
ar
X

iv
:h

ep
-t

h/
04

12
21

1v
1 

 1
8 

D
ec

 2
00

4

CPT −conserving Hamiltonians and their

nonlinear supersymmetrization

using differential charge-operators C

Bijan Bagchi and A. Banerjee

Department of Applied Mathematics, University of Calcutta
92 Acharya Prafulla Chandra Road, Kolkata 700 009, West Bengal, India

e-mail: bbagchi123@rediffmail.com

Emanuela Caliceti

Dipartimento di Matematica dell’ Università and Istituto Nazionale di
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Abstract

A brief overview is given of recent developments and fresh ideas at the in-
tersection of PT − and/or CPT −symmetric quantum mechanics with super-
symmetric quantum mechanics (SUSY QM). Within the framework of the
resulting supersymmetric version of CPT −symmetric quantum mechanics
we study the consequences of the assumption that the “charge” operator C is
represented in a differential-operator form of the second or higher order. Be-
sides the freedom allowed by the Hermiticity constraint for the operator CP ,
encouraging results are obtained in the second-order case. In particular, the
integrability of intertwining relations proves to match the closure of our non-
linear (viz., polynomial) SUSY algebra. In a particular illustration, our form
of CPT −symmetric SUSY QM leads to a new class of non-Hermitian poly-
nomial oscillators with real spectrum which turn out to be PT −asymmetric.
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1 Introduction

The recent growth of interest in the possibility of working with non-Hermitian
observables in quantum theory (cf. the concise review papers [1]) is mainly
due to the influential Bender’s and Boettcher’s letter [2] where its authors
observed that the spectrum of certain Hamiltonians H 6= H† seems real and
discrete and bounded below.

They conjectured that such an observation may find a firmer mathe-
matical background and explanation in the symmetry of their models with
respect to the combined action of the parity P and time-reversal (i.e., com-
plex conjugation) T . This inspiring idea has been further developed and
re-formulated as proposals of the so called PT −symmetric quantum me-
chanics [3], pseudo-Hermitian quantum mechanics [4] and CPT −symmetric
quantum mechanics [5]. They all deal with more or less the same class of the
specific non-Hermitian models characterized, in the language of the latter
reference, by another symmetry operator C which is very conveniently called
”charge”.

There exists an extensive literature on PT -symmetric quantum mechan-
ics [6, 7]. In particular, in a number of papers [8, 9, 10, 11], unexpected
consequences of the non-Hermiticity of Hamiltonians have been noticed to
emerge after its supersymmetrization a la Witten [12]. In terms of local
models H = p2+V (x) on the real line (x ∈ IR) where V (x) = V ∗(−x), these
Hamiltonians satisfy the intertwining relation

H†P = P H . (1)

Such PT -symmetric Hamiltonians may have either complex, or real spectra.
When the PT symmetry remains spontaneously unbroken and all the spec-
trum is real [2], one has elaborated the concept of quasi-Hermiticity of the
Hamiltonian [13, 14]. This means that the intertwining relation (1) holds
also with P replaced by a positive-definite operator Θ = Θ† > 0 which plays
the role of a metric operator. The physical interpretation of such models
is standard [15]. When the spectrum is complex, relation (1) can still be
written with P replaced by a pseudo-metric [16, 17, 18].

We shall now generalize the previous considerations to a new type of
symmetry. The framework of our constructions proposed in our recent let-
ter [19] will incorporate Hamiltonians with both real and complex spectra.
Correspondingly, we shall also deal, in general, with non-positive metric (i.e.,
pseudo-metric). As for the case of PT symmetry, the interpretation of this
type of quantum mechanics can be disputable [14] and might require some
innovation. However, we stress that, in our framework, we can find models
which have real spectra, where, in particular, a non-Hermitian Hamiltonian
is related by similarity transformations not only to a Hermitian operator,
but, more specifically, to a Hermitian Schrödinger operator. Thus, for these
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cases, we recover the standard quantum mechanics, after similarity. There-
fore, these cases are not disputable in their interpretation. From a conser-
vative point of view, one might restrict the interest of our supersymmetric
approach insofar as one takes it instrumentally as a strategy to find com-
plex Hamiltonians with real spectrum that do not satisfy PT invariance (see
Section 4 below).

1.1 SUSY intertwining relations

In the same spirit as in Ref. [19], we shall study the intertwining relations

FH† = HF (2)

mediated by the Hermitian operator

F = CP (F = F †) , (3)

where P is the parity operator, and C a generalized ”charge” operator, as-
sumed to be a polynomial in the differential operator d/dx. For any Hamilto-
nian H , Eq. (2) is equivalent to CPT conservation, with T the time reversal
operator,

CPT H = HCPT . (4)

In this paper we shall not discuss in detail the metric interpretation for F ,
but only stress the fact that, if F and H satisfy Eq. (2), then also F−1 (if it
exists) and H meet an intertwining

H†F−1 = F−1H , (5)

which means that H is pseudo-Hermitian with respect to F−1, i.e.,
F−1−pseudo-Hermitian [4].

This observation may be useful for implementing the metric based on F−1,
when F−1 has a better behavior than F , e.g. with respect to boundedness.
Nevertheless, in our text we also use for a F satisfying Eqs. (3), (2), the
word “metric” operator. In fact, Eq. (2) implies that HF is Hermitian. As
a consequence of (5), if | φ〉 and | ψ〉 are two arbitrary vectors of the Hilbert
space L2(R), we have

∫

φ∗(x)
(

F−1Hψ
)

(x)dx =
∫

ψ∗(x)
(

F−1Hφ
)

(x)dx .

