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Abstract: 

High-throughput in silico methods have offered the tantalizing potential to drastically 

accelerate the drug discovery process. Yet despite significant efforts expended by academia, 

national labs and industry over the years, many of these methods have not lived up to their 

initial promise of reducing the time and costs associated with the drug discovery enterprise, a 

process that can typically take over a decade and cost hundreds of millions of dollars from 

conception to final approval and marketing of a drug. Nevertheless structure-based modeling 

has become a mainstay of computational biology and medicinal chemistry, helping to leverage 

our knowledge of the biological target and the chemistry of protein-ligand interactions. While 

ligand-based methods utilize the chemistry of molecules that are known to bind to the 

biological target, structure-based drug design methods rely on knowledge of the three-

dimensional structure of the target, as obtained through crystallographic, spectroscopic or 

bioinformatics techniques. Here we review recent developments in the methodology and 

applications of structure-based and ligand-based methods and target-based chemogenomics 

in Virtual High-Throughput Screening (VHTS), highlighting some case studies of recent 

applications, as well as current research in further development of these methods. The 

limitations of these approaches will also be discussed, to give the reader an indication of what 

might be expected in years to come. 
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1. Introduction to Ligand-based and Structure-based VHTS: 

The goal of VHTS is to aid in and accelerate the process of design of new drugs and 

materials with specific desirable physicochemical and/or biological activity profiles. Machine 

learning, computational pattern recognition or statistical modeling algorithms are employed to 

generate quantitative correlations between molecular structures and chemical properties or 

biological activities. The fundamental premise underlying all structure-activity relationship 

modeling is that molecular structure determines biological activities through the physics of 

intermolecular interactions. Such modeling can be undertaken either with the knowledge of 

the structure of the biological target (generally a protein) involved in the activity or even in the 

absence of any knowledge of the target structure. The former protocol goes by the name of 

structure-based design. Generally such methods make use of graphic visualization software, 

shape matching, electrostatic and hydrophobic complementarity for binding site comparisons 

and for “docking” a small molecule (“ligand”) onto the target and parametrized force-field-

based scoring functions for estimating the energetics of inter-molecular interactions. In the 

absence of any detailed knowledge of structure of the target protein, drug design strategies 

(ligand-based methods) exploit similarities between molecules known to cause the biological 

activity of interest. The principle here is that changes in molecular structure of the ligand 

determine changes in biological activity against the same target. Extracting useful information 

from observed structure-activity relationships in the ligand-based strategy thus requires large-

scale data collection, statistical modeling or data mining and a mathematical representation of 

relevant chemical features of molecules. Statistical modeling techniques can be either 

classification or regression methods, and can reveal complex relationships between 

descriptors and biological activity, but it should be borne in mind that such relationships are 

typically correlative rather than causative ― we should be under no illusion that large-scale 

statistical models enhance our chemical understanding, except in very fortuitous 

circumstances. The goals of predictive cheminformatics and retrospective model 

interpretation are, unfortunately, often orthogonal [1]. 

In the next section we describe strategies and descriptors employed in ligand-based methods, 

starting with linear models and simple topological descriptors to non-linear models and 

increasingly complex descriptors, then discuss the important issues of model validation and 

model applicability domain assessment, i.e. how to tell if a model is good enough and to 
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predict when it will be good. Some currently accepted best practices [2, 3] in predictive 

cheminformatics are then listed, followed by a discussion of activity cliffs [4-6] or the 

ruggedness of structure-activity landscapes. Section 3 deals with structure-based methods 

and section 4 with site similarity approaches and target-based chemogenomics, highlighting 

some recent work in this rapidly-developing area. 

2. Ligand-based VHTS methods: 

Linear Free Energy Relationships (LFER) 

Descriptors are the intermediary through which molecular structures are represented and key 

features thereof encoded in a form amenable to computer processing and statistical 

modeling. Just as there are various ways of representing molecular structure (for example, as 

one-dimensional alphanumeric SMILES strings, two-dimensional (2D) structure drawings on 

paper, three-dimensional (3D) molecular models or different cartoon representations popular 

for macromolecules), there are likewise different families of descriptors that differ in their ease 

of computation, interpretability, level of detail and in the kinds of molecular features they 

capture. For a set of molecular descriptors to be useful in modeling, it needs to encode those 

molecular characteristics pertinent to the property being modeled. When the property of 

interest is a biological activity, as in drug design, the features to be represented include 

interactions with other biomolecules that give rise to the biological response. Appropriate 

representation of inter-molecular interactions is thus critical to successful application of a 

Quantitative Structure Activity Relationship (QSAR) model. Descriptor utility can be 

characterized in terms of interpretability and predictive ability on molecules not included in the 

training set. As indicated by the preceding discussion, these are often mutually conflicting 

goals. The optimal choice of the descriptor set and the modeling algorithm is often determined 

by which of these two objectives is more crucial for the problem at hand. Small data sets are 

best modeled using a small number of well-designed, interpretable descriptors, but this is no 

guarantee of the performance of the model on new data. The simplest such models are the 

linear models of classical QSAR that are based on linear free energy relationships (LFER). 

Hammett [7, 8] first introduced numerical descriptors over 75 years ago to represent the effect 

of substituent R groups in a molecular scaffold on specified acid ionization equilibria: 
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log K/K0 = σρ       (1) 

where K is the equilibrium constant for the specified reaction, K0 the equilibrium constant for 

the reference reaction with R=H, σ is a substituent constant that depends only on R, and ρ is 

a reaction constant characteristic of the given reaction. Taft [9] expanded the original equation 

to account for steric effects by introducing a steric substituent constant Es within the linear 

framework:  

log K/K0 = ρσ + δEs      (2) 

These relations have been extensively applied over the years to predict pKa, toxicity and 

other physicochemical properties. Corwin Hansch [10, 11] extended the LFER concept to 

describe biological effects of molecules, thereby giving birth to the field of QSAR: 

log(1/C) = -kπ + k'π2 + σρ + k"    (3) 

Here C is the concentration of a drug needed to achieve a desired biological activity, π is a 

lipophilicity parameter introduced by Hansch, and k, k', ρ, and k" are regression coefficients 

that were fitted to the training data. Hansch studied the effects of substituents on the 

partitioning of molecules between two phases: water and octan-1-ol, to model the membrane-

aqueous interface in biological systems. The partitioning of a molecule between two different 

solvents phases is quantified by the equilibrium constant P (partition coefficient) and 

constitutes an important descriptor of biological activity. The parameter π measures the free 

energy change caused by a given substituent and is obtained as the difference between the 

substituted and unsubstituted log P values (π = 0 for H): 

πR = log PR - log PH     (4) 

Topological Indices 

The concept of descriptors as mathematical characterizations of molecular structure was first 

introduced by Lamont Kier and coworkers [12-14]. Among the simplest molecular descriptors 

are those based on atom counts and linear (1D) sequences. Perhaps the most well-known 

are the descriptors defining Lipinski’s Rule of Five [15], which are widely used as a first step 

in drug design to filter out virtual screening leads with poor bioavailability. Topological 
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descriptors, which depend only upon the molecular graph or bond connectivity (2D structure), 

have a long history and, being simple to compute, have proven very useful in QSAR and high-

throughput screens [16]. Examples include atom and bond counts, the degree of branching, 

the number of electrons, the Wiener number W ― which counts the lengths of all distances 

between each pair of atoms in a molecule, Hosoya's topological index Z ― which counts all 

sets of non-adjacent bonds in a structure, and the molecular connectivity index χ, constructed 

from the row sums of the adjacency matrix (Fig. 1).  

