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Abstract

We study stochastically stable behaviour in 2 × 2 coordination games where the risk-

dominant equilibrium differs from the Pareto-efficient equilibrium. Individuals are ran-

domly matched to another individual in the population (with full support) and they choose

strategies by imitating the most successful individual they observe. So, while individuals

interact globally, their observation, as determined by their social network, may be local.

In the benchmark model, all individuals observe each other, and hence, an individual

imitates the strategy of the most successful individual in the entire population; here, the

stochastically stable outcome corresponds to the situation where everyone coordinates

on the Pareto-efficient equilibrium. While this outcome is always stochastically stable

even when observability is incomplete, the state where everyone plays the action of the

risk-dominant equilibrium may be stochastically stable as well. Reasonably tight suffi-

cient conditions for unique stochastic stability of the state where all individuals play the

Pareto-efficient equilibrium strategy include each individual observing at least four other

individuals or when each individual observes the same number of other individuals.
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1 Introduction

This paper studies the evolution of behaviour in coordination games when individuals choose

their strategy by imitation of the most successful individual they observe. The individual’s

scope of strategic interaction is global, in the sense that the co-player may be drawn from

the entire population. However, due to informational or other constraints, the individual is

only locally informed, i.e. he is aware of the experience of only a subset of individuals in the

population, namely his neighbours. Individuals imitate the most successful individual in their

respective neighbourhood and this may differ from imitating the most successful individual.

We investigate the effect of such a “local” imitation protocol when the interaction is in a

wider environment.

The set-up has three principal ingredients. Firstly, the strategic nature of the situation,

that is recurrent, is described by a 2 × 2 coordination game where the Pareto-efficient co-

ordination equilibrium differs from the risk-dominant coordination equilibrium. There is,

therefore, a divergence between the preferred equilibrium and the “safer” equilibrium. An

individual is randomly matched with another co-player from a finite population. Random

matching carries the import that there are circumstances where an individual does not have

prior knowledge of the person he will be interacting with. This situation ensues recurrently

and so, an individual has to choose a strategy each period.

Secondly, we assume that an individual does not have complete information about the

environment that he is a part of. He is able to observe, acquire and exchange information

(i.e. strategy choice and payoff received) from a subset of individuals in the entire population,

say his neighbours. This is modeled by placing individuals on a network, where the links of an

individual determine his social network and his set of neighbours. The links are assumed to

be undirected (i.e. the flow of information between two linked individuals is bidirectional) and

exogenously given.1 Even though individuals may not observe everyone in the population, it

is likely that any two individuals in the population are connected either directly or indirectly

via other individuals. So, we assume the network to be connected.

Thirdly, we assume that an individual, owing perhaps to reasons of complexity, informa-

tional constraints or some form of bounded rationality, imitates the most successful individual

(including himself) that he observes in the previous period. Apesteguia et al. (2007) find ex-

perimental support for imitative behaviour while Björnerstedt and Weibull (1996) provide

1The interpretation is that the links are given exogenously by history and social factors and is inherited
by an individual. Of course, there may be situations wherein the process of link formation or deletion may
merit as much attention as the choice of strategy. For example, Goyal and Vega-Redondo (2005) discuss the
case where not only do individuals play a coordination game, but are also able to establish unilateral costly
links with others; these links determine the set of people with whom the interaction occurs. However, here,
the interest is not how the information structure evolves via the network; rather, the network is treated as a
modeling device that determines information percolation.
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theoretical support for such behaviour in a game-theoretical context.2 In this model, imita-

tion may be interpreted as a means by which an individual tries to grope for the action that

might result in a better outcome; and since an individual by himself is not aware of the state

of the entire world, he also relies on the experience of his acquaintances.

We ask the following questions: what is the effect of incomplete observation induced local

imitation on the stochastically stable outcome when individuals interact globally? When are

societies able to coordinate on the Pareto-efficient equilibrium strategy? That is, what are

the informational network structures under which a society is able to converge to the state in

which all players coordinate on the Pareto-efficient equilibrium?

At this juncture, we present a couple of examples where the described model is relevant.

Consider a labour market where individuals gather for employment in each period. Employers

randomly choose individuals in pairs. Suppose there are two effort levels (high and low),

which are unobservable. Assume a joint-production technology, where the output depends

on the minimum effort in a pair (as in a minimum effort game). Effort being unobservable,

individuals are paid a variable wage in accordance with the realised output. The utility of an

agent is the effort adjusted wage, i.e. the wage received less the disutility of effort. Assume

that the wage differential (when both individuals in a pair put in high effort compared to when

neither of them do so) justifies the disutility of higher effort. The essence of this situation

can be captured by a symmetric coordination game where it is better for both individuals to

coordinate on a high effort; but, in case of mis-coordination, the payoff received by exerting

lower effort is strictly higher than the returns from higher effort. The following period, they

imitate the effort level that had resulted in the highest payoff amongst the individuals that

they are are connected with.

A second example involves the evolution of socio-cultural features such as punctuality,

which may be modeled as a coordination game (as in Basu andWeibull (2003)). Two randomly

selected individuals are supposed to meet at a pre-specified time. Coordinating on punctual

behaviour is better for both individuals as opposed to a situation when both of them are

impunctual. In case of mis-coordination of actions, the punctual individual incurs a cost

(for example, of waiting). Thus, both individuals arriving on time represents the Pareto-

efficient outcome while both individuals being tardy represents the risk-dominant outcome.

An individual selects a particular course of action and receives a payoff depending on his action

and that of his randomly selected partner. Individuals exchange their respective experiences

with their neighbours and thereafter, an individual selects the strategy that yielded the highest

payoff. In either case, our interest lies in the mode of behaviour that is expected to emerge

in the long-run. How does the information structure affect the custom that individuals settle

on?

2Imitation of successful behaviour also finds mention in social and biological literature such as Dawkins
(1976) and Ulmann-Margalit (1978) as a propellant of human intelligence.
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A natural benchmark for the model of imitation under incomplete observability presented

here, is imitation under complete observability, i.e. when individuals can observe everyone and

hence, imitate the strategy choice of the most successful individual in the entire population.

