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Abstract. We consider the conductance distributions in chaotic mesoscopic cavities

for all three invariant classes of random matrices for arbitrary number of channels

N1, N2 in the connecting leads. We show that the Laplace transforms of the

distributions can be expressed in terms of determinants in the unitary case and

Pfaffians in the orthogonal and symplectic cases. The inverse Laplace transforms

then give the exact distributions. This formalism is particularly useful for small values

of N = min(N1, N2), and thus is of direct experimental relevance. We also obtain

the conductance distributions for orthogonal-unitary and symplectic-unitary crossover

ensembles.
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1. Introduction

The study of quantum transport properties in chaotic mesoscopic cavities has attracted

a great deal of attention in the last two decades [1]-[3]. The importance of theoretical

investigation in this direction has increased in recent years because of the availability

of sophisticated experimental techniques which can be used to test these theoretical

predictions [3, 4, 5, 6, 7, 8, 9]. Landauer-Büttiker formalism provides a powerful way

to investigate the quantum transport properties in these systems [10, 11, 12]. This

formalism is based on the scattering matrix approach and enables one to work out

important quantities such as conductance and shot-noise power from the knowledge of

the transmission eigenvalues. These transmission eigenvalues, in turn, are obtained from

the polar-decomposition of the scattering matrix [1, 2, 13, 14].

Quantum dots are examples of mesoscopic cavities where one can investigate the

electronic transport properties experimentally and compare them with the theoretical

results [3, 4, 5, 6]. Experiments on these systems now involve the study of conductance

and shot-noise moments as well as their full distributions. Apart from the quantum

dots, microwave cavities serve as important systems where the theoretical predictions

can be compared with experimental results. In microwave experiments one studies the

transmission of electric field through the cavity [7, 8, 9]. The same theory applies to

both the cases because of the equivalence of mathematical structures of the (time-

independent) Schrödinger and Helmholtz equations. Moreover, the experiments on

microwave cavities are free from the complicating effects of thermal fluctuations etc.

which lead to deviations from the standard fully coherent theory in quantum dots.

These chaotic mesoscopic cavities belong to the class of complex systems where

the particularity of the microscopic details are rendered irrelevant by the complexity

of the system and the macroscopic behaviour is decided solely by the associated global

symmetries. Random matrix theory (RMT) has been successfully applied to the study

of such complex systems. In the case of chaotic mesoscopic cavities the scattering

matrix is modelled using a unitary matrix belonging to the circular ensembles of random

matrices. The appropriate random matrix ensemble is decided by the time-reversal and

spin-rotational symmetry properties of the cavity [1, 2]. The classification of random

matrix ensembles follows from their invariance under orthogonal, unitary and symplectic

transformations and are accordingly referred to as orthogonal ensemble (OE), unitary

ensemble (UE) and symplectic ensemble (SE) [15]. OE and SE are applicable to time-

reversal invariant systems which are with and without rotational symmetry respectively.

UE, on the other hand, applies to systems where time-reversal is not a good symmetry.

These ensembles are also designated by the Dyson index β which assumes the values 1,

2 and 4 for OE, UE and SE respectively.

It has been shown that under the RMT treatment the statistics of transmission

eigenvalues is identical to that of a special case of Jacobi random matrix ensembles

[2, 16, 17, 18]. This identification leads to simplifications in calculating explicitly the

above mentioned physical quantities. Exact results are available for the averages and



3

variances of conductance and shot-noise power for arbitrary number of channels (or

modes) N1, N2 in the leads connected to the cavity [1, 2, 18, 19, 20, 21]. However,

significant progress in deriving the exact distributions of these quantities for arbitrary

N1, N2 has been made only recently. For the conductance distribution the explicit

expressions have been given for N1 = N2 = 1, 2 in orthogonal (β = 1) and unitary

(β = 2) cases [1, 2, 13, 14]. The solution for arbitrary N1, N2 for β = 2 was also

described in terms of Toda lattice and Painlevé equations [22]. The asymptotic case

of large N1 = N2 has been analysed in [22, 23]. Further progress in this direction

has been made by calculating higher cumulants of conductance and shot-noise power

[20, 21, 24, 25, 26]. Recently Khoruzhenko, Savin and Sommers have studied in detail

the conductance and shot-noise distributions for all β and arbitrary N1, N2 [27]. They

have obtained the results in terms of a Fourier series with terms involving Pfaffians.

However, explicit forms for the conductance distribution are given only for N = 1, 2

with arbitrary M , where N = min(N1, N2) and M = max(N1, N2).