Substructural Descriptors 

Fragment descriptors are representations of local atomic environments. When the description 

of the local environment becomes specific, these descriptors are referred to as fingerprints, 

and are used for substructure searching and for molecular similarity analysis. Binary 

fingerprints based on 2D structure typically encode the presence or absence of substructural 

fragments, each describing a substructure of less than ten heavy atoms, a common example 

being the MACSS key descriptors [17]. Fast searching is accomplished by storing the 

presence or absence of these fragments as a vector of binary indices, allowing for rapid 

comparison of molecules in VHTS. Fingerprints based on hashed keys, constructed from 

atom types, augmented atoms and atom paths, are also popular and implemented in various 

commercial software programs [18]. Molecular holograms, such as those in Tripos’s Sybyl® 

[19], extend keyed fingerprints by storing the frequency of appearance of features, rather than 

simply their presence or absence. Fingerprints enable rapid similarity searches of large 

databases, but are not useful for modeling continuous responses. Extended Connectivity 

Fingerprints (ECFP), developed by SciTegic®, are circular substructural fingerprints [20] where 

each feature represents an exact structure with limited and specified attachment points, 

iteratively incorporating information from nearest-neighbors, next-nearest neighbors, etc. The 

set of all features for a neighborhood of specified granularity constitutes a fingerprint; such 

descriptors can describe both global and local features. 

Jürgen Bajorath and coworkers [21] have recently discussed the applicability of 2D 

fingerprint-based similarity search in scaffold hopping, i.e., the ability to move from one type 

of structural scaffold or bond framework to a very different one with similar activity. They 

observed some enrichment for almost all fingerprints evaluated, at approximately the top 1% 
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of the ranked database, with no single threshold value being applicable to all 2D fingerprint 

based-similarity search methods for identifying ligands of similar activity. 2D fingerprints 

capture structural information in a way that makes them difficult to use in scaffold hopping. 

Structurally diverse compounds typically do not appear in the top ranks in 2D fingerprint 

based-similarity searches. An approach based on a reduced graph representation can yield 

more diverse chemotypes than traditional 2D methods [22]. 

Pharmacophores [23] are a popular type of 3D descriptor, representing specific geometric 

arrangements of various combinations of atoms of different classes, such as aromatic, 

lipophilic, positively charged, negatively charged, hydrogen bond donor/acceptor, etc. 

Pharmacophores are designed to represent molecular frameworks that capture the essential 

geometric features responsible for a drug’s biological activity. 3D molecular fingerprints are 

commonly based on pharmacophore representations of molecules. However, the selection of 

conformations used to generate the pharmacophores is of crucial importance. If the 

conformations used to compute descriptors are inappropriate [24], the descriptors contribute 

primarily noise to the model, and such inappropriate use of 3D descriptors can make a model 

perform worse than expected (or even worse than simpler 2D descriptors [25]). 

Field based models 

Another class of 3D descriptor is constructed by encoding conformational information through 

alignment of molecules in an interaction field. Since biological activity depends upon 

molecular shape and upon interactions that are primarily non-covalent in nature, molecular 

mechanics force fields that treat non-covalent interactions as steric and electrostatic forces, 

are often sufficient to model a large number of biomolecular properties. In the Comparative 

Molecular Field Analysis (CoMFA®) technique [26], the molecules to be compared are aligned 

in 3D space by generating the superimposition that maximize the steric and electrostatic 

overlap or through a pharmacophore model. Once a suitable alignment is obtained, atomic 

point charges are then calculated for each molecule at a desired level of theory. The next step 

is to construct a field, for which a probe atom or a group of atoms is chosen to compute steric 

and electrostatic fields for each molecule at a series of grid points surrounding the aligned 

data set of molecules in 3D space. The values of the steric and electrostatic fields at each grid 

point are then used to construct a 3D-QSAR equation, employing a set of molecules with 
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measured activity as the training set. The predictive quality of a CoMFA 3D-QSAR model 

largely depends upon the quality of alignment and its resemblance to the actual bio-active 

conformation. CoMFA employs isocontour plots to represent electrostatically and sterically 

favorable or unfavorable areas around the molecules, for chemical interpretation of the 

models. Invariant 3D representations of molecular fragments, called topomers, may also be 

generated from the corresponding 2D topologies, using deterministic rules that specify 

absolute configuration, conformation and orientation [27, 28]. Topomers are characterized by 

CoMFA-like steric shapes and pharmacophore features, and have been employed for shape 

similarity searching of very large virtual libraries and for generating CoMFA alignments. The 

steric similarity of topomers is computed as the squared sum of differences in the values of 

the steric fields at corresponding pairs of lattice points. In contrast to pharmacophore-based 

3D searching, where shape comparison focuses on a small set of atom-like features, topomer 

shape comparison considers all atoms and is computed as a combination of fragment-to-

fragment differences, involving a single conformation for each fragment. The main bottleneck 

in CoMFA is performing the computationally intensive 3D alignments between molecules. 

Field-based methods that capture 3D similarity, such as topomers, have the potential to 

overcome the limitation of 2D fingerprint-based methods with respect to scaffold hopping 

among different classes of structures [27, 28]. 3D field-based methods were also found to be 

more effective in scaffold enrichment [29] when diverse compounds were present in the 

screening database, even when no significant overall performance advantage was observed 

over 2D fingerprint-based methods. McGaughey, et al. [30] observed superior performance of 

3D ligand-based methods over docking, but as is usually the case, the performance was 

dependent upon the data set used for benchmarking. 

Local Surface Area Descriptors  

Quantifying the relative surface areas of polar atoms (such as N and O) and atomic fragments 

in molecules, or the surface areas accessible to solvent molecules, is an attractive way to 

incorporate electrostatic and desolvation effects into 3D QSAR models. Polar surface area 

(PSA) descriptors [31] obtained from a single conformation often yield predictive models 

similar to those obtained from averaging multiple conformations [32, 33]. They have been 

applied in QSAR models for a wide range of biological properties (such as blood-brain 
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partitioning [33-35], intestinal absorption [32-37] and oral bio-availability [38]). Solvation 

effects are important in protein folding and stability, while desolvation is associated with 

protein-protein and protein-ligand binding. The solvent accessible surface area (ASA) [39] 

measures the solvation free energy of a solute as a sum of atomic contributions, weighted by 

their solvent-exposed areas.  Descriptors based on such local molecular surface properties 

that do not encode the chemical constitution of a molecule directly, are also likely [40, 41] to 

favor scaffold hopping and lead to more global QSAR/QSPR models. 

