finding an optimal solution is Stochastic Gradient

Descent (SGD) optimization [28]. Here, initially a measure of

loss over the current parameter values is computed using a loss

function defined for the specific problem being solved. Then,

the gradient for each parameter (i.e. in each dimension) in the

network is computed and the parameter values are updated in

the opposite direction of the gradient by a factor proportional

to the gradient. For SGD optimization, the above two steps

are repeated until convergence or until a certain number of

epochs or iterations are completed. There are the following

four major drawbacks in the basic SGD approach: 1) If the

loss changes quickly for a set of parameters and slowly for

another set of parameters, then it leads to very slow learning

along shallow dimensions and a jittering effect along steep

dimensions [29] as depicted in Fig. 1a. 2) If the loss function

has a local minimum or a saddle point [30], then SGD gets

stuck due to zero gradients in that region. These situations are

illustrated in Fig. 1b and Fig. 1c. 3) The gradients are usually

computed over minibatches; so the gradients can be noisy. 4)

SGD takes the same step for each parameter irrespective of

The results of diffGrad in this version are improved after fixing a bug in IEEE version. c©2019 IEEE. Earlier version is published at:
https://ieeexplore.ieee.org/document/8939562. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other users, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works for resale

1

ar
X

iv
:1

90
9.

11
01

5v
3

 [
cs

.L
G

]
 6

 M
ar

 2
02

0

(a)

(b)

(c)

Fig. 1: (a) An optimization landscape for two parameters represented in two directions, i.e. horizontal and vertical directions. The loss changes slow in horizontal direction and fast

in vertical direction. (b) A local minima scenario in 1-D optimization. (c) A saddle point scenario in 1-D optimization.

the iteration-wise gradient behavior for that parameter, which

leads to poor optimization. Note that each parameter of the

network is considered as a dimension in the optimization

landscape. Therefore, both dimension and parameter are used

interchangeably in this paper.

Improving SGD based optimization method for neural net-

works has recently become an active area of research interest.

In order to address the above problems, several SGD variants

have been proposed in the literature. For example, SGD with

momentum (SGDM) is an extension of SGD by incorporating

the past gradients in each dimension [31], [32]. SGDM main-

tains a momentum in each dimension as a function of previous

momentum and current gradient in that dimension. The goal

of SGDM is to develop high “velocity” in any dimension that

has a consistent gradient. In SGDM, the jittering problem is

reduced with high velocity in consistent gradient dimensions

and the saddle point problem is reduced by using the past

gradients, which provide some momentum, even when the

current gradient is close to zero. SGDM optimization is

further improved by Sutskever et al. by Nesterovs Accelerated

Gradient (NAG), which guarantees a better convergence rate

than SGD in certain situations [32]. In NAG, the gradients are

computed based on an approximation of the next position of

the parameters, which are used to update the current moments

and parameters. Thus, NAG updates both the moments and

gradients, based on the future dimensions.

Another widely used variant of the gradient descent method

is AdaGrad [33], proposed to deal with sparse data. AdaGrad

performs larger updates for infrequent parameters which leads

to smaller magnitude of gradients and smaller updates for fre-

quent parameters which leads to larger magnitude of gradients.

Basically, AdaGrad divides the learning rate with the square

root of the sum of the squares of the past gradients for all

parameters. Apart from dealing with sparse data, AdaGrad is

applied to other kinds of problems as well, such as training

large-scale neural nets to recognize cats in Youtube videos

[34] and training GloVe word embeddings, as infrequent words

require larger updates than frequent ones [35]. But, AdaGrad

accumulates the square of gradients which, in turn, may lower

the learning rate drastically after some time and kill the

learning process. Zeiler extended AdaGrad to AdaDelta by re-

moving the problem of a dying learning rate, which was caused

by the monotonically increasing sum of square of gradients

[36]. AdaDelta also accumulates the square of past gradients,

but considers only a few immediate past gradients instead of

all past gradients. RMSProp is another attempt to correct the

diminishing learning rate of AdaGrad similar to AdaDelta [37],

i.e. by accumulating the gradient as an exponentially decaying

average of squared gradients. The major difference between

AdaDelta and RMSProp is that AdaDelta does not use any

learning rate [36], whereas RMSProp uses a learning rate [37].

One of the recent and popular variants of gradient descent

is Adaptive Moment Estimation (Adam). Adam computes

adaptive learning rates for each parameter [38] by utilizing

both first and second moments. Adam accumulates the expo-

nentially decaying average of past gradients similar to SGDM

as first moment. It also accumulates the exponentially decaying

average of square of past gradients similar to AdaDelta and

RMSProp as second moment. The moment can be imagined

as a ball rolling down a slope, where Adam behaves like a

heavy ball with friction, which thus prefers flat minima in

the error surface [39]. It is observed that Adam performs

reasonably well in practice as compared to the other adaptive

learning-methods. However, Adam does not utilize the change

in immediate past gradient information, which is incorporated

in the proposed diffGrad method. Very recently, Reddi et

al. proposed AMSGrad as an improvement over Adam [40].

AMSGrad considers the maximum of past second moment

(i.e., “long-term memory of past gradients) in the parameter

update procedure. By doing so, AMSGrad imposes more

friction in order to avoid the overshooting of the minimum.

AMSGrad does not change the learning rate based on the

recent gradient behavior and does not deal with the saddle

point problem, either. Whereas, the proposed diffGrad method

controls the learning rate based on the changes in the gradient.

Some of the recent works in stochastic gradient methods

include the Predictive Local Smoothness based SGD (PLS-

SGD) [41], the sign of each minibatch SGD (signSGD) [42],

and Nostalgic Adam (NosAdam) [43], etc.

This paper proposes a difference of gradient based opti-

mizer, which improves the well known Adam [38] with the

difference of gradients (diffGrad) over the iterations. The main

contributions of this paper are summarized as follows:

• This paper proposes a new diffGrad gradient descent

optimization method for Convolutional Neural Networks

(CNN) by considering the local gradient change informa-

tion between the current and immediate past iteration.

• We show how the “short-term gradient behavior” can be

utilized to control the learning rate in the optimization

landscape in terms of the optimization stage, i.e., near or

far from an optimum solution. If change in gradient is

large, it means that the optimization is not stable due to

2

local optima, salient region or other factors, and diffGrad

allows a high learning rate. If change in gradient is small,

it means that the optimization is likely to be close to the

optimum solution, and diffGrad lowers the learning rate

automatically.

• The proposed method also utilizes the accumulation of

past gradients over iterations to deal with saddle points.

• We conduct a convergence analysis of diffGrad in terms

of the regret bound using the online learning framework.

We also derive a proof for diffGrad convergence.

• An empirical analysis is done by modeling the opti-

mization problem as a regression problem to show the

advantages of the proposed diffGrad optimization method

over three synthetic complex non-convex functions.

• We conduct an experimental study on the proposed

method and observe its improved performance for an

image categorization task using the ResNet based the

CNN architecture. We also experiment with different

variants of diffGrad and different activation functions.

The rest of the paper is structured in the following manner:

Section II presents the preliminaries in SGD optimization; Sec-

tion III proposes the diffGrad optimization method; Section IV

conducts the convergence analysis; Section V is devoted to the

empirical analysis; Section VI presents the experimental setup;

Section VII presents the experimental results, comparison and

analysis; and Section VIII provides the concluding remarks.