It is known that the distribution takes the form of a Gaussian for large N values

[28]. For small N , however, significant departures from the Gaussian behaviour are

observed. This is important from the point of view of experimental studies on chaotic

cavities [4, 5, 6, 7, 8, 9]. It is therefore desirable to have explicit results for small N

values. Our primary aim in this paper is to provide explicit results for an important

range of small N values. Using results in [15], we show that the conductance distribution

can be given for all N1, N2 in terms of inverse Laplace transform of a determinant for UE

and Pfaffians in OE and SE cases. This formalism is particularly useful for finding the

explicit expressions of the distributions for all three β for values of N , say upto 6. We

also obtain the Laplace transform results for OE-UE and SE-UE crossover ensembles.

The paper is organized as follows. In section 2 we use Landauer formula and joint

probability density (JPD) of transmission eigenvalues to obtain the Laplace transform

of conductance distribution for all β and N1, N2 values. In section 3 we give explicit

results for a range of small N values by taking inverse Laplace transform of the results

in section 2. Section 4 deals with the conductance distribution in OE-UE and SE-UE

crossover ensembles. We conclude in section 5 with the summary of our results and

some general remarks.

2. Laplace Transform of Conductance Distribution

The JPD of transmission eigenvalues {Tj} is known from random matrix theory as

[1, 2, 17, 18]

P (β)(T1, ..., TN) = C
(β)
N |∆N(T1, ..., TN)|

β

N∏

j=1

T α
j , (1)

where 0 ≤ Tj ≤ 1, ∆N(T1, ..., TN) =
∏

j<k(Tj − Tk) is the Vandermonde determinant

and α = β(|N1−N2|+1)/2−1. The normalization C
(β)
N is found using Selberg’s integral
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[15] as

C
(β)
N =

N−1∏

j=0

Γ(1 + β
2
)Γ(2 + α + β

2
(N + j − 1))

Γ(1 + β
2
(1 + j))Γ(1 + α + β

2
j)Γ(1 + β

2
j)
. (2)

The dimensionless conductance at zero temperature is given in terms of the transmission

eigenvalues using the Landauer formula as [2, 10, 11]

g =
N∑

j=1

Tj. (3)

Thus the problem of finding the conductance distribution reduces to the mathematical

problem of performing the following integral:

F (β)(g) =

∫ 1

0

· · ·

∫ 1

0

δ
(
g −

N∑

j=1

Tj

)
P (β)(T1, ..., TN)dT1...dTN . (4)

One natural way to deal with the delta function in the integrand is to take the Laplace

transform of (4). We find

F̃ (β)(s) =

∫ 1

0

· · ·

∫ 1

0

C
(β)
N |∆N |

β
N∏

j=1

e−sTjT α
j dT1...dTN . (5)

Here F̃ (β)(s) = L{F (β)(g)} is the Laplace transform of F (β)(g). Such averages involving

|∆N |
β have already been considered in chapter 5 of [15]. We work along similar lines to

evaluate the above integral.

For β = 1 the main complication in solving (5) comes from the absolute value

sign of ∆N . We resolve this difficulty by using the method of integration over alternate

variables [15]. We find

F̃ (1)(s) = Γ(N + 1)C
(1)
N Pf[Ψ

(1)
j,k(s)]j,k=0,...,N−1, (6)

when N is even, and

F̃ (1)(s) = Γ(N + 1)C
(1)
N Pf

[
Ψ

(1)
j,k(s) Φ

(1)
j (s)

−Φ
(1)
k (s) 0

]

j,k=0,...,N−1

, (7)

when N is odd. Here Pf[A] is the Pfaffian of the even-dimensional antisymmetric matrix

A [15]. In (6) and (7) Ψ
(1)
j,k and Φ

(1)
j are given by

Ψ
(1)
j,k(s) =

∫ 1

0

∫ 1

0

sgn(x− y) e−sxe−syxα+jyα+k dx dy, (8)

Φ
(1)
j (s) =

∫ 1

0

e−sxxα+jdx. (9)

Note that Ψ
(1)
j,k(s) = −Ψ

(1)
k,j(s). We carry out the integration in (8) by considering the

ranges 0 ≤ y ≤ x and x ≤ y ≤ 1, thereby dealing with the sgn(x− y) factor.

The β = 2 case is comparatively easier to handle and the result is obtained in terms

of a determinant. We get

F̃ (2)(s) = Γ(N + 1)C
(2)
N Det[Ψ

(2)
j,k(s)]j,k=0,...,N−1, (10)



5

where Ψ
(2)
j,k(s) is given by

Ψ
(2)
j,k(s) =

∫ 1

0

e−sxxα+j+k dx. (11)

The Ψj,k in this case is symmetric between the indices j, k.