Quantum chemistry is, of course, known to be computationally intensive, especially the ab 

initio computations required to generate reliable molecular wave functions and electron 

densities. Electron density-derived descriptors have thus not been routinely used in VHTS. 

The Transferable Atom Equivalent (TAE) RECON method [42, 43] overcomes this 

computational bottleneck by employing a library of atomic charge density fragments and 

exploiting the theory of Atoms-In-Molecules [44, 45] for the rapid computation of molecular 

electronic properties from the atomic fragments. Atomic fragments satisfying Bader's virial 

partitioning prescription [44] have well-defined properties that are approximately additive and 

transferable from one molecule to another. Molecular descriptors can then be constructed in 

most cases by simple arithmetic operations on the respective atomic descriptors. For 

instance, relative surface areas of polar atoms or atoms with electrostatic potential (EP) within 

a specified range can simply be summed to give the respective molecular surface area 

descriptor. The atomic density fragments are pre-computed from ab initio wave functions and 

stored, along with the respective atomic descriptors, in a TAE library. At run-time, the RECON 

algorithm simply matches the atom types in each molecule to the best match from the TAE 

library and rapidly computes the molecular descriptors from the atomic ones. The algorithm is 

thus well adapted for virtual high throughput screening applications and scales well with both 

molecular and database size; throughputs are on the order of a million molecules an hour on 

a single processor linux computer. Besides the electrostatic potential [46, 47], other 

commonly used electronic TAE descriptors include Politzer's local average Ionization 

Potential (PIP) [48, 49], Fukui Reactivity Indices [50, 51] and the Laplacian distribution of the 

electron density [44], each mapped onto the molecular Van der Waals surface. The local 

average ionization potential identifies regions with the most tightly-bound (maxima of PIP) and 

the most ionizable electrons (minima of PIP), the Fukui electrophilic, nucleophilic and radical 

reactivity indices identify regions most susceptible to electrophilic, nucleophilic and radical 
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attack respectively, while the Laplacian of the density locates of regions of electron density 

accumulation or depletion. 

A computationally inexpensive set of descriptors that incorporates 3D shape information 

within the TAE RECON formalism is achieved through property autocorrelation functions, 

binned by the distance Rxy between atom pairs x, y for each TAE property P: 

A(Rxy) = (1/n)∑x,yPxPy     (6) 

Autocorrelation descriptors measure the correlation of a property with itself, measured along 

the bond path (topological autocorrelations) or through 3D space (spatial autocorrelations). 

Topological autocorrelation descriptors derived from TAE have been employed [52] to 

generate improved predictive regression models for the binding affinities of polypeptide 

sequences to the major histocompability complex.  

Shape Descriptors 

There are several fast shape comparison methods for virtual high-throughput screening. 

Rapid Overlay of Chemical Structures (ROCS) [53] is based on the idea that molecules have 

similar shape if their volumes have significant overlap; any volume mismatch is then a 

measure of dissimilarity. In ROCS, molecular shape is represented as a continuous function 

constructed from atom-centered Gaussian functions. The shape of a query molecule is used 

for scaffold hopping to other molecules with similar 3D shapes, but that may have low 

similarities to the query molecule in terms of their 2D scaffolds. GRIND descriptors [54-56] 

represent a class of alignment-independent shape features that encode molecular interaction 

field distributions at key points around a molecule in the form of correlograms, rather than 

capturing molecular shape or surface information. 

Another fast shape comparison method that avoids the alignment problem is Zauhar's Shape 

Signature [57, 58]. This method involves a computational ray-tracing procedure within the 

interior of the molecular envelope (defined by either the van der Waals or solvent-accessible 

surface) and collecting ray-length and angle-of-reflection information at each point of 

intersection of the ray with the surface. Shape Signatures encode molecular shape through 

the distribution of ray lengths (Fig.2), thereby rapidly generating distinctive, compact “shape 
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signature” fingerprints for each molecule without the necessity of computationally intensive 3D 

molecular alignments. The Property Encoded Surface Translator (PEST) [59] method extends 

the concept of Shape Signatures by recording TAE surface property information at each point 

of intersection of the ray with the molecular surface to produce hybrid shape-property 

descriptors that are useful for both similarity assessment and constructing QSAR/QSPR 

regression models. Surface properties that have been fruitfully employed in PEST include 

electrostatic potentials from either ab initio computation or empirical charges, other TAE 

electronic properties and molecular lipophilicity potentials. Descriptors are encoded as two-

dimensional histograms (Fig.3) and wavelet coefficients [60]. 

Ultrafast shape recognition (USR) was developed as a similarity search tool by Ballester and 

Richards [61-63]. USR descriptors are molecular shape moments with respect to a small set 

of well-defined points within a molecule: such as the centroid (ctd), the closest atom to the ctd 

(cst), the farthest atom from the ctd (fct) and the farthest atom from the fct (ftf). Like Shape 

Signatures or PEST, USR is alignment-free, generates a compact shape profile and has been 

shown to perform well at shape classification. Furthermore, USR is extremely fast; it is faster 

than ROCS or even Shape Signatures by several orders of magnitude, and thus well suited 

for VHTS screens. The RECON [43] algorithm further generates rapid shape-electronic-

property hybrid descriptors for high-throughput screening by computing TAE property 

moments with respect to ctd, cst, fct and ftf: 

USPmk = ∑iPiRikm      (8) 

for each TAE property P, where the summation i runs over all atoms in the molecule, m = 1, 2, 

3 (corresponding to first, second and third moments), and k  ctd, cst, fct, ftf. While purely 

shape-based approaches may neglect key aspects of molecular recognition, combining 

electrostatic information (partial charges or electrostatic potentials) with shape recognition 

methods (as in RECON [43], PEST [59] and ElectroShape [64, 65]) include electrostatic 

complementarity in the description. Hybrid descriptors have also be constructed by combining 

USR with descriptors encoding topological information, such as MACCS keys [66], 

demonstrating superior recall (ratio of correctly predicted active molecules to the total number 

of actives) and precision (ratio of correctly predicted active molecules to the total number 

predicted to be active) in classification models. 
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Alignment-free descriptors such as USR and Shape Signatures are incapable of chiral 

discrimination. However, nine of the top ten drugs on the market today have chiral active 

ingredients. For example, while both enantiomers of Warfarin are anticoagulants, in the case 

of the widely prescribed beta-blocker Propanolol, the S(-)-enantiomer is approximately 100 

times as potent as the R(+)-enantiomer in blocking beta-adrenergic receptors; for another 

chiral beta-blocker, Sotalol, the enantiomers have equal Class III antiarrhythmic activity, but 

beta-blocking activity is been attributed mainly to the R-enantiomer; the right-handed S-(+)-

form of the painkiller ibuprofen is three times stronger than the left; L-Dopa is used to treat 

Parkinson's disease, while R-Dopa is toxic!  In an effort to meet this challenge of adequately 

describing biological interactions dependant on chirality, the Richards Group developed Chiral 

Shape Recognition (CSR) [64, 65], a novel method to compute molecular similarity that builds 

on the USR method, but distinguishes enantiomers. CSR includes moments with respect to a 

fourth centroid, defined through a cross product operation. Because of the properties of the 

cross product, parity inversion changes the signs of all coordinates except that of the fourth 

centroid, so that the moments with respect to this fourth centroid are different for any 

molecule and its enantiomer. CSR is of roughly the same speed as USR, since CSR only 

requires the computationally trivial extra step of computation and renormalization of a single 

cross-product. Adding chirality and electrostatic complementarity to USR has been shown to 

result in significant enrichment in virtial screens [64, 65]. 