Robson and Vega-Redondo (1996) present a similar model, where in each period, every indi-

vidual interacts with v other randomly chosen individuals to play a coordination game. The

actions and payoffs of individuals are observable to all and the action that yields the highest

average payoff is imitated. Here, for tractability, we assume that an individual interacts with

only one individual per period, and that individuals imitate the individual with the highest

payoff. As the action of a more successful individual is more salient than a strategy that gives

the higher average payoff, it may be more plausible to assume that in certain situations, the

more successful individual is imitated.3

The full observability model is a particular instance of the model of incomplete observ-

ability. The latter generates the former when the network is complete, i.e. each individual is

linked to every other individual. In Proposition 1, we show that in either case, the defined

imitation rule leads to all individuals choosing the same strategy. So, the process converges

to either the Pareto-efficient equilibrium or the risk-dominant equilibrium. To obtain the

stochastically stable outcome, infinitesimally small perturbations are introduced in the imi-

tation dynamic. These perturbations may be interpreted as the propensity of individuals to

choose a strategy not necessarily prescribed by the specified imitation rule, owing perhaps

to tendencies to experiment or to make mistakes. This makes the transition from the state

where everyone uses the strategy of the Pareto-efficient equilibrium to the state where every-

one adopts the risk-dominant equilibrium strategy, and vice versa, possible. The equilibrium

that is more resistant to such perturbations is stochastically stable.

In the full observability model, the Pareto-efficient equilibrium is the stochastically stable

state (see Proposition 2) for the reason that the risk-dominant equilibrium is relatively more

susceptible to experimentation by individuals. To elaborate, suppose that the state is given

by all individuals playing the risk-dominant strategy. If two individuals experiment with the

strategy of the Pareto-efficient equilibrium, and are also matched to each other (a random

event with positive probability), they obtain the highest payoff. This is observed by everyone

and their strategy is imitated. The Pareto-efficient equilibrium is more resistant as, for pop-

ulations that contain at least six individuals, the transition to the risk-dominant equilibrium

requires at least three experimentations.

With limited observability (i.e. when the connected network is not complete), while the

Pareto-efficient equilibrium is always stochastically stable, it may not be uniquely so; the

3An observation consistent with this assumption involves people who desire to be actors or sportpersons.
In light of the very small percentage of people who find success, the average payoff for choosing such an action
might not be very high. It seems that the attractiveness of such professions is (at least partially) driven by
the salience of people who actually end up being successful.
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risk-dominant equilibrium may be stochastically stable as well. The reason for the stability of

the Pareto-efficient equilibrium is similar. If two individuals experiment to adopt the strategy

of the Pareto-efficient equilibrium when all else play the risk-dominant strategy, and if these

two individuals are also matched, they obtain the highest payoff. This is observed by their

neighbours, who then imitate this strategy. With positive probability, the strategy spreads to

the neighbours’ neighbours and finally, because of connectedness of the network, to the entire

population in finite time. The reverse transition takes at least two experimentations. (This

establishes the stochastic stability of the Pareto-efficient equilibrium and this is the content

of Proposition 3.) With an example, we show that the reverse transition may be possible with

two experimentations. This possibility arises precisely because of limited observability; the

risk-dominant equilibrium strategy may spread by imitation because it is the most successful

strategy that individuals observe. Hence, this example illustrates that limited observability

does make a difference.

A natural follow-up question concerns conditions under which the Pareto-efficient equilib-

rium is expected to uniquely prevail and, to this end, we identify two alternative (sufficient)

conditions. One is that each individual, independent of the size of the population or the

payoff structure of the game, needs to observe (i.e. be linked to) at least four other individ-

uals (Proposition 4). This can be interpreted as an absolute criterion; a minimum level of

observability that, independent of other factors, suffices to support the unique stability of the

Pareto-efficient equilibrium. Proposition 5 reveals a second condition that deals with regular

networks; the Pareto-efficient equilibrium is uniquely stable when the network is regular (i.e.

all individuals are linked to the same number of individuals). Further, we present examples

to show that the sufficient conditions mentioned above are not very slack.

Related papers which posit an imitation dynamic in a game-theoretic setting (as opposed

to imitation in a decision-theoretic framework as in Ellison and Fudenberg (1993, 1995) or

Banerjee and Fudenberg (2004)) include Robson and Vega-Redondo (1996) and Eshel et al.

(1998). The former assumes that an individual interacts with randomly chosen individuals

from the entire population and imitates the strategy that gives the highest average payoff in

the entire population. The latter focusses on local structures: not only does an individual

interact only with his neighbours, but imitates the strategy that yields the highest average

payoff in his neighbourhood. However, irrespective of the scope being global or local, the

interaction and information spheres coincide in these papers. Alós-Ferrer and Weidenholzer

(2008) make a distinction between these two by assuming that the information sphere is

larger than the interaction sphere: while individuals play the coordination game in their

neighbourhood, they hear of the behaviour of a larger set of individuals; individuals imitate

the most successful individual they know of and this may be an individual they never interact

with themselves (adoption of best-practises in an industry is given as an example). The
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motivation here is different: individuals might realistically not be able to observe everyone in

the population, but the person with whom they interact might be randomly chosen. Given

that they cannot observe everyone, they imitate the most successful individual they can

observe. This results in a situation where the interaction sphere is larger than the information

sphere.

The structure of the paper is as follows. Section 2 presents the model and preliminaries.

The results are contained in Section 3. Section 4 concludes. Some proofs are presented in the

appendix.

2 Model and Preliminaries

We consider a finite population comprising of M individuals and denote the set of all indi-

viduals by I. In each period, an individual chooses between strategies P and R, after which

he is randomly matched to another individual; there is a strictly positive probability of every

possible match and it is possible to incorporate the feature that, based on certain factors,

some matches are more probable than others. Throughout the paper, it is assumed that the

population is made up of an even number of individuals (to avoid the situation where someone

is left unmatched) and contains at least six individuals; so, M ≥ 6 and even.4 The paired

individuals interact in a 2 × 2 symmetric coordination game. The payoff that an individual

receives on choosing strategy si is denoted by ui(si) (suppressing the dependence of the payoff

on the co-player’s strategy) and it is in accordance with the matrix below.