This can be interpreted as a Hermiticity condition for H provided the scalar
product is defined as

〈φ | ψ〉F−1 =
∫

φ∗(x)
(

F−1ψ
)

(x) dx ;

〈ψ | φ〉F−1 =
∫

ψ∗(x)
(

F−1φ
)

(x) dx .
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It is worthwhile to point out, however, that, in absence of additional con-
straints, neither F−1 nor F is necessarily positive definite so that, for in-
stance, the equation F | φ〉 = 0 might have a non-trivial solution different
from | φ〉 = 0. At this level, 〈φ | φ〉F−1 does not define a true norm but
merely a pseudo-norm [17, 20].

It is evident that solving Eq. (2) amounts to analyzing the compatibility
between C andH ; in other words, C andH are to be found contextually. Once
Eq. (2) is formally solved, one can investigate its supersymmetrization [21].
By this we mean the construction of super-charges

Q =

(

0 F
0 0

)

, Q̃ =

(

0 0
F∗ 0

)

(6)

with anti-commutator

K ≡
{

Q, Q̃
}

=

(

FF∗ 0
0 F∗F

)

, (7)

and a polynomial formulae

FF∗ =
n
∑

k=0

akH
k, F∗F =

n
∑

k=0

a∗k(H
∗)k (8)

with the final goal to elucidate the conditions leading to such a type of the
closure of the algebra [22].

1.2 Plan of the paper

In Section 2 we elaborate a particular solution to our problem inspired by
the specific second-order supersymmetry (SSUSY) results of ref. [11]. Our
solution of Eq. (8) will have the form

FF∗ = h21 −
c2

4
, F∗F = h22 −

c2

4
, (9)

where h1 is naturally related to h2 by Hermitian conjugation,

h1 = h†2 , (10)

if c2 is real. Our explicit solution to the problem is rendered possible by a
SSUSY inspired gluing constraint [21, 22]. We show that

Fh2 = h1F , (11)

which, because of Eq. (10), is now equivalent to Eq. (2). This amounts to

CPT h1 = h1CPT . (12)
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Explicit analytic examples of PT −asymmetric models are expressed in terms
of circular or hyperbolic functions.

In Section 3 we perform a detailed investigation of eq. (2) for a charge
operator which is of the second order in derivatives,

C =
d2

dx2
+G (x)

d

dx
+D (x) , (13)

and where G (x) and D (x) are complex functions of the real coordinate x:

G (x) = GR (x) + iGI (x) ,

D (x) = DR (x) + iDI (x) .

We further derive the polynomial algebra of Eq. (8). In order to show
explicitly that our formalism allows to generate PT −asymmetric models
with real spectrum, we discuss in Section 4 a particular polynomial oscillator
model.

In Section 5 we generalize the postulate (13) and derive the general form
of the charge operator C of any finite order in the derivative d/dx such that
F ≡ CP is Hermitian. At the very end, in section 6 we give some perspectives
on the impact of our results on a variety of fields where the use of similar F
might play significant role.

2 SUSY gluing constraint

Starting with a second-order C of the form (13) we have to guarantee, first of
all, the Hermiticity of F = CP and F−1 = PC−1. It is easy to show (see also
section 5 below for an exhaustive discussion of these important conditions for
polynomial charges) that the latter Hermiticity condition forces us to impose
the necessary and sufficient requirements

DR(x) = DR(−x) +
d

dx
GR(x), DI(x) = −DI(−x) +

d

dx
GI(x)

where GR (x) = GR (−x) is even while GI (x) = −GI (−x) must be odd.

2.1 Factorization

In the subsequent step of our considerations we factorize our second-order
charge operator C as follows,

C = q1q2 , q1 =
d

dx
+ U(x) , q2 =

d

dx
+W (x) , (14)
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where

U(x) +W (x) = G(x) ,
d

dx
W (x) + U(x)W (x) = D(x) . (15)

In order to simplify the problem at the start we impose the following “gluing”
constraint on q1 and q2,

q2(q
†
2)

∗ = (q†1)
∗q1 + c , (16)

where c is a complex number. By inserting Eqs. (14) into Eq. (16), we
obtain

(

d

dx
+W

)(

−
d

dx
+W

)

=

(

−
d

dx
+ U

)(

d

dx
+ U

)

+ c ,

whence
d

dx
W (x) +W 2(x) = −

d

dx
U(x) + U2(x) + c . (17)

We find the following representation for FF∗ and F∗F (Eq. (3))

FF∗ = F
(

F †
)∗

= (q1q2P) ·
(

Pq†2q
†
1

)∗
= q1q2 (P)2

(

q†2
)∗ (

q†1
)∗
,

which, taking Eq. (16) into account, becomes

FF∗ = q1

[

(

q†1
)∗
q1 +

c

2
+
c

2

]

(

q†1
)∗

=
[

q1
(

q†1
)∗

+
c

2
+
c

2

]

·
[

q1
(

q†1
)∗

+
c

2
−
c

2

]

.

Correspondingly,

F∗F =
(

F †
)∗

F

=
[

P
(

q†2
)∗
q2P −

c

2
−
c

2

]

·
[

P
(

q†2
)∗
q2P −

c

2
+
c

2

]

.

Defining the Hamiltonian operators

h1 = q1(q
†
1)

∗ +
c

2

=

(

d

dx
+ U

)(

−
d

dx
+ U

)

+
c

2

= −
d2

dx2
+

d

dx
U(x) + U2(x) +

c

2
,
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and

h2 = P(q†2)
∗q2P −

c

2

= P

(

−
d

dx
+W (x)

)(

d

dx
+W (x)

)

P −
c

2

= −
d2

dx2
−

d

dx
W (−x) +W 2(−x)−

c

2
,

equation (7) provides the following representation for K

K = H2 −
c2

4
, H =

(

h1 0
0 h2

)

.

Comparing with Section 3.3 below, where FF∗ = H2 + αH + γ, and setting
h1 = H , we get in the present case α = 0 and, correspondingly, V0 = 0,
according to Eq. (53) below, as well as γ = −c2/4. This shows explicitly
how the present model can be derived from the general results of section 3.