For β = 4 we again obtain the result in terms of a Pfaffian, viz.,

F̃ (4)(s) = Γ(N + 1)C
(4)
N Pf[Ψ

(4)
j,k(s)]j,k=0,...,2N−1. (12)

Here Ψ
(4)
j,k(s) is given by

Ψ
(4)
j,k(s) =

∫ 1

0

e−sxxα+j+k−1(k − j) dx. (13)

Ψj,k is again antisymmetric under the exchange of j, k as in β = 1 case.

The conductance distributions for the respective cases follow from the inverse

Laplace transforms of (6), (7), (10) and (12). Explicit results are possible because of the

specific forms of the integrals that appear in the evaluation of Ψ and Φ. As mentioned

earlier these results are well suited for finding the distribution of conductance for small

values of N (upto 6 or 7) and one can use symbolic manipulation software package like

Mathematica. The corresponding values of N1 and N2 cover almost all the combinations

of number of channels that are typically considered in experiments [4, 5, 6, 7].

We remark that one can find the moments of conductance from the expansion of

Laplace transform:

F̃ (s) =

∞∑

µ=0

(−1)µ

Γ(µ+ 1)
sµ 〈gµ〉 . (14)

Here 〈gµ〉 represents the µth moment of conductance, given by

〈gµ〉 =

∫ ∞

0

gµF (g) dg. (15)

Similarly the cumulants can be found using the expansion of log(F̃ (s)).

3. Exact Results for Conductance Distribution

For N = 1, 2 with arbitrary M , the exact results for all the three β cases are already

known [27]. We have for N = 1 and arbitrary M ,

F (β)(g) =
βM

2
gβM/2−1, (16)

for 0 ≤ g ≤ 1 and zero otherwise. For N = 2 and arbitrary M we have

F (β)(g) = MgβM−1
[Γ(β(M + 1)/2 + 1) Γ(βM/2)

Γ(β/2) Γ(βM)
− (−1)(βM−1)/2 Γ(β(M + 1)/2 + 1)

Γ(β) Γ(β(M − 1)/2)

×Θ(g − 1)

β∑

j=0

(
β

j

)
B1−g (j + β(M − 1)/2, 1− βM)

]
, (17)
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for 0 ≤ g ≤ 2 and zero otherwise. Here Θ(z) is the Heaviside step function and Bz(a, b)

is the incomplete beta-function. Further simplification can be made from (17) for β = 1

and one obtains

F (1)(g) =
1

2
M(M + 1)

[(g
2

)M−1

− (g − 1)(M−1)/2Θ(g − 1)
]
. (18)

For other β values one has to evaluate (17) for each M separately.

We give below explicit results for the conductance distribution for small N1, N2

values. Note that F (β)(g) = 0 for all g < 0 and g > N . We have considered N ≥ 2

and M ≤ 5 for β = 1, 2 and N ≥ 2 and M ≤ 4 for β = 4. It is possible to work out

explicit results for larger values of N also. However, the results become progressively

lengthier. We have also included N = 2 results below as the general result (17) gives

compact expressions for low values of M .

3.1. Results for OE (β = 1)

For β = 1, we obtain the following results:

• M = 2, N = 2

F (1)(g) =
3

2
[g − 2(g − 1)1/2Θ(g − 1)], 0 ≤ g ≤ 2 . (19)

• M = 3, N = 2

F (1)(g) =
3

2
[g2 − 4(g − 1)Θ(g − 1)], 0 ≤ g ≤ 2 , (20)

• M = 3, N = 3

F (1)(g) =





6

7
g7/2, 0 ≤ g ≤ 1,

3

28
[35g3 − 175g2 + 273g − 125

−8(g − 2)5/2(g + 5)Θ(g − 2)], 1 ≤ g ≤ 3.

(21)

• M = 4, N = 2

F (1)(g) =
5

4
[g3 − 8(g − 1)3/2Θ(g − 1)], 0 ≤ g ≤ 2, (22)

• M = 4, N = 3

F (1)(g) =
3

8
[g5 − (g − 1)3(g2 − 12g + 51)Θ(g − 1)

−(g − 2)3(g2 + 6g + 24)Θ(g − 2)], 0 ≤ g ≤ 3, (23)

• M = 4, N = 4

F (1)(g) =





5

27456
[429g7 − 512(g − 1)9/2

×(6g2 − 64g + 201)Θ(g − 1)], 0 ≤ g ≤ 2 ,

−
5

27456
[429g7 − 72072g5 + 672672g4

−2800512g3 + 6150144g2 − 6935552g

+3158016− 1024(g − 3)11/2(3g + 4)Θ(g − 3)], 2 ≤ g ≤ 4.