P R

P a, a b, c

R c, b d, d

We assume that (1) a > c, d > b, (2) a > d and (3) a + b < c + d. Condition (1) says there

are two strict equilibria represented by the strategy pairs (P, P ) and (R,R); (2) says the first

equilibrium payoff dominates the other, while (3) says that the latter is risk dominant.

After an individual receives the appropriate payoff, he observes the experience (i.e. chosen

strategy and payoff received) of a set of other individuals, called his neighbours. The set of

neighbours of an individual i, denoted by N(i), is determined by the structure of links in

an exogenous network. Individual i is directly connected to all individuals in N(i). It is

assumed that i 6∈ N(i). However, since an individual always knows of his own experience,

his reference set is N(i) ∪ {i}. The links are undirected so that if individual i observes

individual j, then individual j also observes individual i. Thus, j ∈ N(i) implies i ∈ N(j).

Let N2(i) represent the individuals who are neighbours or neighbours of the neighbours of

4Under these conditions, with full observability, the state where everyone plays the strategy of Pareto-
efficient equilibrium is stochastically stable. See footnote 6 for more details.
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individual i, i.e. N2(i) = ∪j∈N(i)N(j) ∪ N(i) \ {i}. Further, Nk(i) is defined recursively:

Nk(i) = ∪j∈Nk−1(i)N(j)∪Nk−1(i)\{i} for k ≥ 2; it represents the set of other individuals who

are at most k links away from individual i. Since we assume the network to be connected, for

any individual i, there exists an integerK (for instance, K = M−1) such that NK(i) = I\{i}.

So, starting from an individual i, every other individual is at a distance of at most K links.

The network is said to be complete if, for all individuals i ∈ I, N(i) = I\{i}; we refer to this as

the situation of full observability. Otherwise, we are in the realm of incomplete observability.

The network, N , is defined by the direct links of the individuals: N = {N(i)}i∈I . The set of

all possible connected networks is denoted by N .

After realising his own payoff and observing the experience of his neighbours, individual i

chooses, in the succeeding period, the strategy of the most successful individual he observes.

Therefore, he chooses s∗i = argmax uj(sj), where j ∈ N(i) ∪ {i}.5 When the network is

complete, s∗i = s∗j for any two individuals i and j, i.e. everyone imitates the same strategy.

On the other hand, when the network is not complete, then the strategy s∗i may not coincide

with the strategy of the most successful individual in the population. It is also possible that

s∗i and s∗j are different. Hence different individuals may revise to different strategies under

limited observability.

The elements above describe the evolution of behaviour in the society. Individuals receive

payoffs depending on their strategy and the choice of strategy of the randomly matched

partner. For the following period, they revise their strategy simultaneously and choose the

strategy of the most successful individual they know of. This situation continues recurrently

under the specified dynamics of “local” imitation.

For a given network and specification of the random matching process, the state of the

process at any given point in time is described by the strategy choice of each individual and

the state space can be represented by Ω = {P,R}M . It is then possible to define, for a

given network and specification of the random matching process, a Markov process Q over

the state space that indicate the probabilities of transition between states. Let ~P (~R) denote

the state where all individuals play strategy P (R). In addition, we define a statistic that can

be derived from the state of the process: ω, the number of individuals using strategy P . For

example, when the state is ~P , then ω = M – everyone uses the strategy of the Pareto-efficient

equilibrium. The initial state of the process, and thus the initial description of the derived

statistic ω, is given arbitrarily.

An absorbing state of the process is defined as a state in which the system remains locked

in and there is no possibility of transiting to a different state. Therefore, if the process hits

an absorbing state, then the number of individuals who use strategy P (R) does not change.

A first observation is that for any network N ∈ N , the only absorbing states of the process

5Note that because the payoffs are distinct, for individual i, s∗i is unique.
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of local imitation are the states ~P and ~R, where all individuals choose the same action. That

these two states are absorbing is obvious: if everyone uses the same strategy, then there is

no other strategy to imitate and hence the process is locked in thereafter. Further, any other

state is non-absorbing; from any other state, the process eventually ends up in either ~P or ~R.

This is the content of the proposition below, the proof of which is in the appendix.

Proposition 1. For any connected network N ∈ N , the absorbing states of the unperturbed

process of local imitation are ~P and ~R.

This proposition is immediate for a complete network i.e. under full observability. Everyone

imitates the action of the most successful individual, and since payoffs are distinct, all indi-

viduals revise to the same strategy, thereby leading the process to one of the absorbing states,

~P or ~R. However, when the network is not complete (i.e. under incomplete observability),

it is possible that the random matching unfolds in a way such that s∗i = P for individual i

whereas s∗j = R for another individual j. Individuals i and j would then imitate different

strategies and the transition to the absorbing states would not be immediate; we show this

with the help of the following example.

Example. In Figure 1 below, the solid lines in the network of ten individuals indicate the

links. In the initial state, the individuals numbered one to five use strategy P , while the

individuals numbered six to ten choose strategy, R. The dotted lines indicate a particular re-

alisation of the random matching in a period. The triplet alongside each individual indicates,

from left to right, his current strategy, payoff and strategy he will imitate next period. For ex-

ample, individual 5 plays strategy P and receives a payoff of b; in the next period he continues

to play strategy P . With the indicated matching, it is easily verified that all individuals hold

1

2

3 4 5 6 7 8

9

10

❅❅

��

��

❅❅

(P ; a;P )

(P ; a;P )

(P ; a;P )

(P ; a;P )

(P ; b;P )

(R; c;R)

(R; d;R)

(R; d;R)

(R; d;R)

(R; d;R)

················

·········· ·········· ··········

················

Figure 1: An example.

on to their current strategy. The first four (last four) individuals only observe individuals

with strategy P (R), and hence do not change their strategy. Individual 5 receives a payoff of

b with strategy P and in addition, he observes individual 4 and individual 6 receiving a payoff

of a and c with strategies P and R respectively; for him strategy P is the more successful

strategy (even though he himself does not fare well with that strategy) and he imitates it in

the next period. For similar reasons, individual 6 chooses strategy R in the next period. �

Thus, in this case, unlike in the full observability model, after a period of strategy revision, the

population may consist of both strategy P and strategy R players. However, the transition to
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~P or ~R happens eventually. Crucial to the argument is that if the state is other than ~P or ~R,

then because of connectedness of the network there exists at least one individual who observes

at least one individual who uses strategy P and at least one individual who uses strategy R.