2.2 Hamiltonians

Remembering the first of Eqs. (15), Eq. (17) becomes

d

dx
G(x) +W 2(x)− (G(x)−W (x))2 = c ,

i.e.,
d

dx
G(x)−G2(x) + 2G(x)W (x) = c ,

or

G(x)W (x) =
1

2

(

G2(x)−
d

dx
G(x) + c

)

. (18)

We immediately deduce that

W (x) =
G2(x)− d

dx
G(x) + c

2G(x)
,

U(x) = G(x)−W (x) =
G2(x) + d

dx
G(x)− c

2G(x)
. (19)

Thus

h1 = −
d2

dx2
+ V (x) ,

with

V (x) = G′(x)−
(G′(x))2

4G2(x)
+
G′′(x)

2G(x)
+
G2(x)

4
+

c2

4G2(x)
. (20)
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From Eq. (18) we also get that at the zeros x̄ of G, we must have

dG

dx

∣

∣

∣

∣

x=x̄
= c ,

which is a constraint on G, too. In fact, the method would fail if G had
several zeros with non-identical values of the first derivative at each of them.

An important comment must be made here since even if a function does
not vanish on the real axis, one can investigate its zeros in the complex x
plane. For instance, if

G(x) = G0(x) ≡ z(x) =
1 + i sinh(αx)

2
, α ∈ R, (21)

it is immediate to check that z(xn) = 0 at xn = −i (2n + 3/2)π/α, n = 0,
±1, . . . . This would mean that dG0(xn)/dx = (iα/2) cosh(αxn) = 0, thus
implying that we must put c = 0 in this case.

In the similar spirit, we may consider the whole class of functions which
depend on x only via z(x) of Eq. (21) in an arbitrary nonlinear manner,
Gm(x) ≡ G(z(x)), since, as a function of x, z is PT -symmetric, and any real
function of z is PT -symmetric, too, and is an acceptable candidate for G.

It becomes convenient to change variables and express the Hamiltonian,
H = −d2/dx2 + V (x), with V (x) given by formula (20), as a function of z,
by observing that

d

dx
=

dz

dx

d

dz
= iα

√

z(1 − z)
d

dz
,

d2

dx2
=

(

dz

dx

d

dz

)2

= −α2
(

1

2
− z

)

d

dz
− α2z(1− z)

d2

dz2
,

and

V (z) = iα
√

z(1 − z)
d

dz
G+ α2 z(1− z)

4G2

(

d

dz
G

)2

− α21− 2z

4G

d

dz
G (22)

−α2 z(1− z)

2G

d2

dz2
G+

G2

4
+

c2

4G2
.

2.3 Consistency

We prove now an important constraint on the complex number c = cR + icI .
From the second of Eqs. (15), we have

D(x) =
d

dx
W (x) + U(x)W (x)

=
1

2G2(x)

[(

2G
d

dx
G−

d2

dx2
G

)

G−
d

dx
G

(

G2 −
d

dx
G+ c

)]

+
1

4G2



G4 −

(

d

dx
G

)2

− c2 + 2c
d

dx
G



 ,
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or

D(x) =
1

4G2



2G2 d

dx
G− 2G

d2

dx2
G+

(

d

dx
G

)2

+G4 − c2



 , (23)

D∗(−x) =
1

4G2



−2G2 d

dx
G− 2G

d2

dx2
G+

(

d

dx
G

)2

+G4 − (c∗)2



 ,(24)

where the functions on the right-hand-sides of Eqs. (23) and (24) are all
computed at x.

In deriving Eq. (24), use has been made of the fact that G and d2G/dx2

are PT -symmetric, while dG/dx is PT -antisymmetric, i.e., (dG/dx(−x))∗ =
−dG/dx(x). Eq. (23) is obviously consistent with the general form of D as
a function of G given by Eqs. (48), (50), with c2/4 = −I0 − D(x0)G

2(x0).
Subtracting Eq. (24) from Eq. (23) side by side, we obtain

D(x)−D∗(−x) =
d

dx
G+

(c2)∗ − c2

4G2
. (25)

Combining Eq. (25) with Eq. (33), we obtain the important result

(c2)∗ − c2 = 0 → ℑ(c2) = 0 → cRcI = 0.

From Eq. (19) we easily obtain

U(x) = W ∗(−x)−
cR
G(x)

,

whence
(

d

dx
U(x)

)∗

= −
d

dx
W (−x) +

cR
(G∗(x))2

d

dx
G∗ , (26)

and

(U∗(x))2 =W 2(−x) +
c2R

(G∗(x))2
− 2cR

W (−x)

G∗(x)
. (27)

Thus

h†1 − h2 =

(

d

dx
U(x) + U2(x)

)∗

+
d

dx
W (−x)−W 2(−x) + cR

= cR

[

1

(G2(x))∗

(

d

dx
G∗(x) + cR

)

− 2
W (−x)

G∗(x)
+ 1

]

.

Using Eq. (19) to replace W (−x), we obtain

h†1 − h2 = cR

[

1

(G2)∗

(

d

dx
G∗ + cR

)

−
1

(G2)∗

(

(G2)∗ +
d

dx
G∗ + c

)

+ 1

]

= cR
cR − c

(G2)∗
= −i

cRcI
(G2)∗

= −icRcI
G2

| G |4
. (28)

Therefore
h†1 = h2 ⇔ cRcI = 0 .
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2.4 Periodic potential

Let us now give an example which generalizes PT -symmetric periodic po-
tentials [8, 23]:

G(x) = eiαx + r , α ∈ R , r ∈ R, r 6= ±1.

In this case we have, for all x ∈ R,

U(x) =
1

2

(

eiαx + r
)

+
1

2

(

iαeiαx − c
)

/
(

eiαx + r
)

W (x) =
1

2

(

eiαx + r
)

−
1

2

(

iαeiαx − c
)

/
(

eiαx + r
)

.