(24)
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• M = 5, N = 2

F (1)(g) =
15

16
[g4 − 16(g − 1)2Θ(g − 1)], 0 ≤ g ≤ 2, (25)

• M = 5, N = 3

F (1)(g) =






20

143
g13/2, 0 ≤ g ≤ 1 ,

5

2288
[3003g5 − 21021g4 + 55770g3

−70070g2 + 42315g − 9933

−32(g − 2)7/2(2g3 + 14g2 + 63g + 231)Θ(g − 2)], 1 ≤ g ≤ 3 .

(26)

• M = 5, N = 4

F (1)(g) =





5

384
[g9 − 12(g − 1)6(3g2 − 30g + 83)Θ(g − 1)

−2(g − 2)5(g4 − 8g3 + 168g2 − 608g

+2608)Θ(g − 2)], 0 ≤ g ≤ 3,

−
5

384
(g − 4)9, 3 ≤ g ≤ 4.

(27)

3.2. Results for UE (β = 2)

For β = 2 we get the conductance distributions as:

• M = 2, N = 2

F (2)(g) =

{
2g3, 0 ≤ g ≤ 1,

−2(g − 2)3, 1 ≤ g ≤ 2.
(28)

• M = 3, N = 2

F (2)(g) =






6

5
g5, 0 ≤ g ≤ 1,

−
6

5
(g − 2)3(g2 + 6g − 6), 1 ≤ g ≤ 2.

(29)

• M = 3, N = 3

F (2)(g) =





3

14
[g8 − 3(g − 1)4(g4 − 4g3 + 62g2

−228g + 309)Θ(g − 1)], 0 ≤ g ≤ 2,

3

14
(g − 3)8, 2 ≤ g ≤ 3.

(30)

• M = 4, N = 2

F (2)(g) =





4

7
g7, 0 ≤ g ≤ 1,

−
4

7
(g − 2)3(g4 + 6g3 + 24g2 − 60g + 30), 1 ≤ g ≤ 2.

(31)
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• M = 4, N = 3

F (2)(g) =





2

77
[g11 − 3(g − 1)6(g5 + 6g4 − 89g3 + 936g2

−3174g + 3860)Θ(g − 1)], 0 ≤ g ≤ 2,

2

77
(g − 3)8(g3 + 24g2 − 6g − 60), 2 ≤ g ≤ 3.

(32)

• M = 4, N = 4

F (2)(g) =





2

3003
[g15 − 4(g − 1)9(g6 − 6g5 + 330g4 − 4010g3

+25110g2 − 69516g + 73116)Θ(g − 1)

+2(g − 2)7(3g8 − 48g7 + 1596g6 − 16464g5

+89880g4 − 294336g3 + 970256g2 − 2196032g

+2758628)Θ(g − 2)], 0 ≤ g ≤ 3,

−
2

3003
(g − 4)15 3 ≤ g ≤ 4.

(33)

• M = 5, N = 2

F (2)(g) =
5

21
[g9 − 2(g − 1)4(g5 + 4g4 + 10g3

+20g2 − 280g + 560)Θ(g − 1)], 0 ≤ g ≤ 2. (34)

• M = 5, N = 3

F (2)(g) =





5

2002
[g14 − (g − 1)8(3g6 + 24g5 + 108g4

−3280g3 + 31930g2 − 104640g + 120900)Θ(g − 1)], 0 ≤ g ≤ 2,

5

2002
(g − 3)8(g6 + 24g5 + 324g4 − 400g3

−570g2 − 1920g + 3900), 2 ≤ g ≤ 3.

(35)

• M = 5, N = 4

F (2)(g) =





5

415701
[g19 − 2(g − 1)12(2g7 + 24g6 − 699g5

+19538g4 − 209310g3 + 1127760g2 − 2855515g

+2799990)Θ(g − 1) + 6(g − 2)9(g10 + 18g9 − 675g8

+15000g7 − 116910g6 + 342828g5 + 779824g4

−10900080g3 + 54224220g2 − 135038120g

+154989420)Θ(g − 2)], 0 ≤ g ≤ 3,

−
5

415701
(g − 4)15(g4 + 60g3 + 210g2

−940g + 180), 3 ≤ g ≤ 4.

(36)

3.3. Results for SE (β = 4)

For β = 4 our results are as follows:
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• M = 2, N = 2

F (4)(g) =






12

7
g7, 0 ≤ g ≤ 1,

−
12

7
(g − 2)5(g2 + 10g − 10), 1 ≤ g ≤ 2.

(37)

• M = 3, N = 2

F (4)(g) =






4

11
g11, 0 ≤ g ≤ 1,

−
4

11
(g − 2)5(g6 + 10g5 + 60g4 + 280g3

−1190g2 + 1260g − 420), 1 ≤ g ≤ 2.