Using this, (we show in the proof in the appendix) it is possible to construct a path in which

either the number of individuals who use strategy P or the number of individuals who use

strategy R increase until all individuals in the population use the same strategy.

The process of pure imitation is now perturbed with the possibility of making mistakes

or experimenting; with an independent and time invariant probability ε, an individual plays

a strategy randomly. Let Qε denote this perturbed Markov process. This process does not

have any absorbing states due to the randomness in strategy choice of each individual and

it is possible to transit from the previously described absorbing states of the unperturbed

process Q. Standard results on Markov process indicate that the perturbed process Qε has a

unique invariant distribution µ(ε), i.e. µ(ε)Qε = µ(ε). To determine the long-run outcome,

we use the notion of stochastic stability (see Young (1993, 1998) and Kandori et al. (1993)),

which selects the states that receive a positive weight in the limiting invariant distribution,

µ∗ = limε↓0 µ(ε). The absorbing state of the unperturbed process that is most resistant in the

face of these experimentations is stochastically stable and is expected to be observed more

frequently in the long-run, as individuals’ probability of making random choices vanishes to

zero.

3 Results

By Proposition 1, the process reaches one of the absorbing states of the unperturbed process

in finite time. Let ρ(~P → ~R) and ρ(~R → ~P ) denote the resistance or minimum number of

experimentations required to move from the state ~P to the state ~R and vice-versa respectively.

The state ~P is stochastically stable if ρ(~P → ~R) ≥ ρ(~R → ~P ); further, it is uniquely so if the

inequality is strict. Similarly, the state ~R is stochastically stable if ρ(~P → ~R) ≤ ρ(~R → ~P )

and uniquely so if the inequality is strict.

First, consider the benchmark model of full observability where the network is complete.

We argue (as in Robson and Vega-Redondo (1996)) that ~P is the unique stochastically stable

state. The resistance of the transition from ~R to ~P is equal to 2, i.e. ρ(~R → ~P ) = 2. Suppose

that the initial state is ~R. Experimentation to strategy P by one individual only results in

a reversion to the initial state; however, if two individuals experiment with strategy P , and

they are matched together (a positive probability event), then they realise the highest possible

payoff of a. This is observed by everyone and imitation leads to the state ~P . The transition

from state ~R to ~P , on the other hand, requires strictly more than two experimentations. To

see this, note that when any two individuals experiment with strategy R when the state is ~P ,

since there are at least six individuals (M ≥ 6), there are still at least two individuals that

9



collect a payoff of a by using strategy P . So, strategy P is imitated by all individuals and

the state reverts to ~P .6 This is summarised in the following proposition.

Proposition 2. For a complete network, which means full observability, the state where

everyone plays the Pareto-efficient equilibrium strategy is the unique stochastically stable state.

Now, suppose the connected network is not complete, implying that there is at least one

individual who does not observe everyone else. Is the state ~P still stochastically stable? The

following proposition (the proof is in the appendix) reveals that it indeed is.

Proposition 3. For any connected network N ∈ N , the state ~P where everyone uses the

Pareto-efficient equilibrium strategy P is a stochastically stable state.

Now, because of limited observability, the arguments made earlier to establish Proposition 2

do not apply directly. To illustrate, suppose that starting from the initial state ~R, two

individuals experiment with strategy P . With positive probability, they are matched to each

other and they receive the highest payoff possible; but due to limited observability, this may

not be observed by all and so, all individuals may not imitate the use of strategy P in the

next period. However, the transition from ~R to ~P occurs with positive probability following

experimentation by two individuals. Connectedness of the network makes this contagion

possible and so, ρ(~R → ~P ) = 2. It can also be shown that the transition in the other

direction, i.e. from ~P to ~R needs at least two such experimentations; so, ρ(~P → ~R) ≥ 2. Since

ρ(~P → ~R) ≥ ρ(~R → ~P ), the result follows.

The proposition only indicates that the state where everyone plays the Pareto-efficient

strategy is stochastically stable; it does not imply that it is the unique stochastically stable

state. In fact, the state ~R may be stochastically stable as well. This possibility arises, and

is demonstrated in the example below, when the transition from ~P to ~R is effected with two

experimentations.

Example. Figure 2 presents a network, for which, we show a sequence of random matching

of individuals such that the transition from ~P to ~R is affected by initial experimentations.

The solid lines indicate the links in the network of ten individuals. The initial state in

Period 0 is ~P , as indicated by the strategy choice of each individual in the diagram. Now,

suppose that in Period 1, individual 2 and individual 3 experiment with strategy R. The

realisation of the random match is depicted with dotted lines: for example, individual 1 is

matched to individual 2. The triplet alongside each individual indicates, from left to right,

6If M = 2, the transition from ~P to ~R is possible with one experimentation; further, the transition in the
reverse direction take two experimentations. Thus, for M = 2, the state ~R is uniquely stochastically stable.
If M = 4, then a minimum of two experimentations are required to induce the transition from ~P to ~R and
from ~R to ~P ; so, both ~P and ~R are stochastically stable states. We assume M ≥ 6 as it is a more reasonable
population size; also, it results in the ~P being the unique stochastically stable state under full observability
and makes for meaningful comparisons with the outcomes of incomplete observability.
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Figure 2: Example to illustrate the stochastic stability of state ~R.

the current strategy, the payoff received and the strategy to be chosen by imitation in the

next period. As a result of the realised matching of individuals, for the first three individuals