II. PRELIMINARIES

In SGD, all parameters are updated with the same learning

rate αt in the tth iteration as

θt+1,i = θt,i − αt × gt,i, (1)

where θt,i and θt+1,i are the previous and updated values for

the ith parameter with i = 1, 2, ..., d, where d is the number

of parameters, and gt,i is the gradient with respect to the

parameter θt,i for a loss function £, defined as

gt,i =
∂(£t,θ)

∂(θt,i)
, (2)

where £t,θ is a loss function with respect to the parameters of

the network (θ) in tth iteration. In this paper, the cross entropy

loss used for image categorization experiments is defined as

£t,θ =
1

Nb

Nb
∑

j=1

£t,θ,j + σRt,θ, (3)

where Nb is the number of training images in the batch, £t,θ,j

is the cross entropy data loss for jth training image in tth

iteration, Rt,θ is the regularization loss in tth iteration, and

σ is a regularization loss hyper-parameter. The cross entropy

data loss £t,θ,j for jth training image is computed as

£t,θ,j = −log

(

eSoj

∑Nc

k=1 e
Sk

)

, (4)

where Nc is the total number of classes in the dataset, oj is the

actual class (i.e., ground truth class) for jth training image and

Sk is the computed class score for kth class for jth training

image. The regularization loss Rt,θ is computed as

Rt,θ =

d
∑

i=1

(θt,i)
2. (5)

In SGDM [32], the gradient in each dimension is incor-

porated to gain moment for the parameters having consistent

gradient, as follows:

mt,i = βmt−1,i + gt,i, (6)

θt+1,i = θt,i − αmt,i, (7)

where mt,i is the moment gained at tth iteration for ith

parameter θt,i with mt,i = 0 for t = 0 and β is a hyper-

parameter to control the moment.

In AdaGrad [33], the basic SGD approach is modified by

normalizing the learning rate αt as

θt+1,i = θt,i −
αt × gt,i
√

Gt,i + ǫ
, (8)

where ǫ is a small value to avoid division by zero and Gt,i is

the sum of the squares of the gradients of t steps for the ith

parameter and given as

Gt,i =

t
∑

t=1

(gt,i)
2, (9)

where gt,i is given by Eq. (2). Over the iterations, the value of

Gt,i may become very large due to the positive accumulation

of the square of the gradients and may decrease the effective

learning rate α drastically, which in turn can kill the learning

process. This problem has been addressed in AdaDelta [36]

and RMSProp [37] by leaking the accumulated square of

gradients Gt,i with a decay rate β. The Gt,i in RMSProp is

modified as

Gt,i = βGt−1,i + (1− β)(gt,i)
2 (10)

where Gt−1,i = 0 for t = 1.

Adam [38] is another widely used gradient descent opti-

mization technique that computes the learning rates at each

step based on two vectors known as the 1st and 2nd order

moments (i.e., mean and variance, respectively), which are

recursively defined using the gradient and the square of the

gradient, respectively. Basically, Adam is an improvement over

RMSProp by incorporating first moment with RMSProp. Here,

the 1st and 2nd order moments are defined as

mt,i = β1mt−1,i + (1− β1) gt,i (11)

vt,i = β2vt−1,i + (1− β2) g
2
t,i (12)

where β1 and β2 are the decay rates for first and second

moments, respectively, mt−1,i and vt−1,i are the mean and

variance of the gradient of the previous steps, respectively.

Both mt−1,i and vt−1,i are initialized with 0 at the 1st

iteration, t = 1. It is observed that, initially, the value of first

moment is small and the value of second moment is very

small, thus leading to a very large step size. In order to solve

3

-25 -20 -15 -10 -5 0 5 10 15 20 25

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
A

b
sS

ig
(x

)

Fig. 2: The behavior of diffGrad Friction Coefficient (DFC) in terms of the AbsSig(x)
values. Here a DFC value of 1 means no friction and 0 means infinite friction. Note that

the friction is roughly negligible if the difference in gradient is high. Here, negligible

represents DFC≈1 which means there is no friction and in this case diffGrad is the

same as Adam. Moreover, the minimum DFC is 0.5 when there is no gradient change.

Otherwise, the DFC, close to zero, will slow down the learning process heavily.

this issue, Adam has incorporated a bias correction of the 1st

and 2nd order moments as

m̂t,i =
mt,i

(1− βt
1)

and v̂t,i =
vt,i

(1− βt
2)
, (13)

where βt
1 is β1 power t, βt

2 is β2 power t, and m̂t,i and v̂t,i are

the biased corrected first and second moments, respectively.

Thus, the parameter update in Adam is incorporated as

θt+1,i = θt,i −
αt × m̂t,i
√

v̂t,i + ǫ
. (14)

A problem arises in Adam when the value of the second

moment deceases significantly. Due to low values of the

second moment, the friction in the optimization landscape

decreases, which leads to the situation where the update

process overshoots an optimum solution due to a high learning

rate and diverges. This problem is addressed in AMSGrad

[40] by considering the maximum of second moments in

current and past iterations. In AMSGrad, the 1st and 2nd order

moments are computed and bias-corrected similar to Adam.

However, AMSGrad normalizes the learning rate αt by the

maximum of all v̂max
t,i values, instead of only v̂t,i. AMSGrad

memorizes the highest of 2nd order moment to give more

priority to those steps which update the parameter in a more

accurate direction. Thus, in AMSGrad, v̂max
t,i is defined as

v̂max
t,i = max(v̂max

t−1,i, v̂t,i), (15)

where max is the maximum operator and v̂max
t−1,i = 0 for t = 1.

Thus, the parameter update in AMSGrad is carried out using

the following update rule:

θt+1,i = θt,i −
αt × m̂t,i
√

v̂max
t,i + ǫ

. (16)

In practice, Adam is popular in various problems related to

deep learning. Adam with 1st order moment hyper-parameter

β1 = 0.9, 2nd order moment hyper-parameter β2 = 0.999,

and learning rate α ∈ [10−2, 10−4] is a good starting choice

for many models [38].

III. PROPOSED DIFFGRAD OPTIMIZATION

From the discussions in the previous section we can con-

clude that recent optimization techniques such as Adam and

AMSGrad suffer from the problem of automatic adjustment

of the learning rate. The main problem is with controlling

friction for the first moment in order to avoid over shooting

near to an optimum solution. In this section, we propose a

new gradient descent optimization technique referred to as

diffGrad to address these issues of existing gradient descent

optimization techniques. The proposed diffGrad optimization

technique is based on the change in short-term gradients

and controls the learning rate based on the need of dynamic

adjustment of learning rate. This means that diffGrad follows

the norm that the parameter update should be smaller in low

gradient changing regions and vice-versa. diffGrad computes

the 1st and 2nd order moments (i.e., mt,i and vt,i, respectively)

as well as the 1st and 2nd order bias-corrected moments (i.e.,

m̂t,i and v̂t,i, respectively) for the ith parameter at the tth

iteration similar to Adam [38] using Eq. (11-13).

A diffGrad friction coefficient (DFC) is introduced in the

proposed work to control the learning rate using information

of short-term gradient behavior. The DFC is represented by ξ
and defined as

ξt,i = AbsSig(∆gt,i) (17)

where AbsSig is a non-linear sigmoid function that squashes

every value between 0.5 and 1, and is defined as

AbsSig(x) =
1

1 + e−|x| (18)

while ∆gt,i is the change in gradient between immediate past

and current iterations, given as

∆gt,i = gt−1,i − gt,i (19)

where gt,i is the computed gradient for the ith parameter at

the tth iteration and defined in Eq. (2).

The behavior of DFC (i.e., ξ) is characterized in Fig. 2

in terms of AbsSig(x) which represents the friction with

respect to the change in gradient. It can be observed from

Fig. 2 that large changes in the gradient incur less friction,

whereas small changes in the gradient incur more friction with

at most 0.5 when there is no change in the gradient. Note that

|∆gt,i|∈ R
+
0 , ∀i ∈ [1, d], and i ∈ I

+ leads to ξt,i ∈ [0.5, 1] at

any iteration t. The DFC imposes more friction when gradient

changes slowly and vice-versa.