Data Fusion 

Data fusion was first introduced in the radar sensing community and refers to the process of 

combining multi-sensor data from different sources, such that the resulting information or 

model is better than would be possible when these sources are used individually. Data Fusion 

processes are often categorized under three stages or levels: data level fusion, feature level 

fusion and decision level fusion. Data level fusion combines several sources of raw data to 

produce new raw data that is expected to be more informative and synthetic than the inputs. 

For molecular modeling this is equivalent to combining different sets of descriptors. Several 

applications along these lines have already been discussed above. Feature level fusion 

combines various features, as for an example in the combination of several latent variable 

sets extracted from principal component analysis, partial-least squares analysis, or 

independent component analysis. Decision fusion combines decisions from several individual 
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models with either the same or different descriptor sets. Consensus models are example of 

the latter, where individual model predictions based on the same or different descriptor sets 

are combined into a single meta-learning model. 

Several publications have explored the use of data fusion in molecular modeling and 

molecular property analysis, for instance by merging similarity scores with molecular 

descriptors [67-73]. In a recent application, kernel partial-least squares (K-PLS) models with 

data fusion have shown a significant boost in performance compared to traditional K-PLS 

models in predicting the binding affinity for the human serum albumin [74]. Several consensus 

scoring approaches combining highly diverse descriptor sets such as structural keys, 

property-based fingerprints, shape scores and 3D pharmacophores, have been investigated 

[75] and shown to give better and more consistent rankings of active molecules. We will 

encounter further examples of decision-level data fusion when we discuss consensus docking 

in section 3. 

Non-linear Models 

The introduction of additional descriptors and the use of non-linear models can add 

considerable flexibility. However, a proliferation of descriptors or the use of complex, non-

linear models often leads to over-fitting (Fig.4) – also known as the “curse of dimensionality”, 

leading to a tendency for high-capacity models to memorize the details of the training data, 

thus resulting in a poor ability of the model to generalize the results to data not encountered 

during training. Over-trained models might give low prediction errors on the training set data, 

but high errors on test data. Artificial neural networks (Fig.5) are computational models 

patterned after the learning models prevalent in biological synaptic circuitry, where the 

descriptors are represented by a set of input neurons and the property to be modeled by an 

output neuron, connected through one or more “hidden” layers of intervening neurons. The 

network is first presented with the molecules constituting the training set. During this learning 

phase, the neural network adjusts the strengths of the connections between the neurons so 

as to obtain the best match between the output neuron's value (“predicted” response) and the 

actual measured value of the biological activity being modeled. After training is completed, in 

the prediction phase, the trained network is presented with the structures for which the 

response is to be predicted. Neural networks are especially prone to over-fitting, and also 

suffer from a lack of easy interpretablity of the models. Feature selection methods are 
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employed to constrain the number of descriptors actually used in the model (and thus the 

number of adjustable parameters). One such technique is sensitivity analysis [76, 77]: each 

value of each descriptor is varied within the range spanned by its minimum and maximum 

values, while holding all the other descriptors frozen at their respective average values, and 

the change in the predicted response monitored.  The descriptors for which the predictions do 

not vary a lot when they are tweaked are considered less important, and they are gradually 

pruned from the model in a series of successive iterations between model building and 

feature selection. Another general feature selection strategy is to add a random variable to 

the model and to eliminate any descriptor that has a lower correlation with the modeled 

response than the random variable. Among successful strategies to prevent over-training in 

neural network models is “early stopping.” The data is first split into a training set, an internal 

validation set and an external test set (Fig.6). Training is stopped before the prediction error 

on the internal validation set starts to deteriorate. In assessing model performance, it is 

furthermore important that the model not see the data in the external test set during the 

training phase. 

Statistical modeling techniques that employ capacity control, such as Support Vector 

Machines (SVM) [78], seek to minimize the sum of the training error and the model complexity 

(known as the generalization error) instead of minimizing the training error itself, leading to 

more robust models with better predictive ability on molecules not included in the training set. 

SVM can be used for classification as well as for regression models: in the former scenario 

(Fig.7), the goal is to maximize the “margin” ε between the hyperplanes or “support vectors” 

separating the data points belonging to the different classes (e.g. active molecules from 

inactive ones); in the latter scenario, i.e. when employed for a regression between descriptors 

xi and a biological activity y (Fig.8), the goal is to minimize the width of the ε-tube between 

the support vectors within which the “good” data points must fall: 

min. w, b,ξi,ξi* {C∑i (ξi + ξi*) + ½ ||w||2}    (5) 

The parameter C controls the tradeoff between training error and capacity, while minimizing 

||w|| controls the capacity of the linear function: 

y = (w.x + b) + ε.      (6)  
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The -insensitive loss function applies a steadily increasing penalty to all data points outside 

the ε-tube, while ensuring that the model is not penalized for not fitting (over-fitting) data 

points within the ε-tube. SVM belongs a class of statistical methods known as kernel 

methods, and can be employed with either a linear or a non-linear kernel. A linear kernel is a 

matrix of linear similarity measures between molecules. A linear SVM with 1-norm 

regularization ||w|| inherently performs feature selection as a side-effect of minimizing 

capacity in the SVM model, driving many wi to zero. The basic idea behind feature selection 

using SVM is very simple: One first constructs a series of sparse linear SVM exhibiting good 

generalization and finds the subset of variables having nonzero weights in the linear models. 

This subset of variables is then used in nonlinear SVM to produce the final regression or 

classification function. A non-linear kernel can be considered as a non-linear data 

transformation or mapping to a higher-dimensional space, wherein the relationship between 

the descriptors xi and the biological activity y can be represented by a linear function. Many 

different choices for the non-linear kernel are possible; perhaps the most popular is the Radial 

Basis Function (RBF) or Gaussian kernel: 

K(xi,xj) = exp{-α||xi-xj||2}   for α > 0  (7)  

The data kernel K(xi,xj) expresses a non-linear similarity measure between the data. 