(i = 1, 2, 3), R is the more successful strategy in the respective neighborhoods, while each of

the remaining seven individuals (i = 4, ..., 10) observes at least one individual who receives

the highest possible payoff of a by application of strategy P . Therefore, at the beginning of

Period 2, the first three individuals imitate strategy R; all others use strategy P . The next

diagram in Figure 2 shows a possible realisation of the matching process in Period 2. It can

now be verified that, after revision, the first four individuals adopt strategy R. The diagrams

for the succeeding periods show the spread of strategy R to the entire population by the local

imitation dynamic.
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This shows that the state where everyone plays the risk-dominant strategy is also stochas-

tically stable. Hence, limited observability does make an actual difference in the long-run

behaviour.7 �

Having established that both absorbing states of the unperturbed process of local imitation

may be stochastically stable, we try to examine conditions under which the Pareto-efficient

outcome will uniquely prevail in the long-run. The stability of the risk-dominant outcome is

clearly driven by the fact that an individual is only partially informed. In the example above,

individual 1 only observes individual 2 and this feature may be exploited along the least

resistant path of transition from ~P to ~R; had individual 1 been able to observe sufficiently

many other individuals, he would have been more resistant to this invasion by strategy R.

This observation, in conjunction with Proposition 3, suggests the next proposition.

Proposition 4. The state where individuals play the strategy of the Pareto-efficient equilib-

rium is uniquely stochastically stable in all connected networks where each individual observes

at least four other individuals.

Proof. By Proposition 3, the state where everyone chooses strategy P is always stochas-

tically stable. Therefore, if we can show that the transition from ~P to ~R takes more than

two experimentations when each individual observes at least four other individuals, we can

conclude that the state where everyone chooses strategy R is not stochastically stable and

this leads to the statement of the proposition.

Let the initial state be ~P , i.e. everyone uses strategy P . Suppose that two individuals

i and j experiment with strategy R. Irrespective of the realisation of the random matching

process, each individual observes at least one individual with strategy P receiving the highest

payoff a. To see this, note that there are two types of matches that may be formed after i

and j experiment with strategy R:

(a) i and j are matched to each other and so, receive d. All other individuals play strategy

P and receive a; so, none of them switch to strategy R. On the other hand, i and j both

observe at least one individual receiving the highest payoff a with strategy P and so, they

switch to strategy P . The state reverts to ~P .

(b) i and j are matched to two individuals k and l respectively, who use strategy P .

Consequently, i and j receive c; k and l receive b. However, since each individual is linked to

at least four other individuals, each of them observes at least one individual who receives the

highest payoff a with strategy P (since M ≥ 6, such an individual exists). So, they choose

7This contrasts the results derived in Alós-Ferrer and Weidenholzer (2008), where individuals interact with
their neighbours but observe and receive information from a wider set of individuals. Individuals choose
strategies by imitating the most successful individual they observe. They show that for an appropriately large
population, the state where everyone plays P is uniquely stochastically stable. This example may be extended
to show that for a population of any size, the state where everyone plays R may also be stochastically stable.
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strategy P in the next period. The other individuals in the population continue to choose P

as they themselves receive a payoff of a with that strategy. Again, the state reverts to ~P .

Thus, the transition from ~P to ~R requires strictly more than two experimentations. �

The proposition reveals the need for a minimum amount of connectivity and observability

in the network to foist the Pareto-efficient state as the unique stochastically stable state.

Further, the condition in the proposition can be interpreted as an absolute condition as

it is independent of factors such as population size or the payoff structure. Even though

the proposition only captures a sufficient condition, and as such does not provide a full

characterization, we now show with an example, that the condition is not very loose.

Example. In Figure 3, we present a network which marginally deviates from the sufficient

condition in Proposition 4 and we demonstrate that the transition from ~P to ~R is affected

after two initial experimentations, leading to the conclusion that the state ~R is stochastically

stable as well. The solid lines in the network indicate the links; only four individuals (marked

by the numerals 1, 2, 3, 12) have three links while all other individuals have four neighbours.8

The initial state (Period 0) is ~P . In Period 1, suppose individuals 1 and 3 experiment

with strategy R. The realisation of matches is indicated by dotted lines. The triplet next to

each individual indicates, from left to right, the current strategy of the individual, the payoff

received by the individual as a result of the indicated matching and the strategy that the

individual will revise to by local imitation. The diagrams show the transition to ~R.

Thus, we see that in face of this small deviation, the transition from ~P to ~R is possible

with two experimentations and so, the state ~R is also stochastically stable in this network,

enabling the conclusion that the sufficient condition in Proposition 4 is not very loose. �

Thus far, no structure is imposed a priori on the shape of the network that governs the

flow of information. Now, we turn attention to regular networks. A network is said to be

regular when each individual in the population has the same number of links. In terms of

our notation, for all individuals i ∈ I, |N(i)| = k for some positive integer k ≤ M − 1; each

individual in the network has k links, where k is the degree of the network.

Proposition 5. For all regular connected networks N ∈ N , the state where all individuals

play the strategy of the Pareto-efficient equilibrium is uniquely stochastically stable.

Proof. To prove the claim made here, it suffices to restrict attention to regular networks

of degree two and three. The reason for this is that, firstly, for a population size greater

than two, there exists no regular connected network with degree one. Secondly, for regular

8It is possible to replicate this network to add more individuals such that only four individuals (the first
three individuals and the last individual) have three links while others have four links; thus, the fraction of
people who have three links goes to zero as the population size increases, and in this sense, this represents a
“small” deviation from the condition in Proposition 4.
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Figure 3: Example to show the sufficient condition in Proposition 4 is reasonably tight.
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networks of degree higher than three, the statement in the proposition may simply be derived

from Proposition 4. A short proof is presented here; the appendix contains a more detailed

proof.

It will be shown that if two individuals choose R by the way of experimentation, then the

number of individuals who play R in the next period (after revision via local imitation) never

exceeds two and, hence, cannot spread to the entire population. It can then be concluded

that the transition from ~P to ~R requires strictly more than two experimentations, thereby

establishing ~P to be the unique stochastically stable state.