Since G never vanishes, we do not have any constraint on the value of c,
in addition to the one which requires that c be either real, or imaginary.
The spectral analysis of the corresponding Schrödinger operators h1 and h2
with periodic potentials can be performed as a generalization to the non-
PT -symmetric case of the investigation done by in Ref. [24].

We now examine the invertibility of C and the boundedness of C−1. First
notice that C can be written in the following form

C = C1C2, C1 = CU +
r

2
, C2 = CU +

r

2
(29)

where

CU =
d

dx
+ U1, U1 = U −

r

2

CW =
d

dx
+W1, W1 =W −

r

2
.

We will discuss the invertibility of each factor in (29) separately. As for C1
we first observe that the numerical range {z = 〈CUψ, ψ〉 : ψ ∈ H1(IR)} of CU
is contained in the strip {z : |Re z| ≤ a} where a = maxx∈IR|U1(x)|. Hence,
if |r| > 2a then −r/2 is in the resolvent set of CU [25] and, therefore, C1 is
invertible with bounded inverse on L2(R). A similar argument holds for CW .
Thus, for sufficiently large values of |r|, operator C is invertible and C−1 is
bounded on L2(R).

3 Second-order charge operator C

3.1 Re-construction of the potential

We already noticed that in the second-order charge operator (13), the nota-
tion of Section 5 below implies that we have the correspondences γ2(x) = 1,
γ1(x) = G(x) and γ0(x) = D(x), so that the Hermiticity constraints on
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the real and imaginary parts of γℓ(x), Eqs. (70) and (71), with ω = 2 and
ℓ = 0, 1, immediately give

GR (x)−GR (−x) = 0 ; GI (x) +GI (−x) = 0; (30)

DR (x)−DR (−x) =
d

dx
GR (x) ; DI (x) +DI (−x) =

d

dx
GI (x) .(31)

As a consequence of Eq. (30), G is PT -symmetric

G(x) = G∗(−x) , (32)

while Eq. (31) yields

D(x)−D∗(−x) =
d

dx
G(x) . (33)

We assume that F and H satisfy the intertwining condition (2) and that H
depends on a local complex potential, V (x):

H = −
d2

dx2
+ V (x) , (34)

with V (x) = VR (x) + iVI (x). In turn, VR (x) and VI (x) are conveniently
decomposed into their even and odd parts:

VR (x) = V E
R (x) + V O

R (x) ,

VI (x) = V E
I (x) + V O

I (x) ,

with V E
K (x) = V E

K (−x) and V O
K (x) = −V O

K (−x), (K = R, I). We write now
condition (2) explicitly and obtain three non-trivial equations by imposing
that the coefficients of (d/dx)2, d/dx and (d/dx)0 vanish,

−2
(

V O
R + iV E

I

)

+ 2
d

dx
(GR + iGI) = 0 , (35)

2 d
dx

(

V E
R + iV O

I

)

− 2 d
dx

(

V O
R + iV E

I

)

+ 2 d
dx

(DR + iDI)

+ d2

dx2 (GR + iGI)− 2
(

V O
R + iV E

I

)

(GR + iGI) = 0 ,
(36)

d2

dx2

(

V E
R + iV O

I

)

− d2

dx2

(

V O
R + iV E

I

)

+ d2

dx2 (DR + iDI)

+ (GR + iGI)
d
dx

(

V E
R (x) + iV O

I (x)
)

− (GR + iGI)
d
dx

(

V O
R + iV E

I

)

−2 (DR + iDI)
(

V O
R + iV E

I

)

= 0

(37)

while the coefficients of (d/dx)4 and (d/dx)3 are identically zero.
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3.2 Integrability

The first of the above equations (35) yields

V O
R =

d

dx
GR; V E

I =
d

dx
GI . (38)

The second equation (36)yields

d

dx
V E
R −

d

dx
V O
R − V O

R GR + V E
I GI +

d

dx
DR +

1

2

d2

dx2
GR = 0;

d

dx
V O
I −

d

dx
V E
I − V E

I GR − V O
R GI +

d

dx
DI +

1

2

d2

dx2
GI = 0,

and is easily integrated for the other two components of the potential, V E
R (x)

and V O
I (x), as functions of GR (x), GI (x), DR (x) and DI (x), by replacing

V O
R (x) and V E

I (x) with their expressions (38):

V E
R (x) =

1

2

d

dx
GR (x) +

1

2
(GR (x))2−

1

2
(GI (x))

2−DR (x) + V0 (39)

V O
I (x) =

1

2

d

dx
GI (x) +GR (x)GI (x)−DI (x) . (40)

Here, V0 is a real integration constant. The corresponding integration con-
stant in the equation for V O

I (x) must be zero, because the function is odd.
Both equations can be recombined as

V (x) =
3

2

d

dx
G(x) +

1

2
G2(x)−D(x) + V0 . (41)

Finally, the third equation (37) allows us to express the GJ (x)’s, (J = R, I),
as functions of the DK (x)’s, (K = R, I), or, more conveniently, viceversa.

−
1

2

d3

dx3
GR +

GR

2

d2

dx2
GR +

(

d

dx
GR

)2

+
(

G2
R −G2

I − 2DR

) d

dx
GR

−
GI

2

d2GI

dx2
−

(

d

dx
GI

)2

+ 2 (DI −GIGR)
d

dx
GI −GR

d

dx
DR +GI

d

dx
DI

= 0 (42)

−
1

2

d3GI

dx3
+

1

2
GR

d2

dx2
GI +

(

−G2
I +G2

R − 2DR

) d

dx
GI +

1

2
GI

d2

dx2
GR

+2
d

dx
GR

d

dx
GI + 2(GRGI −DI)

d

dx
GR −GI

d

dx
DR −GR

d

dx
DI

= 0.