Model Validation and Applicability Domain 

Many authors [79-81, 5, 6] have pointed out that models which perform best, retrospectively, 

are often the worst prospectively; this observation has been termed the “Kubinyi paradox” . 

Prospective QSAR on large data sets requires properly validated models. A good cross-

validation is no longer sufficient for a model to be considered useful for prospective QSAR 

[82]. Tests are also required to check for chance correlations; methods include sensitivity 

analysis described above, where all descriptors having less correlation than an introduced 

random variable with the activity to be modeled are dropped, and the Y-scrambling test [2], 

where the activities to be modeled (Y variable) are randomly permuted among the molecules 

of the training set and any model predicting these scrambled activities well (comparable to the 

models built with real activities of the training set) is considered suspect and should be 

discarded. The Y-scrambling test is of particular importance if the data set is small or if the 
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response variable is categorical (discrete). The scheme outlined in Fig.6 is recommended as 

a general protocol for obtaining a properly validated, predictive QSAR model. 

Methods to characterize not only the predictive ability but also the domain of applicability of 

models [83-85] are increasingly occupying the attention of researchers. The focus of these 

investigations is on when it make sense to apply a model within a problem domain. The 

domain of applicability of a QSAR model is the physicochemical, structural or biological 

space, the information in which has been used to train the model, and it is within this space 

that the model is applicable to make predictions for new compounds. The applicability domain 

of a QSAR model is described in terms of the parameters that are descriptors of the model. 

Ideally, the QSAR should only be used to make predictions within that domain by 

interpolation, and not by extrapolation. Compounds which are highly dissimilar from all 

compounds of the training set (in the space of selected descriptors) can not be predicted with 

any degree of confidence.  Statistical methods to estimate the model applicability domains 

include [84] range-based (either descriptor range or principal components range may be 

used), distance-based, geometric and probability-density distribution-based methods. For a 

given model, two parameters are calculated in the distance-based methods [85]:  the average 

Euclidian distance <Dk> and the standard deviation sk between each compound of the training 

set and its k nearest neighbors in the descriptor space. For each test compound i, the 

distance Di is calculated as the average of the distances between i and its k nearest 

neighbors in the training set. The new compound will be predicted by the model only if D i  ≤ 

<Dk> + Zsk , with Z being an empirical parameter. The most straightforward empirical 

geometric method for defining the coverage of a multi-dimensional set is the convex hull, 

which is the smallest convex area that contains the original set. The disadvantages of this 

method are that it can not identify potential empty spaces within the convex hull, and further, 

the complexity grows as O(n[d/2]+1), where n is the number of samples and d the number of 

dimensions. Probability-density distribution-based methods are the only ones capable of 

identifying internal empty regions within the convex hull of a QSAR applicability domain. 

The use of inappropriate descriptors, injudicious use of high capacity modeling methods 

without appropriate external validation or without Y-scrambling tests for over-fitting, and 

application of models outside their demonstrated applicability domain are responsible for most 

of the problems reported in QSAR modeling in the scientific literature [4, 86]. Other reasons 

why models fail [81, 2] may include incorrect data (structures and/or activities) in the dataset, 
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the training set might be too small to model effectively, and activity cliffs (regions of chemistry 

space where small changes in structure produce huge changes in activity). Before proceeding 

to a discussion of activity cliffs, we conclude this sub-section by summarizing some of the 

currently accepted best practices in predictive cheminformatics [2]: 

1. There should be a plausible (not necessarily a known or a well-understood) 

mechanism or connection between the descriptors and response. Otherwise we might 

just as well be doing numerology! 

2. Robustness: you cannot keep tweaking parameters until you find one that works just 

right for a particular problem or data set and then apply it to another. A generalizable 

model should be applicable across a broad range of parameter space. 

3. It is important to know the domain of applicability of the model and stay within it [83-

85]. 

4. Likewise, it is important to know the error bars on the experimental data: there is no 

point expending a lot of effort modeling the noise in the data. 

5. The minimum requirement for developing a predictive model or hypothesis is the “No 

cheating” principle, i.e. no looking at the “answer” or the responses of the prediction set 

during model building. 

6. Divide the data set into training, validation and test sets [82, 2]. 

7. Validate the training set models using an external validation set [82, 2]. 

8. Of course, if a data set contains too much noise, no QSAR/QSPR technique can 

extract a meaningful signal. One should not look too hard for something that may not 

be there, because one is then liable to be modeling the noise in the data. 

9. Consider the use of “filters” to scale and then remove correlated, invariant and “noise” 

descriptors from the data, and to remove outliers from consideration. 

10. Modeling is meant to assist human intelligence – not to replace it. So it is important to 

try to understand the chemistry of the problem at hand. In this context, however, it is 

worth re-emphasizing the difference between predictive and retrospective QSAR. 

Descriptors selected for their ease of interpretation are unlikely to yield optimal 

predictive models. Conversely, descriptor selection methods designed to generate 

highly predictive models are often not suitable for mechanistic analysis [1]. 
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Activity cliffs 

The fundamental assumption implicit in the VHTS-QSAR protocol, in the context of drug 

discovery, is that similar molecules should exhibit similar activities in biological assays [87, 

88]. While such correlations are often observed for simple physicochemical properties, 

significant mis-predictions of biological activity still arise among very similar molecules even 

with the best of validation. Thus for example, Yvonne Martin et al. [88] found in a follow-up to 

115 high-throughput screening assays that there was only a 30% probability that a compound 

showing similarity greater than 0.85 to an active molecule would itself be active! Gerry 

Maggiora [4] postulated that the reason for such deviations might be related to the complex 

nature of the activity landscape associated with a given biological assay, which in turn is 

related to the chemical-space representation (molecular descriptor space) used to 

characterize the set of compounds assayed and to the similarity assessment metric 

employed.  He summarized this with the catch-phrase “Not all chemical spaces are created 

equal!” Maggiora's topographical metaphor recognizes that very similar molecules may in 

some cases possess very different activities, giving rise to “activity cliffs” [4, 89], and leading 

to deviations from the similarity principle. While similar molecules may not always exhibit 

similar activities in individual biological assays, similar molecules do display similar broad 

patterns of biological activities across a range of related targets [90, 91], a fact that has been 

exploited [92, 93] to construct molecular descriptors from activities determined from a broad 

spectrum of in vitro assays representing a cross-section of the druggable proteome. These 

ideas are exploited further in target-based chemogenomics, which we discuss in section 4. 