Suppose that from the initial state ~P , two individuals i and j experiment to strategy

R. First, also suppose that i and j are matched with each other. Then, they receive a

payoff of d while all other individuals receive a payoff of a. The resulting payoff profile can be

represented by a vector of the form (d, d, a, ..., a). Clearly, under the process of local imitation,

the individuals who receive a continue to employ strategy P . Further, individuals i and j

observe two (three) other strategies and payoffs when the regular network has a degree of two

(three). Under the assumption of a connected network with at least six individuals, both of

them observe strategy P as the more successful strategy and, hence, imitate it. The state

reverts to ~P .

Now, suppose that i and j are not matched with each other; individual i (j) is matched

with k (l). Consequently, individuals i and j receive c; individuals k and l receive b while

all others receive a. The resulting payoff profile can be represented by a vector of the form

(b, b, c, c, a, ..., a). The individuals who receive a continue to choose strategy P ; the only

individuals who might consider imitating strategy R are i, j, k and l. Further, an individual

would choose strategy R by imitation only if he does not observe any individual receiving a.

So, for an individual to choose strategy R, it must be that he only observes individuals who

did not receive payoff a, i.e. for an individual to choose strategy R, it must be that he only

observes individuals from the set {i, j, k, l}. We show in the appendix that if more than two

individuals only observe individuals from the set, then it violates the condition that we have

a connected network of at least six individuals. Hence, no more than two individuals choose

strategy R; the number of individuals who use this strategy cannot increase. �

Again, we comment on the slackness of the sufficient condition above. The example associated

with Figure 2, (which was used to demonstrate the stochastic stability of the risk-dominant

equilibrium) represents the “smallest” possible deviation from a regular network of degree

two for the reason that if one keeps on increasing the number of individuals in the network,

then only two individuals continue to share only one link9 ; thus, the fraction of individuals

9Further, it is not possible to have a connected network where all but one individual has degree two, which
is why the network in Figure 2 represents the smallest possible deviation from a regular connected network of
degree two.
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who do not have exactly two links goes to zero. Yet, in that network, the state where all

individuals play strategy R is stochastically stable. This may permit the conclusion that the

sufficient condition is reasonably tight.

4 Conclusion

This paper develops a model where individuals belonging to a finite population are engaged

recurrently in a strategic environment described by a coordination game where the Pareto-

efficient equilibrium differs from the risk-dominant equilibrium. The partner in the coordina-

tion game is chosen randomly with full support. The payoffs of the individuals depend on the

strategy chosen by him and his randomly drawn partner. In addition to his own experience,

an individual is, through his (social) links, aware of the experience of his neighbours. An

individual is assumed to imitate the strategy of the most successful experience he is aware of.

When all individuals are directly linked (the full observability case), the state where everyone

chooses the Pareto-efficient equilibrium action is uniquely stochastically stable. However, this

result does not fully carry over when individuals only observe a sub-population. The state

where everyone plays the Pareto-efficient equilibrium strategy is always stochastically stable

but not uniquely so. For uniqueness of this state in the long run, each individual in the

network, independent of the population size or payoffs, has to be endowed with a minimum

of four links. The Pareto-efficient state is also uniquely stochastically stable for all regular

networks.

The sufficient conditions emphasise the importance of connectedness of individuals in a

network-structured society. If all individuals are connected to sufficiently large number of

individuals, then one would expect the Pareto-efficient outcome to prevail. However, even

the mere presence of a small number of loosely connected individuals makes the population

vulnerable to being entrenched in a less desirable outcome (i.e. the risk-dominant equilib-

rium). This hints at the benefit that actions such as community building efforts and other

platforms for interaction amongst individuals confer upon the entire population. Encouraging

each individual to develop and share links and therefore information results in the population

being more immune to invasion of less desirable practises. It is also important to note that

the channel via which sufficient amount of observability supports the preferred equilibrium is

not peer pressure or monitoring; the purely informational role of observability is enough to

nudge the population to the better outcome.
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5 Appendix

Proof of Proposition 1.

We show that from any initial state other than ~P or ~R, there is a positive probability of

reaching the states ~P or ~R. The proof, in three parts, deals with three mutually exclusive

situations, where the initial states are such that (i) 0 < ω ≤ M
2 , (ii)

M
2 < ω < M and even

and (iii) M
2 < ω < M and odd, and shows the convergence to either ~P or ~R. Before beginning

with the proof, we remark on an implication of the network being connected: when the state

is such that 0 < ω < M , there is at least one strategy P individual who is linked to (and so

observes) a strategy R individual, and vice-versa (by undirectedness of the links).

Part I. When the initial state is such that 0 < ω ≤ M
2 , at most half (at least half) of

the population plays strategy P (R). In the following period, with positive probability, every

strategy P individual is matched to a strategy R individual while the remaining strategy

R individuals (if any) are matched amongst each other. All strategy P individuals receive a

payoff of b while strategy R individuals receive c or d; in either case, all strategy R individuals

receive higher payoffs than strategy P individuals. By the observation made in the beginning

of the proof, there exists at least one strategy P individual linked to a strategy R individual.

For that individual, R represents the more successful strategy and he switches. On the other

hand none of the strategy R individuals are induced to change their strategy. Hence, the

count of individuals using strategy R increases by at least one.

Again, in the next period, with positive probability, a similar matching may be realised

whereby every strategy P individual is matched to a strategy R individual and the remaining

strategy R individuals are matched amongst themselves. This continues till the population

contains only strategy R individuals. This proves the proposition for all initial states where

0 < ω ≤ M
2 .

Part II. Now, the initial states are such that M
2 < ω < M and ω is even. With positive

probability, all strategy P individuals are matched with another strategy P individual. These

individuals get the highest payoff of a and so continue to use strategy P . This implies that

all strategy R individuals are matched with another strategy R individual and they receive

a payoff of d. Again, there exists at least one strategy R individual who observes a strategy

P individual receiving a. If the number of such strategy R individuals is even, then the new

state is similar in type to the initial state, i.e. M
2 < ω < M and ω is even, but the number of

strategy P individuals is higher; then, we iterate the argument above till the state reaches ~P

or the number of strategy R individuals who imitate strategy P is odd. The latter possibility

makes the state such that ω is odd; this case is discussed next.