In the proposed diffGrad optimization method, the steps up

to the computation of bias-corrected 1st order moment m̂t,i

and bias-corrected 2nd order moment v̂t,i are the same as

those of Adam optimization [38]. The diffGrad optimization

method updates the ith parameter at the tth iteration using the

following update rule:

θt+1,i = θt,i −
αt × ξt,i × m̂t,i
√

v̂t,i + ǫ
, (20)

where θt,i is the weight for ith parameter at tth iteration, αt

is the learning rate for tth iteration, ǫ is a very small value

of approximately 10−7 added to avoid division by zero, ξt,i
is the diffGrad friction coefficient, and m̂t,i and v̂t,i are the

4

Fig. 3: The illustration of optimization landscape in order to understand the importance

of short-term gradient change. The dark blue area represents the optimization goal to be

reached.

bias-corrected 1st order moment and the bias-corrected 2nd

order moment, respectively, as defined in Equation (13).

The proposed optimizer introduces the diffGrad friction

coefficient (DFC) to control the oscillations. The difference in

gradient reduces the learning rate by controlling the moving

average near an optimum solution. The necessity of the friction

coefficient is illustrated using an optimization landscape in

Fig. 3. The dark blue area shows the optimization goal. As we

move from dark red to dark blue, the depth of the optima tends

to be reduced. Lighter shades between two colors show steep

descent towards the optimization goal. Here, ga,i → gg,i shows

the gradients at steps a to g. The color between ga,i and gb,i
changes very rapidly. As a result, the learning rate increases

due to the increase in the diffGrad friction coefficient. Hence,

the frequency of vertical fluctuations also increases. There

is a very steep descent between the pairs gc,i → gd,i and

ge,i → gf,i. Hence, we again see the frequent fluctuations

in the vertical direction. The descents between gb,i → gc,i
and gf,i → gg,i are very slow, which is evident from slow or

no change in color. Here, the DFC reduces the frequency of

fluctuations by decreasing the rate of learning of the network.

Hence, the introduction of DFC reduces redundant learning

and increases the rate of convergence. It also helps in finding

an optimum solution by reducing the vertical fluctuation near

local optima.

The problem of an ever decreasing learning rate in Ada-

grad [33] has been solved by Adam [38] by introducing

two moments on gradient. The adaptive nature of these two

moments are controlled during learning with respect to the

slope of the descent of the probable solution towards a local

optimum. However, a sudden decrease in second moment

adversely affects the Adam optimizer and the actual solu-

tion overshoots the local optima. This problem has been

resolved in AMSGrad [40] by introducing a new parameter,

v̂max
t,i = max(v̂max

t−1,i, v̂t,i), which prevents the learning rate

from overshooting. Adam and AMSgrad ignore the effect

of the 1st moment in controlling the learning rate over

the optimization landscape. The proposed diffGrad optimizer

resolves this drawback by introducing a new parameter DFC

(ξ), which not only allows the high learning rate for a high

gradient changing surface, but also reduces the learning rate

for a low gradient changing surface and prevents the probable

solution from overshooting. The improved performance of

diffGrad shows that the optimizer effectively introduces the

required friction (↑ or ↓). Please note that the minimum

DFC is considered as 0.5, as shown in Fig. 2, such that the

optimization should not become stuck in local optima and

saddle regions. Due to the high moment gained, sufficient

magnitude of the step size will be allowed by the DFC in

the proposed diffGrad approach, so that it emerges from flat

local optima and flat saddle regions.

IV. CONVERGENCE ANALYSIS

The convergence property of Adam [38] is shown using

the online learning framework proposed in [44]. We also use

this technique to analyze the convergence of the proposed

diffGrad optimizer. Consider f1(θ), f2(θ),..., fT (θ) as the

unknown sequence of convex cost functions. Our aim is to

predict parameter θt at each iteration t and evaluate over ft(θ).
For this type of problem, where the nature of the sequence is

not known a priori, the algorithm can be evaluated based on

the regret bound. The regret bound is computed by summing

the difference between all the previous online guesses ft(θt)
and the best fixed point parameter ft(θ

∗) from a feasible set

χ for all the previous iterations. Mathematically, the regret

bound is given as

R(T) =

T
∑

t=1

[ft(θt)− ft(θ
∗)] (21)

where θ∗ = arg minθ∈χ

∑T
t=1 ft(θ). We observe that diff-

Grad has an O(
√
T) regret bound. The proof is given in

the appendix. Our regret bound is comparable to general

convex online learning methods. We have used the following

definitions: gt,i refers to the gradient in the tth iteration for

the ith element, g1:t,i = [g1,i, g2,i, ..., gt,i] ∈ R
t is the vector

of gradients in the ith dimension over all iterations up to t,

and γ ,
β2

1√
β2

.

Theorem 1. Consider the bounded gradients for function ft
(i.e., ||gt,θ||2≤ G and ||gt,θ||∞≤ G∞) for all θ ∈ Rd. Also

assume that diffGrad produces the bounded distance between

any θt (i.e., ||θn − θm||2≤ D and ||θn − θm||∞≤ D∞ for

any m,n ∈ {1, ..., T}). Let γ ,
β2

1√
β2

, β1, β2 ∈ [0, 1) satisfy

β2

1√
β2

< 1, αt =
α√
t
, and β1,t = β1λ

t−1, λ ∈ (0, 1) where λ is

typically very close to 1, e.g., 1 − 10−8. For all T ≥ 1, the

proposed diffGrad optimizer shows the following guarantee:

R(T) ≤ D2

2α(1− β1)

d
∑

i=1

(1 + e−|g1,i|)
√

T v̂T,i

+
α(1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d
∑

i=1

||g1:T,i||2

+

d
∑

i=1

D2
∞G∞

√
1− β2

2α(1− β1)(1− λ)2

(22)

Note that the additive term over the dimension (d) can

be much smaller than its upper bound
∑d

i=1 ||g1:T,i||2 <<

dG∞
√
T and

∑d
i=1 (1 + e−|g1,i|)

√

T v̂T,i << d(1 +

E∞)G∞
√
T , where E∞ is the upper bound over the ex-

ponential function and E∞ >>
∑d

i=1 e
−|g1,i|. In general,

O(log d
√
T) is achieved by adaptive methods such as diffGrad

and Adam which is improved over the O(
√
dT) of non-

adaptive methods. The proposed diffGrad method also uses

the decay of β1,t for the theoretical analysis, similar to Adam.

5

Finally, by using the above theorem

and
∑d

i=1 ||g1:T,i||2 << dG∞
√
T and

∑d
i=1 (1 + e−|g1,i|)

√

T v̂T,i << d(1 + E∞)G∞
√
T , the

convergence of average regret of diffGrad can be shown as

described in the following corollary.

Corollary 1. Consider the bounded gradients for function ft
(i.e., ||gt,θ||2≤ G and ||gt,θ||∞≤ G∞) for all θ ∈ Rd. Also,

assume that diffGrad produces the bounded distance between

any θt (i.e., ||θn − θm||2≤ D and ||θn − θm||∞≤ D∞ for

any m,n ∈ {1, ..., T}). For all T ≥ 1, the proposed diffGrad

optimizer shows the following guarantee:

R(T)

T
= O(

1√
T
). (23)

Thus, limT→∞
R(T)
T

= 0.

V. EMPIRICAL ANALYSIS

In order to justify the purpose of introducing the difference

of gradient based friction in diffGrad optimization, we have

conducted an empirical analysis in this section. We have

modeled the optimization problem as a regression problem

over three one-dimensional non-convex functions. We have

performed the optimization over these functions by using the

widely used Adam [38] and the proposed diffGrad optimiza-

tion methods.