Guha and Van Drie [5-6] have addressed the identification and the quantification of activity 

cliffs in chemical models of biological activity by defining a Structure-Activity Landscape Index 

(SALI): 

SALIi,j = |Ai – Aj|/{1 – sim(i,j)}    (8) 

where Ai  and Aj  are the activities of the ith and the jth molecules, and sim(i,j) is the similarity 

coefficient between the two molecules. Steep activity cliffs in a data set lead to high SALI 

values. These are the most interesting regions of a structure-activity relationship for purposes 

of drug design. The SALI values for a dataset can be visualized as a heat map, thus 

identifying and characterizing the cliffs of biological activities. Alternatively, utilizing a cut-off 
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value of the index enables one to represent pair-wise sets of molecules through network 

graphs [94, 5-6], thereby highlighting abrupt changes in response associated with the 

steepest (most significant) cliffs. Guha and Van Drie [5-6] have also defined the SALI curve 

as a way to assess QSAR models and modeling protocols. The SALI curve is a plot of S(X) 

versus X, where S(X) is the SALI value at the similarity threshold X. While the SALI network 

graph orders each pair of molecules by activity, the SALI curve tallies how many of these 

orderings a model is able to predict. 

3. Structure Based Methods 

Structure-based methods complement ligand-based approaches when the protein structure is 

available from crystallographic studies or deduced from homology to known structures. 

Appropriate structure preparation is a critical step for structure based virtual screening. Some 

commonly used tools that are part of commercial molecular modeling packages include 

protonate3D and ProPka in MOE and the protein and ligand preparation workflows available 

within the Maestro package available from Schrodinger, Inc.  The effects of ligand tautomer 

enrichment on virtual screening results have been the subject of several investigations [95-

100].  Miletti and Vulpetti [99] note that conclusions have been drawn both in favor of and 

against tautomer enrichment. The use of all possible tautomers has been reported to increase 

computational time [96] and to increase false positives [97, 98]. However, use of different 

tautomers was not found to have any significant impact in the docking results of Oellien et al. 

[100] on dyhydrofolate reductase, transketolase and R-trichosanthin targets. Miletti and 

Vulpetti [99] further found that inclusion of the most stable tautomeric form in water had a 

higher enrichment rate than just including the least stable form, in a docking study using Flap, 

Glide, and Gold on seven targets of the DUD data set [101]. However, including all forms did 

not have any significant disadvantage over including only the most stable form in water. 

Tautomer form reversal was observed in water versus binding site in ligands with low ΔG (<2 

kcal mol-1) or those undergoing annular tautomerism. 

There are indications that virtual high-throughput screening may complement experimental 

high-throughput screening [102]. In a study by Babaoglu et al. [102, 103], a qHTS campaign 

involving screening of 70,000 compounds with a maximum concentration of 30 µM against 

AmpC β-lactamase revealed no true inhibitors. However two false negatives in the qHTS 
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screen were correctly identified by a docking-based virtual screen that placed these two 

compounds in ranks 80 and 200 respectively. When experimentally validated by a low 

throughput method and at a higher compound concentration, Ki of 37 µM and 55 µM 

respectively were realized. Kolb et al. [102] also cite unpublished results involving a qHTS 

campaign of 198,000 molecules against the enzyme cruzain, which revealed false negatives 

from a docking based virtual screen.   

Kolb et al. [102] remarked on the growing interest in using docking as a tool for identification 

of substrates and agonists and hence function of enzymes [104, 105]. They also pointed to 

the improved performance of X-ray crystal structures of GPCRs as targets for docking, as 

opposed to earlier homology models. Where 5% hit rate in docking is considered substantial, 

the screens that utilized crystal structures of GPCRs in the two cited studies [106, 107] had hit 

rates of 24% and 36% [102]. 

Changes in protein structure can affect the performance of docking-based virtual screens; this 

has been a well-recognized issue with rigid receptor docking. Common benchmark exercises 

generally involve re-docking into the same cavity from which the ligand was separated. The 

performance drops significantly when the ligands are cross-docked to the cavity of the same 

protein but separated from a different bound ligand. Generally programs that make use of a 

single fixed protein conformation have success rates closer to 20% when applied to cross-

docking exercises [108]. New approaches that make use of protein conformations from 

multiple complexes, such as Surflex-Dock, achieved an average success rate as high as 61% 

(across eight pharmaceutically relevant targets). Following docking, protein pocket adaptation 

and rescoring, this program identified single pose families correctly an average of 67% of the 

time. Considering the best of two pose families from alternate scoring approaches yielded a 

75% mean success rate.  

Docking and scoring also form an integral part of the fragment-based drug discovery 

workflow.  Chen and Shoichet [109] report that a docking protocol which failed to identify true 

positive lead-like compounds for the target CTX-M beta-lactamase, nevertheless correctly 

identified several low-affinity fragment-like molecules of diverse chemotypes as docking hits. 

This is interesting to note, as fragment-like molecules have greater chance of adapting to a 

binding pocket in spite of their low flexibility [109]. Furthermore, the predicted binding pose 
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closely coincided with the observed crystal-structure derived pose.  The low-affinity fragment 

hits were subsequently optimized to inhibitors of higher specificity and higher affinity. 

Several successes in fragment-docking have been reported in the recent literature. 

Mpamhanga et al. [110] described the discovery of selective Pteridine Reductase 1 inhibitors 

by following a fragment-based docking protocol.  Two chemical series, aminobenzothiazole 

and aminobenzimidazole scaffolds, were identified of which one molecule from the latter 

scaffold was co-crystallized and found to have a binding pose similar to that predicted in the 

docking study. However, two other analogs of the same series exhibited different binding 

modes with change in protein conformation and involvement of water molecules. Ekonomiuk 

et al. [111] reported the discovery of a non-peptidic inhibitor of West Nile virus NS3 protease 

in a fragment-based high-throughput docking campaign, using 22 compounds for 

experimental validation from an initial library of nearly 12,000 molecules. Six of the 22 

compounds showed specific affinity upon validation by NMR spectra of the compounds and 

the protein. The molecule which showed the most pronounced effects on the NMR spectrum 

of the protease, was further characterized and shown to bind specifically to the active site with 

an affinity of about 40 µM.  

When comparing ligand-based methods with structure-based methods Krüger and Evers [112] 

found that ligand-based virtual screening gave enrichment similar to structure-based virtual 

screening against four targets, namely angiotensin-converting enzyme (ACE), 

cyclooxygenase 2 (COX-2), thrombin and human immunodeficiency virus 1 (HIV-1) protease. 

However, the hits were found to be non-overlapping and the authors suggested parallel 

application of the two approaches. For ligand-based virtual screening, ROCS (3D-similarity 

searching), Feature Trees and Scitegic Functional Fingerprints (2D-similarity searching) were 

employed, whereas for structure-based virtual screening a combination of GOLD, Glide, 

FlexX and Surflex and nine scoring functions were used in the docking programs. 

Irwin and coworkers [113] reported the development of an expert docking system and studied 

the feasibility of unsupervised docking. The system called “Dock Blaster” has six components, 

each having a specific function from reading a PDB file to preparing reports for screening 

interpretation. The method was benchmarked against the Astex [114], GOLD [115] and DUD 

[101] sets and found to have pose fidelity within 2 Å rmsd for about 50−60% of targets, as 
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compared to 70−80% for expert-guided docking. Both good pose fidelity and good enrichment 

were observed in 25−40% of benchmark cases. In a further study of 7755 complexes, the re-

docked ligand ranked in the top 5% of 100 property-matched decoys in 1398 complexes, with 

an rmsd less than 2 Å. These results suggest that unsupervised prospective docking could be 

a viable protocol. 