Part III. Finally, suppose that the initial state is such that M
2 < ω < M and ω is odd; so,

the number of strategy P players is odd. Since the number of individuals in the population

is even, this implies that the number of strategy R individuals is also odd. Let the set of
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strategy P individuals who are linked to at least one strategy R individual be denoted by B.

Let the set of strategy P individuals outside of set B be denoted by C; an individual in set

C is a strategy P individual who is linked only to other strategy P individuals.

First assume that set C is non-null. With positive probability the following matching

process is realised: an individual in set B is matched to another individual in set B; if this

leaves an individual in set B unmatched (this would happen when the cardinality of this

set is odd, and this in particular, subsumes the case where cardinality of set B is one), he

is matched with an individual from set C (note the assumption of non-nullity of set C).

Further, the remaining individuals in set C are matched to each other – this might leave an

individual in set C unmatched (this would happen when the cardinality of B is odd and set

C is non-null), in which case, he is matched to a strategy R individual. This last mentioned

strategy P individual gets a payoff of b but is linked to at least another strategy P individual;

since all other strategy P individuals receive a payoff of a, he imitates strategy P . Thus,

following this realisation of random matching, all individuals in set B ∪C observe strategy P

as the more successful strategy and choose it in the succeeding period. Further, the strategy

R individuals linked to strategy P individuals imitate strategy P . Hence in the new state,

the number of strategy P individuals increase; this argument is iterated till the population is

solely comprised of strategy P individuals.

Now, suppose that set C is null i.e. each of the strategy P individuals (who are odd in

number) are linked to at least one strategy R individual and hence are contained entirely

in set B. First suppose that there is one individual (say, i) in set B, who apart from being

linked to a strategy R individual, is also linked to another strategy P individual (say, j).10 In

case of the event that there is more than one such individual, let the individual with the least

number of links to strategy R individuals be designated as individual i (in case of a tie, the

choice of individual i can be made randomly). Then, with positive probability, individual i is

matched to a strategy R individual whereas individuals in B \ {i} (the cardinality of which

is even) are matched amongst themselves. Following this, all individuals in set B continue

to employ strategy P as: (i) all individuals in that set except individual i receive the highest

payoff and (ii) individual i observes individual j doing so. On the other hand, the strategy R

individuals linked to individuals in B \{i} (by construction of set B and individual i, there is

at least one such strategy R individual) imitate strategy P . Again, the number of strategy P

individuals increase, and the arguments used thus far can be iterated till we reach the state

~P .

Finally suppose that in addition to set C being null, none of the individuals in set B are

connected amongst themselves. Then, since the initial state is described by ω > M
2 (i.e. since

10The situation where set C is null and there is no individual in set B who is linked to another individual
in set B is discussed in the next paragraph.
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strategy P individuals outnumber strategy R individuals and since no strategy P individual

is connected to another strategy P individual), there must exist at least one strategy R

individual, say k, who is connected to more than one strategy P individual. So, assume that

k is linked to at least two strategy P individuals, say u and v. With positive probability, all

individuals in set B \ {u} (the cardinality of which is even) are matched amongst themselves

and so, receive the highest payoff and continue to play strategy P . Individual u is then

matched with a strategy R individual and receives a payoff of b and observes other strategy

R individuals receiving either d or c, each of which is larger than b; consequently, he revises

to strategy R. At the same time, individual k switches from strategy R to P on observing

individual v’s success with strategy P . (If any strategy R individual is connected to an

individual in B \ {u}, he switches to P by imitation.) Thus, in the new state, in no case does

the number of strategy P individuals decrease; but now, in this new state, we are back to the

situation where at least one strategy P player (individual k) is linked to another strategy P

individual (individual v). So, we have a situation where ω > M
2 and an individual in set B is

connected to another individual in set B. Hence, we can use the argument in the preceding

paragraph to argue that, with positive probability, the number of strategy P individuals

increases, and the arguments used thus far can be iterated till we reach the state ~P .

Hence, we have demonstrated that whenever the state is such that ω > M
2 (ω ≤ M

2 ), with

positive probability the number of strategy P (R) individuals increases and, therefore, there

exists a path to the state ~P (~R). This establishes the proposition. �

Proof of Proposition 3.

The proof is in two steps. Part I shows that the ρ(~R → ~P ) = 2. Part II demonstrates that

ρ(~P → ~R) ≥ 2. This establishes the result as ρ(~R → ~P ) ≤ ρ(~P → ~R).

Part I. Let the initial state be ~R, i.e. everyone uses the risk-dominant equilibrium strategy

R. Suppose two individuals i and j – to simplify matters, assume that they are neighbours –

experiment with strategy P . With positive probability, they are also matched to each other

and they realise the highest payoff of a. This is observed by the neighbours of i and j.

Consequently, the individuals who use strategy P in the next period are N(i) ∪ N(j) (note

that individuals i and j are included in this set). Suppose that this does not make up the

entire population. Then there are two possibilities corresponding to the cardinality of the set

N(i)∪N(j) being odd or even. If it is odd, then with positive probability, individuals in the

set N(i) ∪ N(j) \ {i} (the cardinality of this set is even) find their match in the same set,

while individual i is matched with a strategy R individual. As individuals in N(i)∪N(j)\{i}

themselves realise the highest payoff, they continue to use strategy P while individual i does

so because he observes individual j. But now, in addition, the neighbours of individuals in

N(i) ∪N(j) also imitate this strategy. Hence, the set of individuals who now use strategy P

expands to N2(i) ∪N2(j).
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On the other hand, if the cardinality of the set N(i) ∪ N(j) is even, then with positive

probability, each individual in this set is matched to another individual from this set. They

receive the highest payoff and their strategy is imitated by their neighbours. Again, the

the set of individuals who now use strategy P expands to N2(i) ∪ N2(j). Now, the same

reasoning can be used to conclude that the set of individuals who use strategy P expands

to NK(i) ∪ NK(j) = I (where K is the farthest distance between two individuals in the

population): if for some k ≥ 2, the cardinality of Nk(i) ∪ Nk(j) is even, then with positive

probability, all individuals in that set are matched to another individual from the set; if the

cardinality is odd, then all individuals except individual i are matched to another individual

from the set. In any case, by local imitation, the strategy spreads to Nk+1(i)∪Nk+1(j) until

it encompasses the entire population. This shows ρ(~R → ~P ) ≤ 2, but it is trivial to see that

ρ(~R → ~P ) > 1; so, ρ(~R → ~P ) = 2.