(38)

• M = 3, N = 3

F (4)(g) =






15

2431
[g17 − (g − 1)8(3g9 + 24g8 − 844g7

+17496g6 − 167990g5 + 1013400g4

−3859020g3 + 8836968g2 − 10975377g

+5747952)Θ(g − 1)], 0 ≤ g ≤ 2,

15

2431
(g − 3)14(g3 + 42g2 − 7g − 112), 2 ≤ g ≤ 3.

(39)

• M = 4, N = 2

F (4)(g) =
8

143
[g15 − 2(g − 1)6(g9 + 6g8 + 21g7 + 56g6

+126g5 + 252g4 − 29568g3 + 155232g2

−288288g + 192192)Θ(g − 1)], 0 ≤ g ≤ 2. (40)

• M = 4, N = 3

F (4)(g) =
60

1062347
[g23 − 3(g − 1)12(g11 + 12g10 + 78g9

+364g8 − 73017g7 + 1534512g6 − 14807352g5

+83363952g4 − 287746326g3 + 597826824g2

−685194300g + 334840968)Θ(g − 1)

+3(g − 2)9(g14 + 18g13 + 180g12 + 1320g11

−140844g10 + 2208888g9 − 15548456g8

+62418048g7 − 143468556g6 + 209723976g5

−212061696g4 + 91459872g3 + 783610044g2

−2453722488g + 2560102776)Θ(g− 2)], 0 ≤ g ≤ 3. (41)

The plots of conductance distribution for these and other higher values of N1, N2

have been shown in figure 1. As mentioned above the conductance distribution for large

N can be approximated by the Gaussian distribution [28]

FG(g) =
1√

2πvar(g)
e−(g−〈g〉)2/2var(g). (42)
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Figure 1. Conductance distributions for β = 1, 2 and 4 for various M,N . The three

columns correspond to β = 1, 2, 4 whereas the the rows correspond to increasing N .

The numbers near the curves represent M values.

Here 〈g〉 and var(g) are the average conductance and the variance of conductance

respectively and are given by [1, 2, 18, 27]

〈g〉 =
N1N2

(NS − 1 + 2/β)
, (43)

var(g) =
2N1N2(N1 − 1 + 2/β)(N2 − 1 + 2/β)

β(NS − 2 + 2/β)(NS − 1 + 2/β)2(NS − 1 + 4/β)
, (44)
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where NS = N1 +N2. For large N1, N2 these get reduced to

〈g〉 =
N1N2

NS
, (45)

var(g) =
2N2

1N
2
2

βN4
S

. (46)

Comparison between the exact results and the above Gaussian approximation of (42)

has been shown in figure 2 for N ≥ 2 and M ≤ 4. The departure is shown in figure 3 as

the relative percentage difference 100(F (g)− FG(g))/F (g). It has been shown recently

that the Gaussian approximation holds in the range N/4 ≤ g ≤ 3N/4 for large N

[22, 23]. This Gaussian range is also observed in figure 3, even though the N values are

rather small. Outside this range the Gaussian approximation becomes poor. We also

find that the power law approximations [23] suggested outside this range do not work

well for these N values.
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Figure 2. Comparison between the exact results (solid lines, black) and Gaussian

approximations (broken lines, red) given by equation (42). The labels near the curves

represent the M,N values as A: M = 3, N = 2, B: M = 4, N = 2, C: M = 3, N = 3

and D: M = 4, N = 3.

4. Conductance Distribution for Crossover Ensembles

4.1. Crossover Ensembles

The OE-UE and SE-UE transitions are important for studying the effect of magnetic

field on the mesoscopic cavities [4, 5, 18, 30, 31]. Variation of the magnetic field

leads to crossover from the OE or SE (time-reversal invariant) to UE (time-reversal

noninvariant). This in turn gives rise to the phenomenon of weak-localization or weak-

antilocalization in crossover ensembles. We have recently worked out the statistics of

transmission eigenvalues for both OE-UE and SE-UE crossover ensembles for arbitrary

N1, N2 [18]. The crossover is governed by a symmetry breaking parameter τ . The

transitions from OE to UE and SE to UE take place as τ is varied from 0 to ∞.

The conductance problem in chaotic cavities has also been analysed using the

Hamiltonian formalism as a microscopic justification for the scattering matrix approach
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Figure 3. Relative percentage difference between exact distribution and Gaussian

approximation.

[2, 30]. To consider the crossover regime under this approach, one assumes the

Hamiltonian to belong to the Gaussian crossover ensemble of random matrices [31].