Fan et al. [116] studied the applicability of comparative models in structure-based virtual 

screening and found that a consensus docking approach based on several comparative 

models from different templates outperformed random selection and was better or 

comparable overall to the results obtained from the holo and apo X-ray crystal structures. 

Docking to comparative models was found to be better than docking to the template itself. 

However, it was not possible to predict which model would have the greatest enrichment. 

When performing docking and scoring, the reliability of the scoring method is a cause for 

concern: the lack of explicit treatment of entropy in a scoring function for virtual high-

throughput screening may result in poor affinity estimation whenever entropy plays a 

dominant role. The converse may also be true, in that such scoring functions may show high 

accuracy when enthalpy far exceeds entropic contributions to binding. A database of enthalpy 

and entropy values derived from isothermal titration calorimetry experiments is available from 

the work of Olsson and coworkers [117]. Analysis of the data set showed the so-called 

“enthalpy-entropy compensation” [118] that resulted in a relatively small range of variation for 

free energy and large ranges for entropy and enthalpy. When the enthalpy values were 

plotted against free-energy values, no correlation between enthalpy and free energy was 

observed [119] (similar to earlier observations [120]). However, good correlation between free 

energy and enthalpy was observed for a third of the entries (111 of 332) where the enthalpy 

was greater than entropy by at least a factor of three. This trend seemed to reflect the trend in 

accuracy of scoring functions: in benchmarking studies of scoring functions [121, 122], trypsin 

consistently emerged as an easy target (higher accuracy of scoring functions), whereas 

scoring functions had poor accuracy in predicting affinities for the HIV protease target. From 

the available data in SCORPIO, trypsin complexes showed a higher enthalpy contribution on 

average than HIV protease complexes. 

While further improvement in reliability of scoring functions across diverse protein targets is 
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highly desirable, several success stories have already been documented and many others 

are expected to follow. 

4. Site Similarity Approaches and Target based Chemogenomics 

There has been increasing interest in automated high-throughput comparison of protein 

binding sites [123-126] in recent years, one reason being the shift from traditional receptor-

specific studies to a cross-receptor view [90]. Because different proteins may have different 

sequences or folds and yet have similar binding partners, it is necessary to compare binding 

sites for establishing relationships between protein targets. Work from Brian Shoichet’s group 

[127] and by Paolini, et al. [128] has shown that ligands quite frequently have affinity for more 

than one target. While similar ligands may bind to similar targets [90], ligand similarity in itself 

is limited by the accuracy of ligand-similarity detection algorithms.  As shown by Kinnings, et 

al. [129] and by Das, et al. [130], ligands that would otherwise be considered dissimilar by 

commonly used ligand-similarity detection algorithms can bind on to the same target. This is 

where protein target based approaches can fill the gap and identify related targets by 

comparing their binding sites, thereby pinpointing the potential for cross-reactivity between 

the corresponding ligands. A target virtual screen can, in addition, rapidly detect potential 

leads for new targets and offer significant scope for identifying alternate ligand chemotypes of 

similar activity.  

Binding site comparison techniques may utilize the shape of the binding site, the properties of 

the cavity lining residues or a combination thereof, the relative positions of the atoms or 

pseudo-centers derived from the atomic coordinates, or simply residue identities for 

automated comparison. Methods that rely heavily on geometry must ideally be able to 

accommodate changes occurring at the binding site due to receptor rearrangement upon 

binding to different ligands of dissimilar shape and/or sizes.  Another challenge is to recognize 

similarity in binding sites that have low sequence identity but bind to the same ligand in 

significantly different ligand conformations. 

In the post-genomic era we are seeing a convergence between the goals and methods of 

bioinformatics and cheminformatics [131], catalyzed by rapid advances in the field of 

chemogenomics and by the greater availability of high-throughput data (structure, binding 
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affinity and functional effects) for both targets and ligands of pharmaceutical interest. 

Chemogenomics [132, 133] refers to the science of relating the protein target space to the 

ligand space. Chemogenomic approaches can aid in drug discovery where ligand information 

is sparse or where structural information is absent [90]. In an excellent review of ligand and 

target based chemogenomic approaches, Rognan [91] highlighted specific examples and 

approaches where chemogenomics revealed important insights into the drug discovery 

process. In this section, we focus on target-based chemogenomics and cite specific examples 

where binding site comparison has led to new lead discovery or rationalization of reactivity 

profiles of drugs across protein targets. 

Oloff, et al. developed a novel structure-based cheminformatics approach, Complementary 

Ligands Based on Receptor Information (CoLiBRI) [134], to search for ligands complimentary 

to binding sites. This method was based on the representation of both receptor binding sites 

and their respective ligands in a space of universal TAE chemical descriptors. Knowledge of 

the receptor active site structure enabled identification of the known complimentary ligand 

among the top 1% of a large chemical database in over 90% of all test cases, when a binding 

site of the same protein family was present in the training set. They also demonstrated 

identification of complementary receptor sites starting from a ligand chemical structure. 

The sequence order independent profile-profile alignment (SOIPPA) developed by Xie and 

Bourne [135] detects similar binding sites of proteins unrelated in sequence or even function.  

The algorithm has been implemented in the web server SMAP-WS for proteome-wide ligand-

binding site comparison [136]. Using this algorithm, the relationship between the cofactor 

binding sites of NAD-binding Rossmann folds and the SAM-binding domain of the SAM-

dependent methyltransferases was established [129]. Following up of this study, entacapone 

and tolcapone, which are known to bind to COMT (a SAM-dependent methyltransferase in the 

presence of the SAM cofactor), were docked into 215 NAD-binding proteins. Among these, 

the NAD-binding InhA enzyme that is the target for anti-tuberculosis drugs consistently 

appeared among the top-scoring targets. On alignment of InhA and COMT using the SOIPPA 

method, the cofactor- and ligand-binding pockets were found to coincide. Entacapone on 

subsequent experimental validation showed a MIC99 of 260 µM for mycobacterium 

tuberculosis, well below the in vitro toxicity limit determined from a neuroblastoma cell line. 

Interestingly, the authors found low 2D similarity between the ligands of InhA and entacapone. 
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In a similar observation by Das et al. [119, 130], a geometry-based binding-site comparison 

method utilizing the Property Encoded Shape Distributions (Figs.9-10) was able to detect high 

similarity between sites that had cross-reacting ligands of low 2D and 3D similarities. The 

method is available as a web server [137] for high-throughput screening of a ligand-bound 

site against a database of over a hundred thousand ligand-bound sites derived from the PDB. 

The algorithm uses a surface representation of the sites, and has the potential to correctly 

detect similarities among relevant sites even when sequence identities at the sites are low.  