Part II. Suppose that from initial state ~P , where everyone uses strategy P , individual i

experiments to strategy R. This individual is matched to a strategy P individual, j. Individ-

ual i (j) receives a payoff of c (b). By the assumption that the population consists of at least

six individuals and by connectedness of the network, it must be true that i or j (if not both)

observe a strategy P individual receiving a payoff of a, and so chooses strategy P in the next

period. Then, in the next period, at most one individual still chooses strategy R. Thus, it

is not possible for strategy R to grow in the population, leading to the conclusion that the

transition from ~P to ~R requires at least two experimentations. �

Proof of Proposition 5.

It will be argued that when two individuals experiment with strategy R when the initial state

is ~P , then the number of individuals who choose strategy R in the succeeding periods will

never exceed two; hence, the transition from ~P to ~R is not tenable with two experimentations.

This proves that ~P is the only stochastically stable state.

Assume that two individuals i and j experiment with strategy R. If they are matched

to each other, then they receive a payoff of d while everyone else receives a. Hence, the

only individuals who might consider playing strategy R in the succeeding period are i and

j. However, since they are linked to two or three other individuals (depending on the degree

of the network), they always observe another individual receiving a payoff of a and imitate

the action of choosing strategy P . It follows that if there is any chance for the population to

transit to ~R after the two individuals experiment with strategy R, then they must be matched

with a strategy P individual and not with themselves. Resultantly, the focus is on situation

where individuals i and j are matched to two strategy P individuals, k and l respectively.

Now, the only individuals who might consider imitating the use of strategy R are i, j, k, l as all

others end up receiving the highest payoff a (recall that we deal with populations containing

at least six individuals). It will be shown that in the next period, of these four individuals, no
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more than two individuals will consider using strategy R and hence the use of this strategy

cannot spread to the entire population. Part I shows this for regular networks of degree two

while Part II does the same for regular networks of degree three.

Part I. An individual belonging to the set D = {i, j, k, l} will choose strategy R by

imitation only if he observes strategy R as the most successful strategy in his neighbourhood.

This in turn happens only if he shares both his links with two other individuals from the

set D. Otherwise, he is linked to a strategy P individual who receives the payoff of a and

imitates strategy P . So, let us suppose that two individuals, without loss of generality, i and

j have both their neighbours in set D, thereby implying that both of them choose strategy

R in the next period. It will be seen that, given this, it is not possible for either k or l to

share both their links with individuals from the set D. Hence, both k and l observe at least

one individual outside the set D and they imitate strategy P , thereby making the spread of

strategy R impossible.

A connected regular network of degree two can only be a Hamiltonian cycle. Further,

in order for both individuals i and j to have two neighbours from set D, it must be that

they observe each other, while the other neighbour of individual i (j) is k (l). If the network

has at least six individuals, then it follows that individuals k and l must have a neighbour

who receives the highest payoff from the use of strategy P . So, individuals k and l imitate

strategy P , and in the next period, no more than two individuals use strategy R. The

following paragraphs demonstrate this in more detail.

First, assume that i and j do not observe each other, i.e. j 6∈ N(i) and i 6∈ N(j). Then it

must be that N(i) = N(j) = {k, l} (by the assumption that i and j observe two individuals

from the set {i, j, k, l}). But then this means that N(k) = N(l) = {i, j} – a contradiction to

the assumption that the regular network of degree two consists of at least six individuals and

is connected. (Note that it is not possible to include a fifth individual as i, j, k, l already have

exhausted both their links.)

So, let us assume that i and j do observe each other, i.e. j ∈ N(i) and i ∈ N(j). Then

there are two possible cases:

(i) i and j observe a common individual from the set D, say k. So, N(i) = {j, k},

N(j) = {i, k} and N(k) = {i, j} – a contradiction to the assumption that the regular network

of degree two consists of at least six individuals, and is connected. (Note that it is not possible

to include a fourth individual as i, j, k already have exhausted both their links.)

(ii) i and j observe different individuals from the set D, say k and l respectively. So,

N(i) = {j, k}, N(j) = {i, l}, i ∈ N(k) and j ∈ N(l). As mentioned earlier, in order for

individuals k and l to choose strategy R in the next period, it must be that they observe two

individuals from the set D. The only such possibility is when N(k) = {i, l} and N(l) = {j, k}

– but again, this contradicts the assumption that the regular network of degree two consists
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of at least six individuals.

This proves that the use of strategy R does not spread beyond two individuals in the

population in a regular network of degree two that contains at least six individuals and so,

the transition from ~P to ~R needs more than two experimentations.

Part II. Now, each individual observes three other individuals. For an individual in

D = {i, j, k, l} to choose strategy R by local imitation after the initial experimentation by i

and j, it has to be that he observes the other three individuals in this set. Again, assume that

two individuals, say i and j observe three individuals from the above set; in this event, it will

be seen that it is not possible for k and l to choose strategy R, thereby limiting the use of this

strategy to two individuals (at most). By assumption, N(i) = {j, k, l} and N(j) = {i, k, l};

so, {i, j} ⊂ N(k) and {i, j} ⊂ N(l). If k is to choose strategy R by imitation, then, it must

be (by undirectedness of links) that N(k) = {i, j, l} and therefore, N(l) = {i, j, k}. But

then this contradicts the assumption that the regular network of degree three has at least

six individuals, and is connected. Hence, it is not possible for more than two individuals to

choose strategy R by local imitation. This again proves that the transition from ~P to ~R needs

more than two experimentations. �
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