Eqs. (42) can be recombined in the following first-order linear equation
expressing the unknown function D(x) in terms of the known function G(x)

12



and its derivatives up to third order

1

2

d3

dx3
G−

1

2
G
d2

dx2
G−

(

d

dx
G

)2

−G2 d

dx
G+2

(

d

dx
G

)

D+G
d

dx
D = 0 . (43)

Eq. (43) is easily solved by direct integration. Let us define the auxiliary
functions

g(x) ≡ 2
d

dx
G , (44)

f(x) ≡ −
1

2

d3

dx3
G+

1

2
G
d2

dx2
G +

(

d

dx
G

)2

+G2 d

dx
G , (45)

1

p(x)

d

dx
p(x) ≡

g(x)

G(x)
. (46)

Eq. (46) is promptly integrated by use of definition (44) to

p(x) = exp
(

2
∫ x

x0

d lnG(x′)
)

=
G2(x)

G2(x0)
, (47)

where x0 is an initial point where G is different from zero. It is now easy to
check that the general solution to Eq. (43) can be written in the form

p(x)D(x) =
∫ x

x0

dx′
p(x′)f(x′)

G(x′)
+ p(x0)D(x0) ,

or

D(x) =
1

G2(x)

∫ x

x0

dx′G(x′)f(x′) +
D(x0)G

2(x0)

G2(x)
. (48)

The integral on the right-hand side of Eq. (48) is computed by elementary
methods in the form

∫ x

x0

dx′G(x′)f(x′) =
G4(x)

4
+
G2(x)G′(x)

2
−
G(x)G′′(x)

2
+
(G′(x))2

4
+I0 , (49)

with

I0 ≡ −
G4(x0)

4
−
G2(x0)G

′(x0)

2
+
G(x0)G

′′(x0)

2
−

(G′(x0))
2

4
, (50)

where G′ ≡ dG/dx, and so on, thus providing the most general expression of
D as a function of G and of its derivatives.

13



3.3 SSUSY algebra

Assuming a charge operator, C(x), of the form (13), we now verify that the
operator

F(x)F∗(x) = C(x)PC∗(x)P = C(x)C∗(−x)

can be written as a particular case of formula (8)

F(x)F∗(x) = H2 + αH + γ ,

where α and γ are constants to be determined and H is Hamiltonian (34)
with V given in (41). In fact, we have

C(x)C∗(−x) =

(

d2

dx2
+G(x)

d

dx
+D(x)

)

·

(

d2

dx2
−G∗(−x)

d

dx
+D∗(−x)

)

=

(

d2

dx2
+G(x)

d

dx
+D(x)

)

·

(

d2

dx2
−G(x)

d

dx
+D(x)−G′(x)

)

where use has been made of relations (30), (31) stemming from Hermiticity
of C(x). After some algebra, the right-hand side of the above expression is
brought to the form

C(x)C∗(−x) =
d4

dx4
+
(

2D(x)−G2(x)− 3G′(x)
) d2

dx2
(51)

+ (2D′(x)− 3G′′(x)− 2G(x)G′(x))
d

dx
+D′′(x)−G′′′(x) +G(x)D′(x)

−G(x)G′′(x) +D2(x)−D(x)G′(x) ,

and is to be compared with

H2 + αH + γ =

(

−
d2

dx2
+ V (x)

)2

+ α

(

−
d2

dx2
+ V (x)

)

+ γ (52)

=
d4

dx4
− (2V (x) + α)

d2

dx2
− 2V ′(x)

d

dx
+ V 2(x)

−V ′′(x) + αV (x) + γ ,

where V (x) may be expressed as a function of D(x) and G(x) according to
Eq. (41). Direct comparison of the right-hand sides of the above formulae
allows us to determine the α constant as

α = −2V0 . (53)

The value of γ expresses the compatibility between C and the polynomial
algebra through the equation

V 2(x)− V ′′(x) + αV (x) + γ =

14



= D′′(x)−G′′′(x) +G(x)D′(x)−G(x)G′′(x) +D2(x)−D(x)G′(x).

Here, we insert the expressions of V (x) and V ′′(x) in terms of G(x), D(x)
and of their derivatives obtained from formula (41), and making use of Eq.
(43), as well as of its general solution (48), (49), we obtain the final result

γ = V 2
0 + I0 +D(x0)G

2(x0) , (54)

where I0 is defined in Eq. (50). This makes it possible to interpret γ as
a kind of integration constant. Thus, CPT invariance leads to the SSUSY
polynomial algebra, Eqs. (7), (8).

4 Polynomial oscillators

The simplest factorization of C reads

C(x) =

(

d

dx
+
G(x)

2

)

·

(

d

dx
+
G(x)

2

)

, (55)

so that, correspondingly,

D(x) =
G′(x)

2
+
G2(x)

4
. (56)

In this case, Eq. (43) yields G′′′(x) = 0, i.e.,

G(x) = ax2 + ibx+ c (57)

where a, b and c are real numbers, owing to the fact that G(x) is PT -
symmetric. From Eq. (41) we obtain:

V (x) =
1

4
G2(x) +G′(x) + V0

=
1

4
a2x4−

1

4
(b2− 2ac)x2+

1

2
iabx3+

1

2
x(ibc + 4a) + ib+

c2

4
+ V0. (58)

If we make the additional assumption c = 0, for the sake of simplicity, the
polynomial algebra provides the constraint

γ = V 2
0 +

b2

4

on γ [Eq. (54)].
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4.1 The problem of invertibility

We will now make the spectral analysis for H and study the invertibility of
F in the case c = 0. Then

V (x) =
1

4
a2x4 −

1

4
b2x2 +

1

2
iabx3 + 2ax+ ib+ V0. (59)

Setting µ2 = a2

4
and ν2 = b2

4
, we obtain an expression for the Schrödinger

operator H of the same type as that presented in Eqs. (22), (23) of Ref. [19],
namely

H = −
d2

dx2
+ µ2x4 − ν2x2 + 2iµνx3 + 4µx+ 2iν + V0 (60)

and D(H) = H2(R) ∩ D(x4), ∀µ, ν ∈ R, µ 6= 0. As in Ref. [19], H has
discrete spectrum, i.e., the spectrum consists of a sequence of isolated eigen-
values with finite multiplicity.