Martin et al. [138] described the discovery of selective, nonpeptidic, small-molecule 

somatostatin receptor subtype 5 (SST5R) antagonists by applying chemogenomics 

approaches.  From the similarity of the putative ligand-binding residues of SST5R and opioid, 

histamine, dopamine and serotonine receptors, astemizole was identified as a lead. 

Astemizole is an antagonist for the H1 receptor; the structure was subsequently modified to 

have nanomolar affinity for SST5R and no activity for H1 receptor.  Gloriam et al. [139] 

recently characterized the selectivity profile of ligands at Family A GPCRs by sequence 

similarity at the ligand binding regions. From the analysis of aminergic binding sites, the 

authors concluded that it was possible to classify receptors in a way that reflects their binding 

affinities, if the ligand binding residues were known. 

Several studies have tried to rationalize selectivity profiles of kinase inhibitors. Kinnings and 

Jackson [140] used geometric hashing to identify similarities in binding sites of kinases and to 

predict binding partners for kinase inhibitors. They also recognized the potential of this 

approach in protein-based “inverse” virtual screening.  Sheridan et al. [141] used property 

descriptors derived from ligand-binding residues to rationalize kinase inhibitor 

polypharmacology (the interaction of a drug with multiple targets), while more recently Milletti 

and Vulpetti [142] used a Shape Context [143] based binding site similarity detection 

approach to rationalize polypharmacology. This growing appreciation for the role of 

polypharmacology is leading to a paradigm shift from traditional receptor-specific to a cross-

receptor view and spurring the application of network approaches [144] to drug discovery and 

development, with the goal of expanding the opportunity space for new drugs through 

designing for improved selectivity and efficacy and lower toxicity. Rational drug design using 

target-based chemogenomics thus complements high-throughput screening for finding better 

starting points for a drug discovery program. 
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As more and more structural information on protein targets becomes available, receptor-

based virtual screening approaches will continue to gain prominence and complement ligand-

based approaches. Commercial molecular modeling suites are already including binding site 

comparison modules [124] and several free web-based servers are now available.  With the 

concept of a “magic shotgun” replacing the “magic bullet” [145] one can expect rapid 

developments in the field of target-based chemogenomics in the near future, geared towards 

addressing challenges arising from receptor and ligand flexibility, and solving the important 

cross-reactivity problem. 

5. Conclusions 

VHTS aims to aid and accelerate the drug discovery process through application of machine 

learning and statistical modeling algorithms, to generate quantitative correlations between 

molecular structures and biological activities. The fundamental premise underlying structure-

activity relationship modeling is that molecular structure determines biological activities. In the 

absence of detailed knowledge of the structure of the target protein, ligand-based methods 

are employed, exploiting similarities between molecules known to be biologically active. A 

variety of molecular descriptors may be employed to represent and encode structures for 

computerized analysis and modeling. While statistical modeling techniques can reveal 

complex relationships between descriptors and biological activity, they may not always 

enhance our chemical understanding, because correlation does not imply causation. 

Predictive cheminformatics and retrospective model interpretation are often non-overlapping 

goals. Excessively noisy data or insufficient data for training, inappropriate descriptors, use of 

high capacity modeling methods without appropriate external validation or tests for over-

fitting, the presence of activity cliffs and application of models outside their demonstrated 

domain of applicability are some of the reasons why models fail. To safeguard against these 

pitfalls in predictive cheminformatics, it is important to adopt and follow the best practices in 

the field. Activity cliffs can lead to very similar molecules having very different activities in 

biological assays. While similar molecules may not always exhibit similar activities in 

individual assays, they do display similar broad patterns of biological activities across a range 

of related targets. Chemogenomic approaches, which relate the protein target space to the 

ligand space, are especially useful where ligand information is sparse. With the steadily 

growing body of data on protein structures, structure-based models including docking-based 
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virtual screening, high-throughput protein binding site comparison and target-based 

chemogenomics are becoming increasingly common, helping to leverage the information 

available on biological targets and to complement ligand-based approaches. We can thus 

expect to see continuing advances in rational drug design along these lines. 
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Figure Captions 

Figure 1: Wiener number W is the total distance between all carbon atoms in a molecule. The 

smaller this number, the more compact the molecule. W is obtained by multiplying the number 

of carbon atoms on one side of any bond by those on the other side, and summing the result 

for all bonds. W can also be obtained by adding all the elements of the graph distance matrix 

above the main diagonal. Connectivity index χ is constructed from the row sums R i and Rj of 

the adjacency matrix using the algorithm χ = ∑ij(RiRj)-1/2 with each bond ij having a 

contribution (RiRj)-1/2. χ is a bond additive quantity where terminal CC bonds are given greater 

weight than inner CC bonds. 

Figure 2: PEST Property-encoded ray tracing. A property-encoded surface is subjected to 

internal ray reflection analysis. A ray is initialized with a random location and direction within 

the molecular surface and reflected throughout inside the electron density isosurface until the 

molecular surface is adequately sampled. Parts of the molecular van der Waals surface are 

shown encoded by a property, such as the electrostatic potential (EP), and other other parts 

are shown cut away to reveal the ray traces. Molecular shape information is obtained by 

recording the ray-path information, including segment lengths, reflection angles and property 

values at each point of incidence.  

Figure 3: PEST shape-property distribution for electrostatic potential (EP) and ray length, and 

corresponding 2-D histogram signature. 

Figure 4: Traditional regression approaches that minimize the training errors Σi(yi -f(xi)) lead 

to over-fitting in HTS data with noise; i.e., to a “perfect” prediction for the training set, but poor 

predictions for unknown data. 

Figure 5: Artificial Neural Networks for biological activity prediction. A non-linear transfer 

function (generally of sigmoid form) is applied at each node to determine the output value of 

that node from the input signals received from other nodes connected to it. The weight of 

each connection (“synapse”) is optimized during the learning phase to produce the best 

response for the training data. 

Figure 6: Protocol for predictive QSAR modeling and validation. 
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Figure 7: Support Vector Machine classification. The goal of the machine is to find the best 

classification of the data (filled and open circles) my maximizing the separation or margin 

between the “support vectors” (dotted lines) on either side of the classification hyperplane. 

Figure 8: Support Vector regression minimizes the generalization error, defined as the sum of 

the training error and the model complexity. Minimizing ||w|| controls the capacity of the 

function, while the parameter C controls the tradeoff between error and capacity. The linear 

penalty or loss function Lε is applied to everywhere outside the margin or ε-tube. SVM models 

avoid over-fitting by controlling the model complexity. 

Figure 9: Property Encoded Shape Distributions (PESD): Conversion of property distribution 

on surfaces to a string of numbers or signatures. A large number of randomly selected pairs 

of points from the surface are binned by distance and property combinations to construct 

PESD signatures. The similarity between two binding sites is calculated from the similarity 

between the corresponding PESD signatures 

Figure 10:. Binding site representations of of 1b55 and 1btn show low sequence 

conservation. However, the EP mapped surfaces and corresponding PESD signatures are 

very similar [130]. 
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