The following non-convex functions, represented by F1,

F2, and F3, respectively, are used for this empirical analysis:

F1(x) =

{

(x+ 0.3)2, for x ≤ 0

(x− 0.2)2 + 0.05, for x > 0
(24)

F2(x) =

{

−40x− 35.15, for x ≤ −0.9

x3 + x sin(8x) + 0.85, for x > −0.9
(25)

F3(x) =







































x2, for x ≤ −0.5

0.75 + x, for − 0.5 < x ≤ −0.4

−7x/8, for − 0.4 < x ≤ 0

7x/8, for 0 < x ≤ 0.4

0.75− x, for 0.4 < x ≤ 0.5

x2, for 0.5 < x

(26)

where x is the input for this function with −∞ < x < +∞.

Functions F1, F2, and F3 are shown in Fig. 4a, Fig. 4d, and

Fig. 4g, respectively, for −1 < x < +1.

It can be observed that function F1 has one global minimum

and one local minimum, whereas functions F2 and F3 have

one global minimum and two local minima. In this experi-

ment, for both Adam [38] as well as the proposed diffGrad

optimization methods, the following are the hyper-parameter

settings: the decay rate for 1st moment (β1) is 0.95; the decay

rate for 2nd moment (β2) is 0.999; the learning rate (η) is

0.1 for each iteration; both the 1st order moment (m) and

2nd order moment (v) are initialized to 0; and the parameter

θ is initialized to −1 in order to show the advantages of

the proposed method. In the proposed diffGrad optimization

method, the previous gradient value at the 1st iteration (i.e.,

g0) is set to zero. We run Adam [38] and the proposed

diffGrad optimization for 300 iterations for all functions. The

regression loss as well as parameter value θ are recorded for

both optimization methods at each iteration and analyzed.

Fig. 4b and Fig. 4c depict the regression loss and the

parameter value (θ), respectively, after each iteration for

function F1. It is discovered from these plots that Adam

overshoots the global minimum due to the high moment gained

so far. It can be observed in Fig. 4c that Adam overshoots the

global minimum at θ = −0.3 and becomes stuck in the local

minimum at θ = 0.2. This problem is addressed by DFC of

the proposed diffGrad optimization method, which controls

the momentum while reaching towards the global minimum

and the overshoot does not occur. Moreover, diffGrad is able

to reach a zero loss, as opposed to Adam, which saturates

with reasonable loss. The same behavior is also observed for

function F2, as shown in Fig. 4e and Fig. 4f.

Both Adam and diffGrad are able to achieve the global

minimum for function F3, as shown in Fig. 4h and Fig. 4i.

Note that one local minimum is present before the global

minimum in function F3 (see Fig. 4g). Both Adam and

diffGrad accumulate enough momentum to cross the local

minimum. It can be seen in Fig. 4i that Adam oscillates with

higher frequency and amplitude around the global minimum,

as compared to diffGrad. Thus, better stability is obtained by

diffGrad.

VI. EXPERIMENTAL SETUP FOR CLASSIFICATION

This section presents the setup and settings used in the

experiments in terms of the deep architecture used, the hyper-

parameter setting, and the applied dataset.

A. Deep Architecture Used

The experiments are conducted for an image categorization

problem. Convolutional Neural Networks (CNN) are generally

used for processing the images. The popular CNN architec-

tures for image categorization problems are AlexNet [2], VG-

GNet [4], GoogleNet [19], and ResNet [20]. The ResNet based

CNN architecture introduced by He et al. [20] is one of the

most accurate models which won the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC) [45] in 2015. The

ResNet architecture is made with the residual unit. A residual

unit considers the learning module as the residual of output

w.r.t. the input by implementing a direct connection between

input and output of that unit. The residual unit facilitates the

training of deeper ResNet architecture which was not feasible

in the earlier CNN architectures. The PyTorch implementation

of ResNet, publicly available through GitHub1, is used for

our experiments. The depth of ResNet is considered as 50

in this paper. Following is the ResNet50 architecture details

for the CIFAR datasets: Conv: {3 × 3, 64}, BatchNorm,

Bottleneck(3 times): {Conv: [1 × 1, 64], BatchNorm, Conv:

[3 × 3, 64], BatchNorm: [1 × 1, 256], BatchNorm}, Bot-

tleneck(4 times): {Conv: [1 × 1, 128], BatchNorm, Conv:

[3 × 3, 128], BatchNorm, Conv: [1 × 1, 512], BatchNorm},

1https://github.com/kuangliu/pytorch-cifar

6

-1 -0.5 0 0.5 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

F
1
(x

)

(a)

0 50 100 150 200 250 300

Iteration

0

0.1

0.2

0.3

0.4

R
eg

re
ss

io
n
 L

o
ss

Adam

diffGrad

(b)

0 50 100 150 200 250 300

Iteration

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

P
ar

am
et

er
 V

al
u
e

Adam

diffGrad

(c)

-1 -0.5 0 0.5 1

x

0

1

2

3

4

5

F
2
(x

)

(d)

0 50 100 150 200 250 300

Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

R
eg

re
ss

io
n
 L

o
ss

Adam

diffGrad

(e)

0 50 100 150 200 250 300

Iteration

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

P
ar

am
et

er
 V

al
u
e Adam

diffGrad

(f)

-1 -0.5 0 0.5 1

x

0

0.2

0.4

0.6

0.8

1

F
3
(x

)

(g)

0 50 100 150 200 250 300

Iteration

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R
eg

re
ss

io
n

L
o
ss

Adam

diffGrad

(h)

0 50 100 150 200 250 300

Iteration

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

P
ar

am
et

er
 V

al
u
e

Adam

diffGrad

(i)

Fig. 4: The empirical results comparison among the Adam [38] and the proposed diffGrad optimization techniques over three synthetic non-convex functions. (a,d,g) The non-convex

synthetic functions F1, F2, F3, respectively, (b,e,h) The regression loss over functions F1, F2, F3, respectively at each iteration, (c,f,i) The parameter value θ after each iteration

during optimization of functions F1, F2, F3, respectively.

Bottleneck(6 times): {Conv: [1× 1, 256], BatchNorm, Conv:

[3× 3, 256], BatchNorm, Conv: [1× 1, 1024], BatchNorm},

Bottleneck(3 times): {Conv: [1× 1, 512], BatchNorm, Conv:

[3× 3, 512], BatchNorm, Conv: [1× 1, 2048], BatchNorm},

AveragePooling: {4× 4}. For more information regarding the

used ResNet50 architecture, the above mentioned GitHub page

may be consulted.

B. Hyper-Parameter Setting

The hyper-parameter settings in the experiments are illus-

trated in this paragraph. Stochastic Gradient Descent with

momentum (SGDM) is used as the optimization technique.

The batch sizes of 32, 64 and 128 are opted. The number

of epochs is 100 with a learning rate of 10−3 for the first 80

epochs and 10−4 for the last 20 epochs. For all the optimizers,

the default settings of PyTorch are used, excluding the moment

coefficient for SGDM, which is set to 0.9.

TABLE I: The comparison results in terms of the ‘Validation Classification Accuracy’

over the CIFAR10 and CIFAR100 databases among SGDM, AdaGrad, AdaDelta, RM-

SProp, AMSGrad, Adam and proposed diffGrad optimization methods. The comparison

is made for the batch sizes (Nb) of 32, 64 and 128. The best results among different

optimization techniques are highlighted in bold.

Optimizer
CIFAR10 Database CIFAR100 Database

Nb=32 Nb=64 Nb=128 Nb=32 Nb=64 Nb=128

SGDM 92.95 92.07 90.15 73.3 70.37 67.25

AdaGrad 92.04 92.01 91.3 71.01 70.8 68.38

AdaDelta 93.66 93.48 93.54 73.46 74.09 74.12

RMSProp 92.82 92.32 92.26 65.31 66.8 62.65

AMSGrad 93.73 93.4 93.51 73.06 72.45 72.86

Adam 93.78 93.81 93.72 71.82 73.31 73.72

diffGrad 94.24 94.24 94.27 75.63 76.18 75.57

C. Dataset Used

In order to conduct the image categorization experiments,

the CIFAR10 and CIFAR100 datasets2 [46] are used in this

paper. Both the CIFAR10 and the CIFAR100 datasets consist

of the same 60000 images, including 50000 images for training

and 10000 images for validation. In the CIFAR10 dataset,

2https://www.cs.toronto.edu/∼kriz/cifar.html

7

TABLE II: The comparison results in terms of the ‘Validation Classification Accuracy’

over the CIFAR10 and CIFAR100 databases among different variants of diffGrad. The

comparison is made for the batch sizes (Nb) of 32, 64 and 128. The best results among

different optimization techniques are highlighted in bold.