For instance, for the OE-UE crossover the Hamiltonian is taken as [30, 31, 35]

Hη = H0(v
2) + iηA(v2). (47)

Here H0 belongs to GOE and has v2 as the variance for non-diagonal elements. A

is an antisymmetric matrix whose independent matrix elements are Gaussians with

variance v2. η serves as the transition parameter with η = 0 corresponding to GOE

and η = 1 corresponding to GUE. Using various theoretical arguments, supported by

numerical evidences, it has been shown that the parameter η is proportional to the

magnetic flux through the cavity [29, 30]. The connection of the parameter τ with

the magnetic flux has been established via the parameter η by relating the scattering

matrix to the Hamiltonian [2, 31]. It turns out that, for the range of magnetic field

strength for which theory holds good, the parameter τ is proportional to the square
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of magnetic flux through the system. A comparison of random matrix results [18, 31]

for averages of conductance and shot-noise power with the corresponding semiclassical

results [32, 33, 34] also leads to the same conclusion.

In [18] we have obtained the averages and variances of conductance and shot-noise

power for the crossover ensembles. We show here that the Laplace transform method

can be used to derive the conductance distributions in the crossover ensembles also.

The JPD of transmission eigenvalues for the crossover is given by [18]

P (T1, ...TN ; τ) = eE0τCN∆N(T1, ..., TN)Pf[Fj,k]

N∏

l=1

T γ
l , (48)

where CN = C
(1)
N for OE-UE crossover and C

(4)
N for SE-UE crossover. E0 is given by

E0 =
N−1∑

µ=0

εµ, εµ = µ(µ+ 2b+ 2). (49)

The parameter b is defined by

2b+ 1 = |N1 −N2|. (50)

Also γ = b and b+ 1 respectively for the OE-UE and SE-UE crossovers. The crossover

parameter τ appears in (48) in the normalization and the Pfaffian. Fj,k in (48) is an

antisymmetric function with the indices j, k taking values from 1 toN orN+1 depending

on whether N is even or odd. N is necessarily even in the SE-UE crossover to take care

of Kramers degeneracy explicitly for SE. For j, k = 1, 2, ..., N , Fj,k = G(Tj , Tk; τ). In

addition, for odd N case of OE-UE crossover Fj,N+1 = −FN+1,j = H(Tj; τ)(1− δj,N+1).

The explicit forms of G and H have been given below. We use the above JPD and other

results from [18] to obtain the conductance distributions for the crossover ensembles.

As in (5) the Laplace transform of the conductance distribution is given by

F̃ (s; τ) =

∫ 1

0

· · ·

∫ 1

0

P (T1, ...TN ; τ)

N∏

j=1

e−sTj dT1...dTN . (51)

The above integral can be evaluated by expanding the Pfaffian and then performing

the integral using the method of alternate variables [15, 35, 36]. The final answer is

obtained in terms of a Pfaffian. We outline the proof in appendix A. We give the results

for the OE-UE and SE-UE crossovers below.

4.2. OE-UE Crossover

For the OE-UE crossover we get the Laplace transform of the conductance distribution

as

F̃ (s; τ) = eE0τΓ(N + 1)C
(1)
N Pf[Ψj,k(s; τ)]j,k=0,...,N−1, (52)

when N is even, and

F̃ (s; τ) = eE0τΓ(N + 1)C
(1)
N Pf

[
Ψj,k(s; τ) Φj(s; τ)

−Φk(s; τ) 0

]

j,k=0,...,N−1

, (53)
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when N is odd. In (52) and (53) Ψ and Φ are given by

Ψj,k(s; τ) =

∫ 1

0

∫ 1

0

G(x, y; τ) e−sxe−syxγ+jyγ+k dx dy, (54)

Φj(s; τ) =

∫ 1

0

H(x; τ)e−sxxγ+jdx, (55)

where

G(x, y; τ) = 4xb+1yb+1
∞∑

µ=0

∞∑

ν=µ+1

(−1)µ+νe−(εµ+εν)τ

×
[
P 0,2b+1
µ (2x− 1)P 0,2b+1

ν (2y − 1)− P 0,2b+1
ν (2x− 1)P 0,2b+1

µ (2y − 1)
]

= −4xb+1yb+1
∞∑

µ=1

µ−1∑

ν=0

(−1)µ+νe−(εµ+εν)τ

×
[
P 0,2b+1
µ (2x− 1)P 0,2b+1

ν (2y − 1)− P 0,2b+1
ν (2x− 1)P 0,2b+1

µ (2y − 1)
]
, (56)

H(x; τ) = 2xb+1
∞∑

µ=0

(−1)µe−εµτP 0,2b+1
µ (2x− 1). (57)

Here the P a,b
j (x) are Jacobi polynomials. Note that in the τ → 0 limit G(x, y; τ) =

sgn(x − y) and H(x; τ) = 1. The OE result therefore follows from the above crossover

result for τ = 0.