In order to prove the reality of the spectrum of H , we first notice that H
can be rewritten as

H = −
d2

dx2
+ x2(µx+ iν)2 + 4µx+ 2iν + V0. (61)

Let us now perform the complex translation x→ x− iν
2µ
. Then H = S−1H1S

where Sψ(x) = ψ(x− iν
2µ
) on a dense set of functions ψ ∈ L2(R) and

H1 = −
d2

dx2
+

(

x−
iν

2µ

)2 (

µx−
iν

2
+ iν

)2

+ 4µx− 2iν + 2iν + V0

= −
d2

dx2
+ µ2

(

x−
iν

2µ

)2 (

x+
iν

2µ

)2

+ 4µx+ V0

= −
d2

dx2
+ µ2

(

x2 +
ν2

4µ2

)2

+ 4µx+ V0 (62)

Hence H has the same spectrum of H1. In turn H1 is selfadjoint on D(H1) =
D(H) = H2(R)∩D(x4), thus it has real spectrum for all µ, ν, V0 ∈ R, µ 6= 0.

We may stress that Hamiltonian (60) is not PT −invariant but has still
a real spectrum because it is related by explicit similarity to the standard
self-adjoint anharmonic oscillator. In our opinion this is an exceptional ex-
ample since in general the proof of the reality of the spectra of non-Hermitian
Hamiltonians cannot proceed in such a straightforward manner and, generi-
cally, the necessary maps are non-local [26]. Moreover, by our construction,
the reality of the spectrum is robust insofar as its CPT −symmetry cannot
be spontaneously broken. In this sense, our example (60) may be perceived
as a PT −asymmetric parallel to the PT −symmetric quartic oscillator of
Buslaev and Grecchi [27].
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4.2 The problem of boundedness

Let us now turn to the operator F = CP. In order to prove the invertibility
of F and the boundedness of F−1 on L2(R) it is enough to demonstrate the
same facts for C. Factorization (55) implies that it will suffice to prove that
C1 = ( d

dx
+ G

2
) is invertible and that C−1

1 is bounded on L2(R) if G is given
by (57). Indeed, we have

C1 =
d

dx
+

1

2
ax2 +

i

2
bx (63)

and we now proceed as in Ref. [19]. More precisely

C1 =
d

dx
+
a

2

(

x+
ib

2a

)2

+
b2

8a
(64)

is similar to

C2 =
d

dx
+
a

2
x2 +

b2

8a
(65)

via the complex translation x → x − ib
2a
. Hence C1 has the same spectrum

as C2. In turn C2 is unitarily equivalent, via the Fourier transformation, to

C3 = −
a

2

d2

dx2
+ ix+

b2

8a
. (66)

Therefore C1 has the same spectrum as C3. Finally, we perform the unitary
dilation (Uψ)(x) = (a/2)1/6ψ[(a/2)1/3x] and obtain that C1 has the same
spectrum as

C4 = UC3U
−1 =

(

a

2

)1/3
[

−
d2

dx2
+ ix+

(

a

2

)−1/3 b2

8a

]

. (67)

Now, since the Schrödinger operator − d2

dx2 + ix has an empty spectrum (see
Ref. [28]), so does C1. In particular z = 0 belongs to resolvent set of C1, so
that C1 is invertible and its inverse is bounded and defined on the whole of
L2(R).

5 Towards operators C of any finite order

We shall postulate that the charge-operator component C of the pseudo-
metric CP, where P denotes parity, is a polynomial of any finite degree
ω = 0, 1, . . . in the momentum operator p,

C =
ω
∑

k=0

γk(x)
dk

dxk
, γk(x) = γRk (x) + i γIk(x) . (68)

The functions γRk (x) and γIk(x) are both assumed real, and our main task
here is just to guarantee, at any integer ω, that the operator candidate for
the metric CP is Hermitian.
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5.1 The metric CP in differential form

From

C† =
ω
∑

k=0

(−1)k
k
∑

ℓ=0

(

k
ℓ

)[

d(k−ℓ)

dx(k−ℓ)
γ∗k(x)

]

dℓ

dxℓ
= (69)

=
ω
∑

ℓ=0

(−1)ℓ
{

ω−ℓ
∑

m=0

(−1)m
(

ℓ+m
ℓ

)

[

γ
R(m)
ℓ+m (x)− i γ

I(m)
ℓ+m (x)

]

}

dℓ

dxℓ
,

where the superscripts (m) at the functions γR and γI indicate theirm−tuple
differentiation, one obtains that the Hermiticity condition CP = PC† is equiv-
alent to the (ω + 1)−plet of relations

P γℓP = γRℓ (−x)+i γ
I
ℓ (−x) =

ω−ℓ
∑

m=0

(−1)m
(

ℓ+m
ℓ

)

[

γ
R(m)
ℓ+m (x)− i γ

I(m)
ℓ+m (x)

]

with a trivial decoupling into its real and imaginary parts

γRℓ (−x)− γRℓ (+x) =
ω−ℓ
∑

m=1

(−1)m
(

ℓ+m
ℓ

)

γ
R(m)
ℓ+m (x) (70)

and

γIℓ (−x) + γIℓ (+x) = −
ω−ℓ
∑

m=1

(−1)m
(

ℓ+m
ℓ

)

γ
I(m)
ℓ+m (x) , (71)

respectively, with ℓ = ω − k = 0, 1, . . . , ω.