Optimizer
CIFAR10 Database CIFAR100 Database

Nb=32 Nb=64 Nb=128 Nb=32 Nb=64 Nb=128

diffGrad 94.24 94.24 94.27 75.63 76.18 75.57

diffGrad1 94.34 94.31 94.06 75.23 75.24 75.25

diffGrad2 94.08 93.92 94.09 75.37 75.5 75.83

diffGrad3 94.01 94.2 93.58 75.6 76.15 75.39

diffGrad4 94.06 94.37 93.75 74.9 75.35 75.45

diffGrad5 94.42 94.02 94.16 75.55 75.91 75.16

all images are divided into 10 categories including ‘airplane’,

‘automobile’, ‘bird’, ‘cat’, ‘deer’, ‘dog’, ‘frog’, ‘horse’, ‘ship’,

and ‘truck’. Whereas, in the CIFAR100 dataset, the same set of

images is partitioned into 100 categories. The dimension of all

images is 32× 32× 3. Note that the images are pre-processed

to make the RGB values zero-centered with unit standard

deviation across each color channel. The data augmentation is

done only over the training images by the process of flipping

and cropping. The images are randomly flipped horizontally

(i.e., with respect to the vertical axis) with a probability of 0.5.

In case of cropping, at first the images are scaled to 40×40×3
size by zero padding. Then, the images of size 32 × 32 × 3
are cropped randomly from the upscaled images.

VII. CLASSIFICATION EXPERIMENTS AND ANALYSIS

The image categorization experiments over the CIFAR10

and CIFAR100 datasets are conducted to test the performance

improvement of the proposed diffGrad gradient descent opti-

mization method. The ResNet50 is used to demonstrate the

suitability of diffGrad for the CNN model. In this section,

at first the results of the proposed diffGrad method are

presented, then the results are compared with other state-

of-the-art optimization methods, and finally the stability of

the proposed diffGrad optimization is tested over different

activation functions. The results are computed in terms of the

average top-1 validation classification accuracy.

A. Validation Results Comparison

The validation classification accuracy due to the diffGrad

method is compared with state-of-the-art optimization tech-

niques such as SGDM [32], AdaGrad [33], AdaDelta [36],

RMSProp [37], AMSGrad [40], and ADAM [38]. Table I

depicts the validation classification accuracy for different

optimization techniques. The results are presented over the

CIFAR10 and CIFAR100 datasets. The best results among the

different optimization techniques are highlighted in bold. It is

observed from Table I that the proposed diffGrad optimization

technique outperforms all other optimization techniques over

both the CIFAR10 and the CIFAR100 datasets for all tested

batch sizes of 32, 64, and 128, respectively. The proposed

diffGrad method utilizes all the positive characteristics of

Adam. Moreover, the effect of the proposed difference of

gradient based friction technique prevents the network from

noisy oscillation near the minimum solution. It leads to more

accurate results as compared to other optimization techniques.

TABLE III: The performance of the proposed diffGrad optimization technique with

ResNet50 model for different activation functions, namely ReLU, Leaky ReLU (LReLU),

ELU, and SELU. The Validation Classification Accuracy over CIFAR10 is reported for

the batch sizes (Nb) of 32, 64 and 128. The best results among different activation’s are

highlighted in bold.

Optimizer
CIFAR10 Database

Nb=32 Nb=64 Nb=128

ResNet50(ReLU) 94.24 94.24 94.27
ResNet50(LReLU) 94.3 94.2 94.3

ResNet50(ELU) 94.48 94.2 94.24
ResNet50(SELU) 94.03 93.62 93.96

B. Experiments with diffGrad Variants

In this section, we modify the diffGrad Friction Coefficient

(DFC) of diffGrad and analyze the performance over the

CIFAR10 dataset. The DFC is basically given as DFC =
1/(1 + e−(|gt−1−gt|)) with the range DFC ∈ [0.5, 1]. We

modify the DFC by removing the absolute value, which is

given as DFC1 = 1/(1 + e−(gt−1−gt)). Note that DFC1 ∈
[0, 1]. We also generate another version called DFC2, given

by DFC2 = 9/(1 + e−(0.5|gt−1−gt|) − 4) with the range

DFC2 ∈ [0.5, 5]. We also use the mean (µ) and standard

deviation (ν) of absolute gradients of the batch with DFC and

consider the following three more scenarios: (a) DFC3 =
1/(1 + e−(ν|gt−1−gt|−µ)) with the range DFC3 ∈ [0.5, 1],
(b) DFC4 = 1/(1 + e−(ν2|gt−1−gt|−µ)) with the range

DFC4 ∈ [0.5, 1], and (c) DFC5 = 1/(1+e−(
√
ν|gt−1−gt|−µ))

with the range DFC5 ∈ [0.5, 1]. We define numbered diffGrad

accordingly, i.e., diffGrad1 using DFC1 and so on. The valida-

tion classification accuracy for diffGrad using DFC, diffGrad1

using DFC1, diffGrad2 using DFC2, diffGrad3 using DFC3,

diffGrad4 using DFC4, and diffGrad5 using DFC5 are pre-

sented in Table II. The results are computed over the CIFAR10

and CIFAR100 datasets with batch sizes 32, 64, and 128.

It can be noticed from this result that the original diffGrad

performs better over CIFAR10 dataset for high batch size and

over CIFAR100 dataset for small batch sizes. The mean and

standard deviation based diffGrad variants such as DFC4 and

DFC5 perform better over CIFAR10 dataset for 64 and 32

bach sizes, respectively. It is due to the fact that the mean and

standard deviation of the absolute gradient tends to be more

accurate for higher batch size. From Table I and Table II, it is

clear that original diffGrad as well as its mean and standard

deviation based variants show the promising performance.

C. Performance Analysis with Activation Functions

In other experiments, the Rectified Linear Unit (ReLU) [2]

is used as the default activation function in the framework

of ResNet [20]. In this experiment, we have considered four

activation functions, namely, ReLU [2], Leaky ReLU (LReLU)

[47], Exponential Linear Unit (ELU) [48], and Scaled ELU

(SELU) [49]. The performance of the proposed diffGrad

optimization method is computed over the CIFAR10 dataset

for different activation functions. We have used the same

experimental setup as for the ResNet50 model by replacing all

the activation functions with ReLU, LReLU, ELU, and SELU,

one by one. The rest of the experimental setup is same as the

setup of previous experiments. The leaky factor in LReLU

8

is considered as 0.1. The validation classification accuracy is

compared in Table III. It is clear from this result that the ELU,

ReLU and LReLU outperform others for the batch sizes of 32.

64 and 128, respectively.

VIII. CONCLUSION

In this paper, a new stochastic gradient descent optimiza-

tion method diffGrad is proposed. diffGrad incorporates the

difference of gradients of current and immediate past iteration

(i.e., short term gradient change information) with Adam

optimization techniques to control the learning rate based

on the optimization stage. The proposed diffGrad allows a

high learning rate if the gradient change is more (i.e., the

optimization is far from the optimum solution), and a low

learning rate if the gradient changes minimally (i.e., the

optimization is near to the optimum solution). The local

optima and saddle point scenarios are handled by the mo-

ment gained due to past gradients. The regret bound analysis

provides a guarantee of convergence. An empirical analysis

over three synthetic, non-convex functions reveals that the

proposed diffGrad optimization method controls the update

step in order to avoid the overshooting of global minimum

and oscillation around global minimum. The proposed diff-

Grad optimization method is also tested with the ResNet50

model for an image categorization task over the CIFAR10

and CIFAR100 datasets. The results are compared with the

state-of-the-art SGD optimization techniques such as SGDM,

AdaGrad, AdaDelta, RMSProp, AMSGrad, and Adam. It is

observed that the diffGrad outperforms all other optimizers.