For arbitrary N1, N2 the results for conductance distribution are complicated.

However, for N = 1 and arbitrary M the final expression is simple. We find

F (g; τ) = MgM−1
∞∑

ν=0

(−1)νe−ν(ν+M)τP 0,M−1
ν (2g − 1). (58)

It is easy to see that τ → ∞ reproduces the correct UE result. For the other limit τ = 0,

which gives the OE result, one has to use the following identity which follows from the

generating function for Jacobi polynomials [37]:
∞∑

ν=0

(−1)νP 0,M−1
ν (2g − 1) =

1

2
g−M/2. (59)

The effect of varying τ on conductance distribution has been shown in figure 4 for

M ≤ 4.

4.3. SE-UE Crossover

For the SE-UE crossover the Laplace transform of the conductance distribution is given

by

F̃ (s; τ) = eE0τΓ(N + 1)C
(4)
N Pf[Ψj,k(s; τ)]j,k=0,...,N−1, (60)

where as in (52),

Ψj,k(s; τ) =

∫ 1

0

∫ 1

0

G(x, y; τ) e−sxe−syxγ+jyγ+k dx dy. (61)
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Figure 4. Conductance distribution in OE-UE crossover for N = 1 and M = 1, 2, 3, 4,

with different values of τ .

In this case G(x, y; τ) has the expansion

G(x, y; τ) = −
1

2
xbyb

∞∑

µ=0

∞∑

ν=0

(µ+ b+ 1)(ν + b+ 1)e−(εµ+εν)τ

×
[
P 0,2b+1
µ (2x− 1)P 0,2b+1

ν (2y − 1)− P 0,2b+1
ν (2x− 1)P 0,2b+1

µ (2y − 1)
]

=
1

2
xbyb

∞∑

µ=1

µ−1∑

ν=0

(µ+ b+ 1)(ν + b+ 1)e−(εµ+εν)τ

×
[
P 0,2b+1
µ (2x− 1)P 0,2b+1

ν (2y − 1)− P 0,2b+1
ν (2x− 1)P 0,2b+1

µ (2y − 1)
]
. (62)

For τ → 0 we have G(x, y; τ) = −∂δ(x − y)/∂x. The SE result given in section 3 does

not take into account Kramers degeneracy. One therefore has to properly scale the

quantities to obtain (12) from (60) in the τ = 0 limit.

4.4. Large N1, N2 results

For largeN the conductance distribution is expected to behave like a Gaussian as in (42).

However, the average and variance should be appropriate to the crossover ensembles, as
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given in [18]. We have for arbitrary N1, N2,

〈g〉 =
N1N2

Ns
−

N1N2

Ns(Ns + 1)
e−Nsτ , (63)

and

var(g) =
N2

1N
2
2

(NS − 1)(NS)2(NS + 1)
+

N1N2(N1 − 1)(N2 − 1)

(NS − 2)(NS − 1)(NS)(NS + 1)
e−2(NS−1)τ

−
N2

1N
2
2

(NS)2(NS + 1)2
e−2NSτ +

N1N2(N1 + 1)(N2 + 1)

NS(NS + 1)(NS + 2)(NS + 3)
e−2(NS+1)τ

+
2N1N2(N1 −N2)

2

(NS − 2)(NS)2(NS + 1)(NS + 2)
e−NSτ , (64)

for OE-UE crossover. Similarly

〈g〉 =
N1N2

NS
+

N1N2

NS(NS − 1)
e−NSτ , (65)

and

var(g) =
N2

1N
2
2

(NS − 1)(NS)2(NS + 1)
+

N1N2(N1 − 1)(N2 − 1)

(NS − 3)(NS − 2)(NS − 1)(NS)
e−2(NS−1)τ

−
N2

1N
2
2

(NS − 1)2(NS)2
e−2NSτ +

N1N2(N1 + 1)(N2 + 1)

(NS − 1)(NS)(NS + 1)(NS + 2)
e−2(NS+1)τ

−
2N1N2(N1 −N2)

2

(NS − 2)(NS − 1)(NS)2(NS + 2)
e−NSτ , (66)

for SE-UE crossover. For large N1, N2 the above equations simplify to

〈g〉 =
N1N2

NS

(
1∓

e−NSτ

NS

)
, (67)

and

var(g) =
N2

1N
2
2

N4
S

(
1 + e−2NSτ

)
, (68)

valid for both the crossovers. In (67) the upper and lower signs correspond respectively

to the OE-UE and SE-UE crossovers. It is clear from (67) and (68) that for large N1, N2

while the average changes very little for both the crossovers, the variance becomes half

as τ varies from 0 to ∞.