5.2 Functional freedom in complex coefficients γk(x)

At the first few k = 0, 1, . . . the above Hermiticity constraints degenerate to
the comparatively elementary relations,

γRω (x)− γRω (−x) = 0, k = 0,

γRω−1(x)− γRω−1(−x) =

(

ω
1

)

γR(1)
ω (x) , k = 1,

γRω−2(x)− γRω−2(−x) =

(

ω − 1
1

)

γ
R(1)
ω−1 (x)−

(

ω
2

)

γR(2)
ω (x) , k = 2,

etc, or, in parallel,
γIω(x) + γIω(−x) = 0, k = 0,

γIω−1(x) + γIω−1(−x) =

(

ω
1

)

γI(1)ω (x) , k = 1,

γIω−2(x) + γIω−2(−x) =

(

ω − 1
1

)

γ
I(1)
ω−1(x)−

(

ω
2

)

γI(2)ω (x) , k = 2,
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etc. This means that the symmetric partsHℓ(x) = Hℓ(−x) of all γ
R
ℓ (x) are ar-

bitrary functions while, in parallel, the antisymmetric parts hℓ(x) = −hℓ(−x)
of all γIℓ (x) are also arbitrary. We may conjecture that the remaining compo-
nents Rℓ(x) = γRℓ (x)−Hℓ(x) = −Rℓ(−x) and rℓ(x) = γIℓ (x)−hℓ(x) = rℓ(−x)
obey the rules

Rω = 0, Rω−1(x) =
ω

2
H(1)

ω (x), Rω−2(x) =
ω − 1

2
H

(1)
ω−1(x), . . . (72)

while

rω = 0, rω−1(x) =
ω

2
h(1)ω (x), rω−2(x) =

ω − 1

2
h
(1)
ω−1(x), . . . . (73)

and are fully determined by the respective recurrent relations (70) and (71).

5.3 Proof

We see that both the sequences Rω−k(x) and rω−k(x) have precisely the same
structure so that just the sequence of Rω−k(x) may be considered without any
loss of generality. Its elements should be evaluated in the recurrent manner
with respect to the growing k. The appropriate Ansätze may be written in
the finite-series form where, formally, Hω+1(x) = Hω+2(x) = · · · = 0 and
hω+1(x) = hω+2(x) = · · · = 0,

γRω−k(x) = Hω−k(x) +
k
∑

m=1

cm
(ω − k +m)!

(ω − k)!
H

(m)
ω−k+m(x) , (74)

γIω−k(x) = hω−k(x) +
k
∑

m=1

cm
(ω − k +m)!

(ω − k)!
h
(m)
ω−k+m(x) . (75)

With an auxiliary c0 = 1 these Ansätze describe all the ω−dependence of
our functions γ = γR + iγI in closed form.

As already stated above, the first term and the subsequent sum are of an
opposite parity in both these formulae since c2n = 0 at all n = 1, 2, . . .. This
observation is easily proved since after the insertion of the latter two Ansätze,
the complicated recurrences (70) are replaced by their simplified version

2c1 =
c0
1!
, 2c2 =

c1
1!

−
c0
2!
, . . . ,

i .e.,

2ck =
k−1
∑

m=0

(−1)k−m−1 cm
(k −m)!

. (76)

It is worthwhile to point out that the ck coefficients with odd k can be written
in terms of Bernoulli numbers (see, e.g., Ref. [29])

c2n−1 =
2(22n − 1)

(2n)!
B2n (n > 0) . (77)
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The key idea of an explicit solution of these recurrences is that the generating
function f(x) =

∑

ckx
k of the coefficients cm must satisfy the functional

equation f(x) − 2 = −f(x)/ex which is, in its turn, easily solvable. In this
way we arrive at the solution of recurrences (76) in the following compact
form,

f(x) = c0 + c1x+ c2x
2 + . . . =

2

1 + exp(−x)
= 1 + tanh

x

2
= (78)

= 1 +
∞
∑

n=1

2(22n − 1)

(2n)!
B2nx

2n−1 .

Obviously, all the possible parity-violating terms in the right-hand side of
our Hermiticity conditions (70) vanish. This makes the form of our polyno-
mial charge C extremely flexible and confirms the consistency of its present
construction.

We may conclude that the requirement of Hermiticity of the metric CP
defines all the antisymmetric components Rℓ(x) and their spatially symmetric
partners rℓ(x). It does not impose any additional constraint either upon the
real and spatially symmetric coefficient functions Hℓ(x) or upon their purely
imaginary spatially antisymmetric partners hℓ(x).

6 Outlook

We now sketch some possible applications of our methods to a variety of
problems where quasi-Hermitian or pseudo-Hermitian operators are involved.

In the context of the Klein-Gordon description of the free motion of a
spinless particle in the “usual” Hilbert space H the relativistic evolution is
generated by the Feshbach-Villars [30] “Hamiltonian” H(FV ) which proves
non-Hermitian,

|ψ(t)〉 = e−iH(FV )(t−t0)|ψ(t0)〉, H(FV ) = −
1

2

(

1−△ −△
△ △− 1

)

(79)

(cf., e.g., p. 341 in ref. [31]). One should notice that this model works
with the differential pseudo-Hermitian operator with structure which strongly
resembles the usual Schrödinger operators in the simplest non-trivial, two-
dimensional coupled-channel case. Thus, we may expect that the methods
described in our previous study might find an immediate extension to the
similar problems.