Moreover, the mean and standard deviation of the absolute

gradient of a batch can be used with diffGrad for better result

over CIFAR10 dataset.

ACKNOWLEDGMENTS

The authors would like to thank NVIDIA Corporation for

the support of GeForce Titan X Pascal GPU donated to

Computer Vision Group, IIIT Sri City. The authors would also

like to thank the anonymous Associate Editor and Reviewers

for their valuable comments to improve the quality of the

paper. The authors would also like to thank Dr. Shrijita for

editing the paper.

REFERENCES

[1] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” in Proceedings of the

Advances in Neural Information Processing Systems, 2012, pp. 1097–
1105.

[3] X. Lan, S. Zhang, P. C. Yuen, and R. Chellappa, “Learning common and
feature-specific patterns: a novel multiple-sparse-representation-based
tracker,” IEEE Transactions on Image Processing, vol. 27, no. 4, pp.
2022–2037, 2018.

[4] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[5] R. Shao, X. Lan, and P. C. Yuen, “Joint discriminative learning of deep
dynamic textures for 3d mask face anti-spoofing,” IEEE Transactions on

Information Forensics and Security, vol. 14, no. 4, pp. 923–938, 2019.
[6] C. Dong, C. C. Loy, K. He, and X. Tang, “Image super-resolution using

deep convolutional networks,” IEEE transactions on pattern analysis

and machine intelligence, vol. 38, no. 2, pp. 295–307, 2016.

[7] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” IEEE transactions on

pattern analysis and machine intelligence, vol. 40, no. 4, pp. 834–848,
2018.

[8] D. Yu and L. Deng, “Deep learning and its applications to signal
and information processing [exploratory dsp],” IEEE Signal Processing

Magazine, vol. 28, no. 1, pp. 145–154, 2011.
[9] X.-L. Zhang and J. Wu, “Deep belief networks based voice activity

detection,” IEEE Transactions on Audio, Speech, and Language Pro-

cessing, vol. 21, no. 4, pp. 697–710, 2013.
[10] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[11] R. Collobert and J. Weston, “A unified architecture for natural language
processing: Deep neural networks with multitask learning,” in Proceed-

ings of the 25th International Conference on Machine learning. ACM,
2008, pp. 160–167.

[12] K. Greff, R. K. Srivastava, J. Koutnı́k, B. R. Steunebrink, and J. Schmid-
huber, “Lstm: A search space odyssey,” IEEE Transactions on Neural

Networks and Learning Systems, vol. 28, no. 10, pp. 2222–2232, 2017.
[13] X. Lan, A. J. Ma, P. C. Yuen, and R. Chellappa, “Joint sparse repre-

sentation and robust feature-level fusion for multi-cue visual tracking,”
IEEE Transactions on Image Processing, vol. 24, no. 12, pp. 5826–5841,
2015.

[14] S. Zhang, X. Lan, H. Yao, H. Zhou, D. Tao, and X. Li, “A biologically
inspired appearance model for robust visual tracking,” IEEE Transac-

tions on Neural Networks and Learning Systems, vol. 28, no. 10, pp.
2357–2370, 2016.

[15] X. Lan, M. Ye, R. Shao, B. Zhong, P. C. Yuen, and H. Zhou, “Learning
modality-consistency feature templates: A robust rgb-infrared tracking
system,” IEEE Transactions on Industrial Electronics, vol. 66, no. 12,
pp. 9887–9897, 2019.

[16] S. P. T. Reddy, S. T. Karri, S. R. Dubey, and S. Mukherjee, “Spontaneous
facial micro-expression recognition using 3d spatiotemporal convolu-
tional neural networks,” in Proceedings of the IEEE International Joint

Conference on Neural Networks, 2019 (Accepted).
[17] C. Nagpal and S. R. Dubey, “A performance evaluation of convolutional

neural networks for face anti spoofing,” in Proceedings of the IEEE

International Joint Conference on Neural Networks, 2019 (Accepted).
[18] S. K. Roy, G. Krishna, S. R. Dubey, and B. B. Chaudhuri, “Hybridsn:

Exploring 3d-2d cnn feature hierarchy for hyperspectral image classifi-
cation,” IEEE Geoscience and Remote Sensing Letters, 2019 (In Press).

[19] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2015, pp. 1–9.
[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 770–778.
[21] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature

hierarchies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern

recognition, 2014, pp. 580–587.
[22] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE International

Conference on Computer Vision, 2015, pp. 1440–1448.
[23] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time

object detection with region proposal networks,” in Proceedings of the

Advances in neural information processing systems, 2015, pp. 91–99.
[24] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look

once: Unified, real-time object detection,” in Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2016, pp. 779–
788.

[25] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in
Proceedings of the IEEE International Conference on Computer Vision,
2017, pp. 2980–2988.

[26] S. Liu, L. Qi, H. Qin, J. Shi, and J. Jia, “Path aggregation network
for instance segmentation,” in Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, 2018, pp. 8759–8768.
[27] S. S. Basha, S. Ghosh, K. K. Babu, S. R. Dubey, V. Pulabaigari, and

S. Mukherjee, “Rccnet: An efficient convolutional neural network for
histological routine colon cancer nuclei classification,” in Proceedings

of the 15th International Conference on Control, Automation, Robotics

and Vision, 2018, pp. 1222–1227.
[28] L. Bottou, “Large-scale machine learning with stochastic gradient de-

scent,” in Proceedings of the COMPSTAT, 2010, pp. 177–186.

9

[29] R. Sutton, “Two problems with back propagation and other steepest
descent learning procedures for networks,” in Proceedings of the Eighth

Annual Conference of the Cognitive Science Society, 1986, pp. 823–832.

[30] Y. N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, and
Y. Bengio, “Identifying and attacking the saddle point problem in high-
dimensional non-convex optimization,” in Proceedings of the Advances

in Neural Information Processing Systems, 2014, pp. 2933–2941.

[31] N. Qian, “On the momentum term in gradient descent learning algo-
rithms,” Neural Networks, vol. 12, no. 1, pp. 145–151, 1999.

[32] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance
of initialization and momentum in deep learning,” in Proceedings of the

International Conference on Machine Learning, 2013, pp. 1139–1147.

[33] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine

Learning Research, vol. 12, no. Jul, pp. 2121–2159, 2011.

[34] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior,
P. Tucker, K. Yang, Q. V. Le et al., “Large scale distributed deep
networks,” in Proceedings of the Advances in Neural Information

Processing Systems, 2012, pp. 1223–1231.

[35] J. Pennington, R. Socher, and C. Manning, “Glove: Global vectors for
word representation,” in Proceedings of the Conference on Empirical

Methods in Natural Language Processing, 2014, pp. 1532–1543.

[36] M. D. Zeiler, “Adadelta: an adaptive learning rate method,” arXiv

preprint arXiv:1212.5701, 2012.

[37] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine
learning,” Lecture 6a overview of mini-batch gradient descent course,
2012.

[38] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[39] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, G. Klambauer, and
S. Hochreiter, “Gans trained by a two time-scale update rule converge
to a nash equilibrium,” arXiv preprint arXiv:1706.08500, 2017.

[40] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and
beyond,” in Proceedings of the International Conference on Learning

Representations, 2018.