5. Conclusion

To conclude we have proposed a formalism to obtain exact distributions of conductance

in chaotic mesoscopic cavities for all the three invariant classes of random matrices. The

technique is particularly useful for finding explicit answers for small N values where one

expects significant deviation from Gaussian-like behavior. These results are important

from the point of view of experiments where similar number of channels are typically

considered.
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We have also worked out the conductance distributions for the OE-UE and SE-UE

crossovers using the results of [18]. These results are important for investigating the

behaviour of conductance distributions in mesoscopic cavities with small magnetic field.

We remark that, working in similar fashion, it is possible to present the exact

distribution of shot-noise power also as an inverse Laplace transform of determinant or

Pfaffian. One just needs to replace e−sx by e−sx(1−x) in the expressions for Ψ and Φ.

However, evaluation of the inverse Laplace transform to obtain explicit results poses

technical difficulties.
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Appendix A. Proofs of (52), (53) and (60)

The Pfaffian of a 2µ× 2µ antisymmetric matrix A is defined as [15]

Pf[A] =
∑

p

σpAi1,i2Ai3,i4 · · ·Ai2µ−1,i2µ. (A.1)

The sum in (A.1) is over all permutations

p =

(
1, 2, ..., 2µ

i1, i2, ..., i2µ

)

with the restrictions i1 < i2, i3 < i4, ..., i2µ−1 < i2µ; i1 < i3 < ... < i2µ−1 and σp is sign

of the permutation. Also, Pfaffian is related to the determinant as

det[A] = (Pf[A])2. (A.2)

For the OE-UE crossover, Laplace transform of conductance distribution is

F̃ (s) = eE0τC
(1)
N

∫ 1

0

dT1 · · ·

∫ 1

0

dTN

( N∏

i=1

e−sT iT γ
i

)
det[T j

k ]j=0,..,N−1
k=1,..,N

Pf[Fm,n]

= eE0τC
(1)
N

∫ 1

0

dT1 · · ·

∫ 1

0

dTN det[e−sTjT j+γ
k ]j=0,..,N−1

k=1,..,N
Pf[Fm,n], (A.3)

where m,n = 1, ..., N or N + 1 depending on whether N is even or odd.

When N is even, the expansion for Pfaffian and symmetry of the T variables lead

to

F̃ (s) = (N − 1)!! eE0τC
(1)
N

∫ 1

0

dT1 · · ·

∫ 1

0

dTN

( N∏

i=1

e−sT iT γ
i

)
det[T j

k ]j=0,..,N−1
k=1,..,N

(F1,2F3,4...FN−1,N)

= (N − 1)!! eE0τC
(1)
N

∫ 1

0

dT1 · · ·

∫ 1

0

dTNdet[e
−sT2k−1T γ+j

2k−1F2k−1,2k e−sT2kT γ+j
2k ]j=0,..,N−1

k=1,..,N/2
.

Defining

f ν
2k =

∫ 1

0

dT2k−1e
−sT2k−1T ν

2k−1F2k−1,2k, (A.4)
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and integrating over the odd numbered columns in the determinant we get

F̃ (s) = (N − 1)!! eE0τC
(1)
N

∫ 1

0

dT2

∫ 1

0

dT4 · · ·

∫ 1

0

dTNdet[f
γ+j
2k e−sT2kT γ+j

2k ]j=0,..,N−1
k=1,..,N/2

. (A.5)

The remaining integrals give rise to a Pfaffian [15, 35, 36], viz.,

F̃ (s) = (N − 1)!! eE0τC
(1)
N 2N/2(N/2)!Pf[Ψj,k(s; τ)]j,k=0,...,N−1

= eE0τΓ(N + 1)C
(1)
N Pf[Ψj,k(s; τ)]j,k=0,...,N−1, (A.6)

where Ψj,k(s; τ) is given by (54).

When N is odd we get instead of (A.5),

F̃ (s) = N !! eE0τC
(1)
N

∫ 1

0

dT2

∫ 1

0

dT4 · · ·

∫ 1

0

dTN+1det[f
γ+j
2k e−sT2kT γ+j

2k , f γ+j
N+1]j=0,..,N−1

k=1,..,(N−1)/2
.(A.7)

This then leads to (53).

The proof for SE-UE crossover result is similar to even N case of OE-UE crossover.

Note that the proofs for the β = 1, 4 invariant ensembles are implicit in the above

derivations.
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[8] Barthélemy J, Legrand O, and Mortessagne F 2005 Complete S matrix in a microwave cavity at

room temperature Phys. Rev. E 71 016205
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