The idea may also find applications in a broader context, say, of the boson
mappings in nuclear physics which were comprehensively discussed in the pa-
per [13]. It is shown there that a consistent quantum mechanical framework,
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and in particular a viable variational calculation for non-hermitian Hamilto-
nians, can indeed be constructed after the introduction of a non-trivial met-
ric. In the context of Holstein-Primakoff type mappings this freedom defines
the link with so-called Dyson-Maleev type mappings (see [32]). In practical
computations, a puzzling non-Hermiticity of observables proved more then
compensated by the advantages, as has been amply demonstrated in appli-
cations of generalized Dyson-Maleev mappings (see [33] and references cited
therein).

All the technical conditions imposed upon the “true physical metric” Θ
in review [13] are important, especially if one tries to work within a truly
infinite-dimensional Hilbert space. This has been emphasized by Kretschmer
and Szymanowski [14] who showed that the use of the toy metric operators
might require a careful scrutiny because these operators remain unbounded.
In this context, ref. [19] as well as our present paper demonstrated per-
suasively that a switch to the use of the differential operators C might be
understood as an important new idea.

All the similar observations must be perceived as individual steps of a
systematic improvement of the mathematically correct understanding of the
use of the differential operators in connections with many applications of
the quasi-Hermitian observables which seems to range, at present, from the
elementary descriptions of the localization transitions in solid state physics
[34] up to many ambitious PT −symmetric models in quantum field theory
[35].

The experience gained during our study of the simple Schrödinger equa-
tions might equally well find applications on the very boundary of quantum
mechanics (like, say, in cosmology [36]) or even in the domain of the classi-
cal model-building (e.g., in the magneto-dynamics of fluids [37]) and in the
various physical models of different origin characterized by the simple ma-
trix structure of their description (see a number of their most elementary
samples mentioned in the short and nice review [38]) where the eigenvalues
coalesce or almost coalesce in the manner which contradicts the standard
and robust finite-dimensional Hermitian-matrix mathematics. Of course, all
these mathematical problems and not entirely standard physical situations
may impose new and challenging tasks and motivate a deeper future analysis
of the questions outlined in our present paper.
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[15] E. Prugovečki, Quantum Mechanics in Hilbert Space, Academic Press,
New York, 1981.

[16] P. A. M. Dirac, Proc. Roy. Soc. London A 180 (1942) 1;

W. Pauli, Rev. Mod. Phys. 15 (1943) 175.

[17] M. Znojil, Rendiconti del Circ. Mat. di Palermo, Ser. II, Suppl. 72 (2004)
211 (arXiv: math-ph/0104012).

[18] Z. Ahmed, Phys. Lett. A 290 (2001) 19;

Z. Ahmed, Phys. Lett. A 294 (2002) 287;

B. Bagchi and C. Quesne, Phys. Lett. A 301 (2002) 173.

[19] E. Caliceti, F. Cannata, M. Znojil and A. Ventura, arXiv: math-
ph/0406031 (2004), Phys. Lett. A, to appear.

[20] G. S. Japaridze, J. Phys. A: Math. Gen. 35 (2002) 1709.

[21] A. A. Andrianov, M. V. Ioffe and V. P. Spiridonov, Phys. Lett. A 174
(1993) 273;

A. A. Andrianov, F. Cannata, J-P. Dedonder and M. V. Ioffe, Int. J.
Mod. Phys. A 10 (1995) 2683;

A. A. Andrianov and A. V. Sokolov, Nucl. Phys. B 660 (2003) 25.

24



[22] A. A. Andrianov and F. Cannata, J. Phys. A: Math. Gen. 37 (2004)
10297.

[23] Z. Ahmed, Phys. Lett. A 286 (2001) 231.

[24] K. C. Shin, Commun. Math. Phys. 229 (2002) 543;

K. C. Shin, Eigenvalues of PT-Symmetric Oscillators with Polynomial

Potentials (arXiv: math.SP/0407018).

[25] T. Kato, Perturbation Theory for linear Operators, 2nd edn (Springer,
Berlin, 1976).

[26] A. Mostafazadeh, (arXiv: quant-ph/0411137);

H. F. Jones, (arXiv: quant-ph/0411171).

[27] V. Buslaev and V. Grecchi, J. Phys. A: Math. Gen. 26 (1993) 5541.

[28] I. W. Herbst, Commun. Math. Phys. 64 (1979) 279.

[29] E. V. Haynsworth and K. Goldberg, in: Handbook of Mathematical Func-

tions, edited by M. Abramowitz and I. A. Stegun, Dover, New York
(1972), Ch. 23.

[30] H. Feshbach and F. Villars, Rev. Mod. Phys. 30 (1958) 24;

A. Mostafazadeh, Class. Quantum Grav. 20 (2003) 155;

M. Znojil, J. Phys. A: Math. Gen. 37 (2004) 10209;

M. Znojil, PT-symmetry, ghosts, supersymmetry and Klein-Gordon equa-
tion, (arXiv: hep-th/0408081, to appear in proceedings of SYMPHYS XI
(Prague, June 2004)).

[31] F. Constantinescu and E. Magyari, Problems in Quantum Mechanics,
Pergamon, Oxford, 1971, p. 337.

[32] J. Dobaczewski, Nucl. Phys. A 369 (1981) 213 and 217 and Nucl. Phys.
A 380 (1982) 1.

[33] H. B. Geyer, Czech. J. Phys. 54 (2004) 51.

[34] N. Hatano and D. R. Nelson, Phys. Rev. Lett. 77 (1996) 570.

[35] F. Kleefeld, in “Hadron Physics, Effective Theories of Low Energy
QCD”, AIP Conf. Proc. 660 (2003) 325;

K. A. Milton, Czech. J. Phys. 54 (2004) 85;

H. F. Jones, Czech. J. Phys. 54 (2004) 1107.

25



[36] A. Mostafazadeh, Czech. J. Phys. 54 (2004) 93.

[37] U. Günther, F. Stefani and G. Gerbeth, Czech. J. Phys. 54 (2004) 1075.

[38] M. V. Berry, Czech. J. Phys. 54 (2004) 1039.

26