[41] J. Li, H. Liu, B. Zhong, Y. Wu, and Y. Fu, “Predictive local smoothness
for stochastic gradient methods,” arXiv preprint arXiv:1805.09386,
2018.

[42] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar,
“signsgd: compressed optimisation for non-convex problems,” arXiv

preprint arXiv:1802.04434, 2018.

[43] H. Huang, C. Wang, and B. Dong, “Nostalgic adam: Weighing more
of the past gradients when designing the adaptive learning rate,” arXiv

preprint arXiv:1805.07557, 2018.

[44] M. Zinkevich, “Online convex programming and generalized infinitesi-
mal gradient ascent,” in Proceedings of the International Conference on

Machine Learning, 2003, pp. 928–936.

[45] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein et al., “Imagenet large
scale visual recognition challenge,” International Journal of Computer

Vision, vol. 115, no. 3, pp. 211–252, 2015.

[46] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
Master’s thesis, University of Tront, 2009.

[47] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities
improve neural network acoustic models,” in Proceedings of the In-

ternational Conference on Machine Learning, 2013, pp. 1–6.

[48] D.-A. Clevert, T. Unterthiner, and S. Hochreiter, “Fast and accurate
deep network learning by exponential linear units (elus),” arXiv preprint

arXiv:1511.07289, 2015.

[49] G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
normalizing neural networks,” in Proceedings of the Advances in neural

information processing systems, 2017, pp. 971–980.

APPENDIX

A. Convergence Proof

Theorem 2. Let the bounded gradients for function ft (i.e.,

||gt,θ||2≤ G and ||gt,θ||∞≤ G∞) for all θ ∈ Rd. Also assume

that diffGrad produces the bounded distance between any θt
(i.e., ||θn−θm||2≤ D and ||θn−θm||∞≤ D∞ for any m,n ∈
{1, ..., T}). Let γ ,

β2

1√
β2

, β1, β2 ∈ [0, 1) satisfy
β2

1√
β2

< 1,

αt = α√
t
, and β1,t = β1λ

t−1, λ ∈ (0, 1) with λ is typically

close to 1, e.g 1−10−8. For all T ≥ 1, the proposed diffGrad

optimizer shows the following guarantee:

(27)

R(T) ≤ D2

2α(1− β1)

d
∑

i=1

(1 + e−|g1,i|)
√

T v̂T,i

+
α(1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d
∑

i=1

||g1:T,i||2

+

d
∑

i=1

D2
∞G∞

√
1− β2

2α(1− β1)(1− λ)2

Proof. Using Lemma 10.2 of Adam [38], we can write as

ft(θt)− ft(θ
∗) ≤ gTt (θt − θ∗) =

d
∑

i=1

gt,i(θt,i − θ∗,i)

We can write following from the diffGrad update rule de-

scribed in Eq. (20), ignoring ǫ0,

(28)

θt+1 = θt −
αtξtm̂t
√

v̂t

= θt −
αtξt

(1− βt
1)

(β1,t
√

v̂t
mt−1 +

(1− β1,t)
√

v̂t
gt

)

where β1,t is the 1st order moment at tth iteration and βt
1 is

the tth power of initial 1st order moment.

For ith dimension of parameter vector θt ∈ Rd, we can write

(θt+1,i − θ∗,i)
2 = (θt,i − θ∗,i)

2 − 2αtξt,i
1− βt

1

(β1,t
√

v̂t,i
mt−1,i

+
(1− β1,t)
√

v̂t,i
gt,i

)

(θt,i−θ∗,i)+α2
t ξ

2
t,i(

m̂t,i

v̂t,i
)2

(29)

The above equation can be reordered as

gt,i(θt,i − θ∗,i) =
(1− βt

1)
√

v̂t,i

2αtξt,i(1− β1,t)

(

(θt,i − θ∗,i)
2

− (θt+1,i − θ∗,i)
2
)

+
β1,t

1− β1,t
(θ∗,i − θt,i)mt−1,i

+
αt(1− βt

1)ξt,i
2(1− β1,t)

(m̂t,i)
2

√

v̂t,i
.

(30)

Further, it can be written as

(31)gt,i(θt,i − θ∗,i)

=
(1− βt

1)
√

v̂t,i

2αtξt,i(1− β1,t)

(

(θt,i − θ∗,i)
2 − (θt+1,i − θ∗,i)

2
)

+

√

β1,t

αt−1(1− β1,t)
(θ∗,i − θt,i)2

√

v̂t−1,i

√

β1,tαt−1(mt−1,i)2

(1− β1,t)
√

v̂t−1,i

+
αt(1− βt

1)ξt,i
2(1− β1,t)

(m̂t,i)
2

√

v̂t,i

10

Based on Young’s inequality, ab ≤ a2/2 + b2/2 and fact that

β1,t ≤ β1, the above equation can be reordered as

gt,i(θt,i − θ∗,i) ≤
1

2αtξt,i(1− β1)

(

(θt,i − θ∗,i)
2

− (θt+1,i − θ∗,i)
2
)

√

v̂t,i

+
β1,t

2αt−1(1− β1,t)
(θ∗,i − θt,i)

2
√

v̂t−1,i

+
β1αt−1(mt−1,i)

2

2(1− β1)
√

v̂t−1,i

+
αtξt,i

2(1− β1)

(m̂t,i)
2

√

v̂t,i

(32)

From Eq. (17) and Fig. 2, it is clear that 0.5 ≤ ξt,i ≤ 1. So,

ξt,i can be removed from last term of above equation and it

still satisfy the inequality. Then,

gt,i(θt,i − θ∗,i) ≤
1

2αtξt,i(1− β1)

(

(θt,i − θ∗,i)
2

− (θt+1,i − θ∗,i)
2
)

√

v̂t,i

+
β1,t

2αt−1(1− β1,t)
(θ∗,i − θt,i)

2
√

v̂t−1,i

+
β1αt−1(mt−1,i)

2

2(1− β1)
√

v̂t−1,i

+
αt

2(1− β1)

(m̂t,i)
2

√

v̂t,i

(33)

We use the Lemma 10.4 of Aadm [38] and derive the regret

bound by aggregating it across all the dimensions for i ∈
{1, . . . , d} and all the sequence of convex functions for t ∈
{1, . . . , T} in the upper bound of ft(θt)− ft(θ

∗) as

R(T)

≤
d
∑

i=1

1

2α1ξ1,i(1− β1)
(θ1,i − θ∗,i)

2
√

v̂1,i

+

d
∑

i=1

T
∑

t=2

1

2(1− β1)
(θt,i − θ∗,i)

2(

√

v̂t,i

αtξt,i
−

√

v̂t−1,i

αt−1ξt−1,i
)

+
β1αG∞

(1− β1)
√
1− β2(1− γ)2

d
∑

i=1

||g1:T,i||2

+
αG∞

(1− β1)
√
1− β2(1− γ)2

d
∑

i=1

||g1:T,i||2

+

d
∑

i=1

T
∑

t=1

β1,t

2αt(1− β1,t)
(θ∗,i − θt,i)

2
√

v̂t,i

(34)

By utilizing the assumptions that α = αt

√
t, ||θt − θ∗||2≤ D

and ||θm − θn||∞≤ D∞, we can write as

(35)

R(T) ≤ D2

2α(1− β1)

d
∑

i=1

√

T v̂T,i

ξ1,i

+
α(1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d
∑

i=1

||g1:T,i||2

+
D2

∞
2α

d
∑

i=1

t
∑

t=1

β1,t

(1− β1,t)

√

tv̂t,i

≤ D2

2α(1− β1)

d
∑

i=1

√

T v̂T,i

ξ1,i

+
α(1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d
∑

i=1

||g1:T,i||2

+
D2

∞G∞
√
1− β2

2α

d
∑

i=1

t
∑

t=1

β1,t

(1− β1,t)

√
t

It is shown in Adam [38] that
∑t

t=1
β1,t

(1−β1,t)

√
t ≤

1
(1−β1)(1−γ)2 . Thus, the regret bound can be written as

(36)

R(T) ≤ D2

2α(1− β1)

d
∑

i=1

√

T v̂T,i

ξ1,i

+
α(1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d
∑

i=1

||g1:T,i||2

+

d
∑

i=1

D2
∞G∞

√
1− β2

2α(1− β1)(1− λ)2

We know ξ1,i = 1/(1 + e−|g0,i−g1,i|) = 1/(1 + e−|g1,i|) as

g0,i = 0. Therefore, the regret bound for diffGrad is as follows:

(37)

R(T) ≤ D2

2α(1− β1)

d
∑

i=1

(1 + e−|g1,i|)
√

T v̂T,i

+
α(1 + β1)G∞

(1− β1)
√
1− β2(1− γ)2

d
∑

i=1

||g1:T,i||2

+

d
∑

i=1

D2
∞G∞

√
1− β2

2α(1− β1)(1− λ)2

11

Shiv Ram Dubey has been with the Indian In-
stitute of Information Technology (IIIT), Sri City
since June 2016, where he is currently the Assistant
Professor of Computer Science and Engineering.
He received the Ph.D. degree in Computer Vision
and Image Processing from Indian Institute of In-
formation Technology, Allahabad (IIIT Allahabad)
in 2016. Before that, from August 2012-Feb 2013,
he was a Project Officer in the Computer Science
and Engineering Department at Indian Institute of
Technology, Madras (IIT Madras). He was a recip-

ient of several awards including the Indo-Taiwan Joint Research Grant from
DST/GITA, Govt. of India, Best PhD Award in PhD Symposium, IEEE-
CICT2017 at IIITM Gwalior, Early Career Research Award from SERB, Govt.
of India and NVIDIA GPU Grant Award Twice from NVIDIA. He received
Outstanding Certificate of Reviewing Award from Information Fusion, Else-
vier in 2018. He also received the Best Paper Award in IEEE UPCON 2015,
a prestigious conference of IEEE UP Section. His research interest includes
Computer Vision, Deep Learning, Image Processing, Biometrics, Medical
Imaging, Convolutional Neural Networks, Image Feature Description, Content
Based Image Retrieval, Image-to-Image Transformation, Face Detection and
Recognition, Facial Expression Recognition, Texture and Hyperspectral Image
Analysis.

Soumendu Chakraborty received his Bachelor of
Engineering (B.E.) in Information Technology from
University Institute of Technology, University of
Burdwan, India in 2005. He did his M.Tech. in Com-
puter Science and Engineering from GLA Univer-
sity, Mathura, India in 2013. He received his Ph.D.
from Indian Institute of Information Technology,
Allahabad, U.P., India in the year 2018. He has 12
years of teaching and research experience. Presently,
he is working as an Assistant Professor in Indian
Institute of Information Technology, Lucknow, India.

His research interests include Computer Vision, Machine Learning, image
processing, biometric systems, image stegnography and pattern recognition.

Swalpa Kumar Roy received both his Bachelor
and Master degree in Computer Science & Engi-
neering from West Bengal University of Technol-
ogy, Kolkata, India, in 2012, and Indian Institute
of Engineering Science and Technology, Shibpur,
Howrah, India, in 2015, respectively. He is pursuing
the Ph.D. degree from under Computer Vision and
Pattern Recognition Unit, Indian Statistical Institute,
Kolkata, India, where he also worked as a Project
Linked Person from July 2015 to March 2016. He
is currently working as an Assistant Professor in

the Department of Computer Science & Engineering, Jalpaiguri Government
Engineering College, Jalpaiguri, West Bengal, India. His research interests
include Computer Vision, Deep Learning, Remote Sensing, Texture Feature
Description, and Fractal Image Coding.

Snehasis Mukherjee has obtained his PhD in Com-
puter Science from the Indian Statistical Institute in
2012. Before doctoral study, he has completed his
Bachelors degree in Mathematics from the Univer-
sity of Calcutta and Masters degree in Computer
Applications from the Vidyasagar University. He
did his Post Doctoral Research works at the Na-
tional Institute of Standards and Technology (NIST),
Gaithersburg, Maryland, USA. Currently he is work-
ing as an Assistant Professor in the Indian Institute
of Information Technology Chittoor, SriCity (IIIT

Chittoor, SriCity). He has written several peer-reviewed research papers
(in reputed journals and conferences). His research area includes Computer
Vision, Machine Learning, Image and Video Processing.

Satish Kumar Singh is an Associate Professor
with the Indian Institute of Information Technol-
ogy Allahabad, Prayagraj, India. He received the
Ph.D., M.Tech., and B.Tech. degrees in 2010, 2005,
and 2003, respectively. He has over 13 years of
experience in academic and research institutions.
He has authored over 45 publications in reputed
international journal and conference proceedings. He
is a member of various professional societies, like
the Institution of Electronics and Telecommunication
Engineers. He is an Executive Committee Member

of the IEEE Uttar Pradesh Section from 2014. Currently he is serving as
secretary Signal Processing Society Chapter, and Uttar Pradesh Section as
well. He is serving as an Editorial Board Member and reviewer for many
international journals. His current research interests are in the areas of digital
image processing, pattern recognition, multimedia data indexing and retrieval,
watermarking and biometrics.

Bidyut Baran Chaudhuri received the Ph.D. degree
from IIT Kanpur, in 1980. He was a Leverhulme
Postdoctoral Fellow with Queens University, U.K.,
from 1981 to 1982. He joined the Indian Statistical
Institute, in 1978, where he worked as an INAE
Distinguished Professor and a J C Bose Fellow at
Computer Vision and Pattern Recognition Unit of
Indian Statistical Institute. He is now affiliated to
Techno India University, Kolkata as Pro-Vice Chan-
cellor (Academic). His research interests include
Pattern Recognition, Image Processing, Computer

Vision, Natural Language Processing (NLP), Signal processing, Digital Doc-
ument Processing, Deep learning etc. He pioneered the first workable OCR
system for printed Indian scripts Bangla, Assamese and Devnagari. He also
developed computerized Bharati Braille system with speech synthesizer and
has done statistical analysis of Indian language. He has published about
425 research papers in international journals and conference proceedings.
Also, he has authored/edited seven books in these fields. Prof Chaudhuri
received Leverhulme fellowship award, Sir J. C. Bose Memorial Award, M.
N. Saha Memorial Award, Homi Bhabha Fellowship, Dr. Vikram Sarabhai
Research Award, C. Achuta Menon Award, Homi Bhabha Award: Applied
Sciences, Ram Lal Wadhwa Gold Medal, Jawaharlal Nehru Fellowship, J
C Bose fellowship, Om Prakash Bhasin Award etc. Prof Chaudhuri is the
associate editor of three international journals and a fellow of INSA, NASI,
INAE, IAPR, The World Academy of Sciences (TWAS) and life fellow of
IEEE (2015). He acted as General Chair and Technical Co-chair at various
International Conferences.

12

	I Introduction
	II Preliminaries
	III Proposed diffGrad Optimization
	IV Convergence Analysis
	V Empirical Analysis
	VI Experimental Setup for Classification
	VI-A Deep Architecture Used
	VI-B Hyper-Parameter Setting
	VI-C Dataset Used

	VII Classification Experiments and Analysis
	VII-A Validation Results Comparison
	VII-B Experiments with diffGrad Variants
	VII-C Performance Analysis with Activation Functions

	VIII Conclusion
	References
	VIII-A Convergence Proof

	Biographies
	Shiv Ram Dubey
	Soumendu Chakraborty
	Swalpa Kumar Roy
	Snehasis Mukherjee
	Satish Kumar Singh
	Bidyut Baran Chaudhuri

